
Operating Systems

Grado en Informática. Course 2019-2020

Lab assignment 2: Memory

CONTINUE to code the shell started in previous lab assignments. The goal
of this assignment is to understand how the memory of a proccess is orga-
nized. At this stage of developement the shell will be able to map files into
memory and to allocate memory to itself (either shared or private). In next
assignments we will deal with creating proccesses and executing programs.

The shell will keep track (using a list) of all the memory blocks it allocates
using the commands asignar and it deallocates with desasignar. For each
block of memory allocated with those commands the shell must store its
memory address (the address of the block), its size (the size of the block), the
time it was allocated, the type of allocation (malloc, shared memory, mapped
file), and other pieces of information depending on the type of allocation
(name of file for mapped files, key for shared memory . . .)

See the notes on the implementation of the list.

Values in that list must be coherent with what pmap shows for the
shell proccess

In addition to the commands done in previous lab assignments, the shell has
to implement the following commands

asignar allocates memory in the shell, and keeps the address of the block allo-
cated in a list. If no arguments are given, it prints a list of the allocated
memory blocks (that is, prints the list)

asignar -malloc [tam] The shell allocates tam bytes using malloc and
shows the memory address returned by malloc. This address, to-
gether with tam and the time of the allocation, must be kept in
the aforementioned list. If tam is not specified the command will
show the list of addresses allocated with the asignar -malloc

command.malloc() requires an argument of size t Example:

-> asignar -malloc 100000000

allocated 100000000 at 0x7f6649f24010

-> asignar -malloc

0x7f6649f24010: size:100000000. malloc Mon Oct 26 20:07:05 2018

-> asignar -malloc 500000000

allocated 500000000 at 0x7f662c24d010

-> asignar -malloc

0x7f6649f24010: size:100000000. malloc Mon Oct 26 20:07:05 2018

1

0x7f662c24d010: size:500000000. malloc Mon Oct 26 20:08:17 2018

->

asignar -mmap fich [perm] Maps in memory the file fich (all of its length
starting at offset 0) and shows the memory address where the file
has been mapped. perm represents the mapping permissions (rwx
format, without spaces). The address of the mapping, together
with the size, the name of the file, the file descriptor, and the
time of the mapping will be stored in the aforementioned list. If
fich is not specified, the command will show the list of addresses
allocated with the asignar -mmap command. Example

->asignar -mmap Shell.c rw

file Shell.c mapped at 0x7f6650436000

-> asignar -mmap Shell.c rwx

file Shell.c mapped at 0x7f6650424000

-> asignar -mmap

0x7f6650436000: size:71806. mmap Shell.c (fd:3) Mon Oct 26 20:10:07 2018

0x7f6650424000: size:71806. mmap Shell.c (fd:5) Mon Oct 26 20:10:17 2018

asignar -crearshared [cl] [tam] Gets shared memory of key cl, maps it in
the proccess address space and shows the memory address where
the shared memory has been mapped. That address, together
with the key, the size of the shared memory block and the time
of the mapping, will be stored in the aforementioned list. cl IS
THE KEY, (ftok should not be used). It is assumed that key
cl is not in use in the system so a new block of shared memory
SHOULD BE CREATED, and an error must be reported if a
block of key cl already exists. If either cl or tam are not specified,
the command will show the list of addresses (and size, and time
. . .) allocated with the asignar -createshared and asignar

-shared commands. shared memory blocks can be of size t
size)

asignar -shared] [cl] Gets shared memory of key cl, maps it in the proc-
cess address space and shows the memory address where the shared
memory has been mapped. That address, together with the key,
the size of the shared memory block and the time of the mapping,
will be stored in the aforementioned list. cl IS THE KEY, (ftok
should not be used). It is assumed that key cl is already in use
in the system so a new block of shared memory MUST NOT BE
CREATED, and an error must be reported if a block of key cl does
not exists. If cl is not specified, the command will show the list
of addresses (and size, and time . . .) allocated with the asignar

-createshared and asignar -shared commands.

2

-> asignar -shared 15

Cannot allocate: No such file or directory

-> asignar -createshared 15 300000000

Allocated shared memory (key 15) at 0x7f661a432000

-> asignar -createshared 15 200000000

Cannot allocate: File exists

-> asignar -shared 15

Allocated shared memory (key 15) at 0x7f6608617000

-> asignar -shared

0x7f661a432000: size:300000000. shared memory (key 15) Mon Oct 26 20:12:47 2018

0x7f6608617000: size:300000000. shared memory (key 15) Mon Oct 26 20:12:54 2018

-> asignar

0x7f6649f24010: size:100000000. malloc Mon Oct 26 20:07:05 2018

0x7f662c24d010: size:500000000. malloc Mon Oct 26 20:08:17 2018

0x7f6650436000: size:71806. mmap Shell.c (fd:3) Mon Oct 26 20:10:07 2018

0x7f6650424000: size:71806. mmap Shell.c (fd:5) Mon Oct 26 20:10:17 2018

0x7f661a432000: size:300000000. shared memory (key 15) Mon Oct 26 20:12:47 2018

0x7f6608617000: size:300000000. shared memory (key 15) Mon Oct 26 20:12:54 2018

desasignar deallocates one of the memory blocks allocated with the command al-
locate and removes it from the list. If no arguments are given, it prints
a list of the allocated memory blocks (that is, prints the list)

desasignar -malloc [tam] The shell deallocates one of the blocks of size tam
that has been allocated with the command asignar -malloc. If
no such block exists or if tam is not specified, the command will
show the list of addresses allocated with the asignar -malloc

command. Should there be more than one block of size tam it
deallocates ONLY one of them (any). Example:

-> desasignar -malloc 100000000

deallocated 100000000 at 0x7f6649f24010

- desasignar -malloc

0x7f662c24d010: size:500000000. malloc Mon Oct 26 20:08:17 2015

->

desasignar -mmap fich Unmaps and closes the file fich and removes the ad-
dress where it was mapped from the list. If fich has been mapped
several times, only one of the mappings will be undone. If the file
fich is not mapped by the process or if fich is not specified, the
command will show the list of addresses (and size, and time . . .)
allocated with the asignar -mmap command.

desasignar [-shared] [cl] Detaches the shared memory block with key cl from
the process’ address space ad eliminates its address from the list.
If shared memory block with key cl has been attached several

3

times, ONLY one of them is detached. cl IS THE KEY, ftok
should not be used. If cl is not specified, the command will show
the list of addresses (and size, and time . . .) allocated with the
asignar -createshared and asignar -shared commands.

desasignar addr Deallocates addr (it searchs in the list how it was allocated,
and proceeds accordingly) and removes it from the list. If addr
is not in the list or if addr is not supplied the command will
show all the addresses (and size, and time . . .) allocated with
the asignar -malloc, asignar -mmap, asignar -sharednew
and asignar shared commands. This is equivalent to desasignar
-malloc. desasignar -shared or desasignar -mmap deppending on
addr

-> desasignar

0x7f6649f24010: size:100000000. malloc Mon Oct 26 20:07:05 2018

0x7f662c24d010: size:500000000. malloc Mon Oct 26 20:08:17 2018

0x7f6650436000: size:71806. mmap Shell.c (fd:3) Mon Oct 26 20:10:07 2018

0x7f6650424000: size:71806. mmap Shell.c (fd:5) Mon Oct 26 20:10:17 2018

0x7f661a432000: size:300000000. shared memory (key 15) Mon Oct 26 20:12:47 2018

0x7f6608617000: size:300000000. shared memory (key 15) Mon Oct 26 20:12:54 2018

-> desasignar -malloc 100000000

block at address 0x7f6649f24010 deallocated (malloc)

-> desasignar -shared 15

block at address 0x7f661a432000 deallocated (shared)

-> desasignar -mmap Shell.c

block at address 0x7f6650436000 deallocated (mmap)

-> desasignar 0x7f662c24d010

block at address 0x7f662c24d010 deallocated (malloc)

-> desasignar 0x7f662c24d010

0x7f6650424000: size:71806. mmap Shell.c (fd:5) Mon Oct 26 20:10:17 2018

0x7f6608617000: size:300000000. shared memory (key 15) Mon Oct 26 20:12:54 2018

borrarkey cl Removes the shared memory region of key cl. NOTHING GETS
UNMAPPED: this is just a call to shmctl(id, IPC RMID. . .)

mem [-malloc] [-shared] [-mmap] [-all] Shows addresses inside the pro-
cess memory space. If no arguments are given, it prints the memory
addresses of three program functions, three extern (global) variables
and three automatic (local) variables.

mem -malloc shows the list of addresses (and size, and time . . .) allo-
cated with the asignar -malloc

mem -shared shows the list of addresses (and size, and time . . .) al-
located with the asignar -createshared and asignar -shared

commands.

4

mem -mmap shows the list of addresses (and size, and time . . .) allo-
cated with the asignar -mmap

mem -all shows the list of addresses (and size, and time . . .) allocated
with the asignar -malloc, asignar -mmap, asignar -createshared

and asignar -shared commands.

volcar addr [cont] Shows the contents of cont bytes starting at memory
address addr. If cont is not specified, it shows 25 bytes. For each
byte it prints (at different lines) its hex value and its associate char
(a blank if it is a non-printable character). It prints 25 bytes per line.
addr SHOULD NOT BE CHECKED FOR VALIDITY, so, this
command could produce segmentation fault should addr were not valid.

->volcar 0xb8019000 300

i n c l u d e < u n i s t d . h > # i n c l

23 69 6E 63 6C 75 64 65 20 3C 75 6E 69 73 74 64 2E 68 3E 0A 23 69 6E 63 6C

u d e < s t d i o . h > # i n c l u d e < s

75 64 65 20 3C 73 74 64 69 6F 2E 68 3E 0A 23 69 6E 63 6C 75 64 65 20 3C 73

t r i n g . h > # i n c l u d e < s t d l i b

74 72 69 6E 67 2E 68 3E 0A 23 69 6E 63 6C 75 64 65 20 3C 73 74 64 6C 69 62

. h > # i n c l u d e < s y s / t y p e s . h

2E 68 3E 0A 23 69 6E 63 6C 75 64 65 20 3C 73 79 73 2F 74 79 70 65 73 2E 68

> # i n c l u d e < s y s / s t a t . h > #

3E 0A 23 69 6E 63 6C 75 64 65 20 3C 73 79 73 2F 73 74 61 74 2E 68 3E 0A 23

llenar addr [cont] [byte] Fills cont bytes of memory starting at address addr
with the value ’byte’. If ’byte’ is not specified, the value of 65 (0x42 or
capital A) is assumed, and if cont is not specified, we’ll use a default
value of 128. addr SHOULD NOT BE CHECKED FOR VA-
LIDITY, so, this command could produce segmentation fault should
addr were not valid.
Example:

-> llenar 0xb8019000 1500 0x42

recursiva n. Calls a recursive function passing the integer n n as its parameter.
This recursive function receives the number of times it has to call itself.
This function has two variables: an automatic array of 2048 bytes and
a static array of the same size. It does the following

– prints the value of the received parameter as well as its memory
address.

– prints the address of the static array.

– prints the address of the automatic array.

– decrements n (its parameter) and if n is greater than 0 it calls
itself.

5

A possible coding for this function:

void doRecursiva (int n)

{

char automatico[TAMANO];

static char estatico[TAMANO];

printf ("parametro n:%d en %p\n",n,&n);

printf ("array estatico en:%p \n",estatico);

printf ("array automatico en %p\n",automatico);

n--;

if (n>0)

recursiva(n);

}

rfich fich addr cont Reads (using ONE read system call) cont bytes from
file fich into memory address addr. If cont is not specified ALL of fich
is read onto memory address addr. Depending on the value of addr a
segmentation fault could be produced.

wfich [-o] fich addr cont Writes (using ONE write system call) cont bytes
from memory address addr into file fich. If file fich does not exist it gets
created; if it already exists it is not overwritten unless “-o” (overwrite)
is specified.

NOTES ON LIST IMPLEMETATION

• the implementations of list should consist of the data types and the
access funtions. A list.h and a list.c should be created. list.h

should contain all the types definition neccessary for the list as well as
the functions prototypes. list.c contains the implementation of the
list functions. list.c must be compiled separately and a sentence to
include list.h should be present in the main shell program.

• four list implementations are to be considered:

0) linked list: The list is composed of dynamically allocated nodes.
Each node has some item of information and a pointer to the fol-
lowing node. The list itself is a pointer to the first node, when the
list is empty this pointer is NULL, so creating the list is asign-
ing NULL to the list pointer, thus the functions CreateList,

InsertElement and RemoveElement must receive the list by ref-
erence as they may have (case of inserting or removing the first
element) to modify the list.

1) linked list with head node: Similar to the linked list except

6

that the list itself is a pointer to a empty (with no information)
first node. Creating the list is allocating this first element (head
node). CreateList must receive the list by reference whereas
InsertElement and RemoveElement can receive the list by value.

2) array: Elements in the list are stored in a statically allocated
array of nodes, so the list type is a pointer to a structure containing
the array of nodes and optionally one or more integers (depending
on the implementation: nextin and nextout indexes, counter . . .).
For the purpose of this lab assigment we can assume the array
dimension to be 4096 (which should be declared a named constant,
and thus easily modifiable).

3) array of pointers; Elements in the list are allocated dynami-
cally, and the list keeps track of all its elements using an array of
pointers, (this can be either a NULL terminated array or we can
use aditional integers). This array is statically allocated and for
the purpose of this lab assigment we can assume the array dimen-
sion to be 4096 which should be declared a named constant, and
thus easily modifiable.

• EACH WORKGROUP MUST DO THE LIST IMPLEMEN-
TATION RESULTING FROM THE FOLLOWING PROCE-
DURE: Add the two last digits of the D.N.I. of the workgoup compo-
nents and calculate its module 4, that will yield the implementation to
use. Should one (or more) component of the workgroup have no D.N.I.,
then the ascci code of its capitalized family name initial should be used
instead.

– example 1: workgroup components D.N.I.s are 55555581 and
55555507, so the implementation to use will be given by (81 +
07)%4, so this group will have to use implementatio 0, linked

list

– example 2: workgroup componets are D.N.I. 55555581 and Don-
ald Trump (who, as of now, does not have a valid D.N.I., to the
best of our knowledge) so, as the ascii code for the T is 84, this
group would have to use implementation (81+84)%4 = 1. linked
list with head node

• This program should compile cleanly (produce no warnings even when
compiling with gcc -Wall)

• NO RUNTIME ERROR WILL BE ALLOWED (segmenta-
tion, bus error . . .), unless where explicitly spcified. Programs with
runtime errors will yield no score.

• This program can have no memory leaks (memory blocks allocated with

7

the asignar -malloc command are not taken into acount)

• When the program cannot perform its task (for whatever reason, for
example, lack of privileges) it should inform the user

• All input and output is done through the standard input and output

Information on the system calls and library functions needed to
code this program is available through man: (open, read, write, close,
shmget, shmat, shamdt, shmctl, mmap, munmap, malloc, free. . .).

WORK SUBMISSION

• Work must be done in pairs.

• The source code will be submitted to the subversion repository under
a directory named P2

• The name of the main program will be shell.c, the list implementation
will use files list.h and list.c. A Makefile must be supplied so that the
program (and all of its modules) can be compiled with just make

• Only one of the members of the workgroup will submit the source code.
The names, logins and D.N.I. of all the members of the group should
be in the source code of the main program (at the top of the file)

DEADLINE: November Friday 22nd, 2019, 23:00h

ASSESSMENT: For each pair, it will be done in its correspond-
ing group, during the lab classes

CLUES

The following functions could guide the implementation of asignar -shared,
asignar -createshared, asignar -mmap, rfich and wfich. It is asumed that

• The functioms to perform the tasks ’Guardar En Direcciones de Memo-
ria Shared’. ’Listar Direcciones de Memoria Shared’. . . must be imple-
mented as part of the assignment

• Cmd AsignarCreateShared and Cmd AsignarMmap receive as parame-
ter the array resulting from spliting the input string discarding the first
element (they are called passing arg+1 as parameter), and may require
aditional parameters.

/***/

/***/

void * ObtenerMemoriaShmget (key_t clave, size_t tam)

{

8

void * p;

int aux,id,flags=0777;

struct shmid_ds s;

if (tam) /*si tam no es 0 la crea en modo exclusivo */

flags=flags | IPC_CREAT | IPC_EXCL;

/*si tam es 0 intenta acceder a una ya creada*/

if (clave==IPC_PRIVATE) /*no nos vale*/

{errno=EINVAL; return NULL;}

if ((id=shmget(clave, tam, flags))==-1)

return (NULL);

if ((p=shmat(id,NULL,0))==(void*) -1){

aux=errno; /*si se ha creado y no se puede mapear*/

if (tam) /*se borra */

shmctl(id,IPC_RMID,NULL);

errno=aux;

return (NULL);

}

shmctl (id,IPC_STAT,&s);

/* Guardar En Direcciones de Memoria Shared (p, s.shm_segsz, clave.....);*/

return (p);

}

void Cmd_AsignarCreateShared (char *arg[])

{

key_t k;

size_t tam=0;

void *p;

if (arg[0]==NULL || arg[1]==NULL)

{/*Listar Direcciones de Memoria Shared */;*/ return;}

k=(key_t) atoi(arg[0]);

if (arg[1]!=NULL)

tam=(size_t) atoll(arg[1]);

if ((p=ObtenerMemoriaShmget(k,tam))==NULL)

perror ("Imposible obtener memoria shmget");

else

9

printf ("Memoria de shmget de clave %d asignada en %p\n",k,p);

}

/**/

/**/

void * MmapFichero (char * fichero, int protection)

{

int df, map=MAP_PRIVATE,modo=O_RDONLY;

struct stat s;

void *p;

if (protection&PROT_WRITE) modo=O_RDWR;

if (stat(fichero,&s)==-1 || (df=open(fichero, modo))==-1)

return NULL;

if ((p=mmap (NULL,s.st_size, protection,map,df,0))==MAP_FAILED)

return NULL;

/*Guardar Direccion de Mmap (p, s.st_size,fichero,df......);*/

return p;

}

void Cmd_AsignarMmap (char *arg[])

{

char *perm;

void *p;

int protection=0;

if (arg[0]==NULL)

{/*Listar Direcciones de Memoria mmap;*/ return;}

if ((perm=arg[1])!=NULL && strlen(perm)<4) {

if (strchr(perm,’r’)!=NULL) protection|=PROT_READ;

if (strchr(perm,’w’)!=NULL) protection|=PROT_WRITE;

if (strchr(perm,’x’)!=NULL) protection|=PROT_EXEC;

}

if ((p=MmapFichero(arg[0],protection))==NULL)

perror ("Imposible mapear fichero");

10

else

printf ("fichero %s mapeado en %p\n", arg[0], p);

}

#define LEERCOMPLETO ((ssize_t)-1)

ssize_t LeerFichero (char *fich, void *p, ssize_t n) /*n=-1 indica que se lea todo*/

{

ssize_t nleidos,tam=n;

int df, aux;

struct stat s;

if (stat (fich,&s)==-1 || (df=open(fich,O_RDONLY))==-1)

return ((ssize_t)-1);

if (n==LEERCOMPLETO)

tam=(ssize_t) s.st_size;

if ((nleidos=read(df,p, tam))==-1){

aux=errno;

close(df);

errno=aux;

return ((ssize_t)-1);

}

close (df);

return (nleidos);

}

/***/

/***/

void Cmd_borrakey (char *args[])

{

key_t clave;

int id;

char *key=args[0];

if (key==NULL || (clave=(key_t) strtoul(key,NULL,10))==IPC_PRIVATE){

printf (" rmkey clave_valida\n");

return;

}

if ((id=shmget(clave,0,0666))==-1){

perror ("shmget: imposible obtener memoria compartida");

11

return;

}

if (shmctl(id,IPC_RMID,NULL)==-1)

perror ("shmctl: imposible eliminar memoria compartida\n");

}

12

