
Operating Systems

Grado en Informática. Course 2019-2020

Lab assignment 0: Introduction to C programming language

To get acquainted with the C programming language we’ll start to code a
shell, coding of this shell will be continued in next lab assignments.

We’ll start with a nearly empty shell, which is basically a loop that

• prints a prompt

• reads from the standard input a line of text which includes a command
(with its arguments).

• stores this command in a list of commands

• separates the command and its arguments

• processes the comand with its arguments

At this moment this shell has to understand only the following commands

autores [-l|-n] Prints the names and logins of the program authors. autores -l prints
only the logins and autores -n prints only the names

pid [-p] Prints the pid of the process executing the shell pid -p prints the pid
of its parent process.

cdir [direct] Changes the current working directory of the shell to direct (using the
chdir system call). When invoked without auguments it prints the
current working directory of the shell (using getcwd)

fecha Prints the current date

hora Prints the current time

hist [-c] Shows the historic of commands executed by this shell. In order to
do this a list to store all the commands input to the shell must be
implemented. hist -c clears the historic, that’s to say, empties the list
(See the NOTES ON LIST IMPLEMENTATIONS at the end of this
document)

fin Ends the shell

end Ends the shell

exit Ends the shell

• This program should compile cleanly (produce no warnings even when
compiling with gcc -Wall)

1



• NO RUNTIME ERROR WILL BE ALLOWED (segmenta-
tion, bus error . . . ), unless where explicitly spcified. Programs with
runtime errors will yield no score.

• This program can have no memory leaks

• When the program cannot perform its task (for whatever reason, for
example, lack of privileges) it should inform the user

• All input and output is done through the standard input and output

Information on the system calls and library functions needed to
code this program is available through man: (printf, gets, read, write,
exit, getpid, getppid, getcwd, chdir, time . . . ).

WORK SUBMISSION

• Work must be done in pairs.

• The source code will be submitted to the subversion repository under
a directory named P0

• The name of the main program file will be p0.c. Program must be
able to be compiled with gcc p0.c Alternatively a Makefile can be
supplied so that the program can be compiled with just make

• Only one of the members of the workgroup will submit the source code.
The names and logins of all the members of the group should be in the
source code of the main program (at the top of the file)

DEADLINE: October 4th. This lab assignment will yield no
score, neither will it be evaluated. However all the code for
this assigmnet can be reutilized for the following assigments.
This assigmente will also help get acquainted with the svn

repository, needed for the correct submission of all of the
following lab assignments (from the next assignment on, work
wrongly submitted will no be evaluated)

CLUES

A shell is basically a loop

while (!terminado){

imprimirPrompt();

leerEntrada();

procesarEntrada();

}

imprimirPrompt() and leerEntrada() can be as simple as calls to printf y

2



gets (there’s a reason why fgets() should be used instead fog gets())

The first step whe processing the input string is splitting it into words. For
this, the strtok library function comes in handy. Please notice that strtok
nor allocates memory neither does copy strings, it just breaks the input string
by inserting end of string (’\0’) characters. The following function splits the
string pointed by cadena (suposedly not null) into a NULL terminated array
of pointers (trozos). The function returns the number of words that were in
cadena

int TrocearCadena(char * cadena, char * trozos[])

{ int i=1;

if ((trozos[0]=strtok(cadena," \n\t"))==NULL)

return 0;

while ((trozos[i]=strtok(NULL," \n\t"))!=NULL)

i++;

return i;

}

NOTES ON LIST IMPLEMETATION

• the implementations of list should consist of the data types and the
access funtions. All access to the list should be done used the afore-
mentioned access functions.

• four list implementations are to be considered:

0) linked list: The list is composed of dynamically allocated nodes.
Each node has some item of information and a pointer the follow-
ing node. The list itself is a pointer to the first node, when the
list is empty this pointer is NULL, so creating the list is asign-
ing NULL to the list pointer, thus the functions CreateList,

InsertElement and RemoveElement must receive the list by ref-
erence as they may have (case of inserting or removing the first
element) to modify the list.

1) linked list with head node: Similar to the linked list except
that the list itself is a pointer to a empty (with no information)
first node. Creating the list is allocating this first element (head
node). CreateList must receive the list by reference whereas
InsertElement and RemoveElement can receive the list by value.

2) array: Elements in the list are stored in a statically allocated
array of nodes, so the list type is a pointer to a structure containing
the array of nodes and optionally one or more integers (depending

3



on the implementation: nextin and nextout indexes, counter . . . ).
For the purpose of this lab assigment, we can assume the array
dimension to be 4096 (which should be declared a named constant,
and thus easily modifiable).

3) array of pointers; The list is an array (statically allocated) of
pointers. Each pointer points to one element in the list which is
allocated dynamically. For the purpose of this lab assigment we
can assume this statically allocated array dimension to be 4096,
which should be declared a named constant, and thus easily mod-
ifiable. To implement the list with this array we can use either a
NULL terminated array or we can use aditional integers.

• EACH WORKGROUP MUST DO THE LIST IMPLEMEN-
TATION RESULTING FROM THE FOLLOWING PROCE-
DURE: Add the two last digits of the D.N.I. of the workgoup compo-
nents and calculate its module 4, that will yield the implementation to
use. Should one (or more) component of the workgroup have no D.N.I.,
then the ascci code of its capitalized family name initial should be used
instead.

– example 1: workgroup components D.N.I.s are 55555581 and
55555507, so the implementation to use will be given by (81 +
07)%4, so this group will have to use implementatio 0, linked

list

– example 2: workgroup componets are D.N.I. 55555581 and Don-
ald Trump (who, as of now, does not have a valid D.N.I., to the
best of our knowledge) so, as the ascii code for the T is 84, this
group would have to use implementation (81+84)%4 = 1. linked
list with head node

4


