
Chapter 8

Operating
Systems:
Internals
and Design Chapter 8

Virtual Memory
and Design
Principles

Seventh Edition
William Stallings

You’re gonna need a bigger boat.

Operating Systems:
Internals and Design Principles

You’re gonna need a bigger boat.

— Steven Spielberg,

JAWS, 1975

Hardware and Control StructuresHardware and Control Structures

nTwo characteristics fundamental to memory
management:

1) all memory references are logical addresses that are
dynamically translated into physical addresses at run timedynamically translated into physical addresses at run time

2) a process may be broken up into a number of pieces that
don’t need to be contiguously located in main memory
during execution

n If these two characteristics are present, it is not
necessary that all of the pages or segments of a
process be in main memory during execution

TerminologyTerminology

n Operating system brings into main memory a few pieces of the
program

n Resident set - portion of process that is in main memoryn Resident set - portion of process that is in main memory

n An interrupt is generated when an address is needed that is not
in main memory

n Operating system places the process
in a blocking state

Continued . . .

Execution of a ProcessExecution of a Process
n Piece of process that contains the logical address is brought into
main memory
n operating system issues a disk I/O Read request
another process is dispatched to run while the disk I/O takes n another process is dispatched to run while the disk I/O takes
place

n an interrupt is issued when disk I/O is complete, which causes
the operating system to place the affected process in the Ready
state

ImplicationsImplications

n More processes may be maintained in main memory
n only load in some of the pieces of each process
n with so many processes in main memory, it is very likely a n with so many processes in main memory, it is very likely a
process will be in the Ready state at any particular time

n A process may be larger than all of main memory

Real and Virtual MemoryReal and Virtual Memory

Real memory
• main memory, the actual RAM

Virtual memory
• memory on disk
• allows for effective multiprogramming and relieves the
user of tight constraints of main memory

Table 8.2 Table 8.2

Characteristics of Characteristics of

Paging and Paging and

SegmentationSegmentationSegmentationSegmentation

To avoid this, the
A state in which
the system spends
most of its time
swapping process
pieces rather than
executing
instructions

To avoid this, the
operating system tries
to guess, based on
recent history, which
pieces are least likely
to be used in the near

future

Principle of LocalityPrinciple of Locality

n Program and data references within a process tend to cluster

n Only a few pieces of a process will be needed over a short
period of timeperiod of time

n Therefore it is possible to make intelligent guesses about which
pieces will be needed in the future

n Avoids thrashing

Paging BehaviorPaging Behavior

n During the lifetime of the
process, references are
confined to a subset of pages

For virtual memory to be practical and
effective:

• hardware must support paging and
segmentation
• operating system must include software for
managing the movement of pages and/or
segments between secondary memory and
main memory

PagingPaging

n The term virtual memory is usually associated with systems that
employ paging

n Use of paging to achieve virtual memory was first reported for n Use of paging to achieve virtual memory was first reported for
the Atlas computer

n Each process has its own page table
n each page table entry contains the frame number of the
corresponding page in main memory

Memory Memory
Management Management
FormatsFormats

Address TranslationAddress Translation

TwoTwo--Level Level
Hierarchical Page TableHierarchical Page Table

Address TranslationAddress Translation

n Page number portion of a virtual address is mapped into a hash
value
n hash value points to inverted page tablen hash value points to inverted page table

n Fixed proportion of real memory is required for the tables
regardless of the number of processes or virtual pages supported

n Structure is called inverted because it indexes page table entries by
frame number rather than by virtual page number

Inverted Page TableInverted Page Table

Each entry in the page table includes:

Page Process Control Chain Page
number

Process
identifier

• the process
that owns
this page

Control
bits

• includes
flags and
protection
and locking
information

Chain
pointer

• the index
value of the
next entry
in the chain

8.58 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Inverted Page Table

 Rather than each process having a page table and keeping track
of all possible logical pages, track all physical pages

 One entry for each real page of memory
 Entry consists of the virtual address of the page stored in that

real memory location, with information about the process that
owns that page

 Decreases memory needed to store each page table, but
increases time needed to search the table when a page
reference occurs

 Use hash table to limit the search to one — or at most a few —
page-table entries
 TLB can accelerate access

 But how to implement shared memory?
 One mapping of a virtual address to the shared physical

address

Translation LookasideTranslation Lookaside
Buffer (TLB)Buffer (TLB)

n To overcome the effect of
doubling the memory
access time, most virtual

n Each virtual memory
reference can cause two
physical memory accesses: access time, most virtual

memory schemes make
use of a special high-speed
cache called a translation
lookaside buffer

physical memory accesses:
n one to fetch the page
table entry

n one to fetch the data

Use of a TLB

TLB TLB
OperationOperation

Associative MappingAssociative Mapping
n The TLB only contains some of the page table entries so we
cannot simply index into the TLB based on page number
n each TLB entry must include the page number as well as the
complete page table entrycomplete page table entry

n The processor is equipped with hardware that allows it to
interrogate simultaneously a number of TLB entries to
determine if there is a match on page number

Direct Versus Direct Versus
Associative LookupAssociative Lookup

TLB and Cache OperationTLB and Cache Operation

Page SizePage Size
n The smaller the page size, the lesser the amount of internal
fragmentation
n however, more pages are required per process
more pages per process means larger page tablesn more pages per process means larger page tables

n for large programs in a heavily multiprogrammed environment
some portion of the page tables of active processes must be in
virtual memory instead of main memory

n the physical characteristics of most secondary-memory devices
favor a larger page size for more efficient block transfer of data

Paging Behavior of a ProgramPaging Behavior of a Program

Example: Page SizesExample: Page Sizes

Page SizePage Size
The design issue of
page size is related to
the size of physical
main memory and
program size

main memory is
getting larger and
address space used by
applications is also

growing

n Contemporary programming
techniques used in large
programs tend to decrease the
locality of references within a
process

program size growing

most obvious on
personal computers
where applications are
becoming increasingly

complex

SegmentationSegmentation

n Segmentation
allows the
programmer to

Advantages:
• simplifies handling
of growing data
structuresprogrammer to

view memory as
consisting of
multiple address
spaces or
segments

structures
• allows programs to
be altered and
recompiled
independently
• lends itself to
sharing data
among processes
• lends itself to
protection

Segment OrganizationSegment Organization
n Each segment table entry contains the starting address of the
corresponding segment in main memory and the length of the
segment

n A bit is needed to determine if the segment is already in main n A bit is needed to determine if the segment is already in main
memory

n Another bit is needed to determine if the segment has been
modified since it was loaded in main memory

Address Translation

Combined Paging and Combined Paging and
SegmentationSegmentation

In a combined In a combined
paging/segmentation system
a user’s address space is
broken up into a number of
segments. Each segment is
broken up into a number of
fixed-sized pages which are
equal in length to a main

memory frame

Segmentation is visible to the
programmer

Paging is transparent to the
programmer

Address TranslationAddress Translation

Combined Segmentation Combined Segmentation
and Pagingand Paging

Protection and SharingProtection and Sharing
n Segmentation lends itself to the implementation of protection
and sharing policies

n Each entry has a base address and length so inadvertent memory n Each entry has a base address and length so inadvertent memory
access can be controlled

n Sharing can be achieved by segments referencing multiple
processes

Protection
Relationships

Carnegie Mellon

14

End-­‐to-­‐end	
 Core	
 i7	
 Address	
 TranslaZon	

CPU	

VPN	
 VPO	

36	
 12	

TLBT	
 TLBI	

4	
 32	

...	

L1	
 TLB	
 (16	
 sets,	
 4	
 entries/set)	

VPN1	
 VPN2	

9	
 9	

PTE	

CR3	

PPN	
 PPO	

40	
 12	

Page	
 tables	

TLB	

miss	

TLB	

hit	

Physical	

address	
 	

(PA)	

Result	

32/64	

...	

CT	
 CO	

40	
 6	

CI	

6	

L2,	
 L3,	
 and	
 	

main	
 memory	

L1	
 d-­‐cache	
 	

(64	
 sets,	
 8	
 lines/set)	

L1	

hit	

L1	

miss	

Virtual	
 address	
 (VA)	

VPN3	
 VPN4	

9	
 9	

PTE	
 PTE	
 PTE	

Carnegie Mellon

15

Core	
 i7	
 Level	
 1-­‐3	
 Page	
 Table	
 Entries	

Page	
 table	
 physical	
 base	
 address	
 Unused	
 G	
 PS	
 A	
 CD	
 WT	
 U/S	
 R/W	
 P=1	

Each	
 entry	
 references	
 a	
 4K	
 child	
 page	
 table	

P:	
 Child	
 page	
 table	
 present	
 in	
 physical	
 memory	
 (1)	
 or	
 not	
 (0).	

R/W:	
 Read-­‐only	
 or	
 read-­‐write	
 access	
 access	
 permission	
 for	
 all	
 reachable	
 pages.	

U/S:	
 user	
 or	
 supervisor	
 (kernel)	
 mode	
 access	
 permission	
 for	
 all	
 reachable	
 pages.	

WT:	
 Write-­‐through	
 or	
 write-­‐back	
 cache	
 policy	
 for	
 the	
 child	
 page	
 table.	
 	

CD:	
 Caching	
 disabled	
 or	
 enabled	
 for	
 the	
 child	
 page	
 table.	
 	

A:	
 	
 Reference	
 bit	
 (set	
 by	
 MMU	
 on	
 reads	
 and	
 writes,	
 cleared	
 by	
 so`ware).	

PS:	
 	
 Page	
 size	
 either	
 4	
 KB	
 or	
 4	
 MB	
 (defined	
 for	
 Level	
 1	
 PTEs	
 only).	

G:	
 Global	
 page	
 (don’t	
 evict	
 from	
 TLB	
 on	
 task	
 switch)	

Page	
 table	
 physical	
 base	
 address:	
 40	
 most	
 significant	
 bits	
 of	
 physical	
 page	
 table	

address	
 (forces	
 page	
 tables	
 to	
 be	
 4KB	
 aligned)	

51	
 12	
 11	
 9	
 8	
 7	
 6	
 5	
 4	
 3	
 2	
 1	
 0	

Unused	
 XD	

Available	
 for	
 OS	
 (page	
 table	
 locaZon	
 on	
 disk)	
 P=0	

52	
 62	
 63	

Carnegie Mellon

16

Core	
 i7	
 Level	
 4	
 Page	
 Table	
 Entries	

Page	
 physical	
 base	
 address	
 Unused	
 G	
 D A	
 CD	
 WT	
 U/S	
 R/W	
 P=1	

Each	
 entry	
 references	
 a	
 4K	
 child	
 page	

P:	
 Child	
 page	
 is	
 present	
 in	
 memory	
 (1)	
 or	
 not	
 (0)	

R/W:	
 Read-­‐only	
 or	
 read-­‐write	
 access	
 permission	
 for	
 child	
 page	

U/S:	
 User	
 or	
 supervisor	
 mode	
 access	

WT:	
 Write-­‐through	
 or	
 write-­‐back	
 cache	
 policy	
 for	
 this	
 page	

CD:	
 Cache	
 disabled	
 (1)	
 or	
 enabled	
 (0)	

A:	
 Reference	
 bit	
 (set	
 by	
 MMU	
 on	
 reads	
 and	
 writes,	
 cleared	
 by	
 so`ware)	
 	

D:	
 Dirty	
 bit	
 (set	
 by	
 MMU	
 on	
 writes,	
 cleared	
 by	
 so`ware)	

G:	
 Global	
 page	
 (don’t	
 evict	
 from	
 TLB	
 on	
 task	
 switch)	

Page	
 physical	
 base	
 address:	
 40	
 most	
 significant	
 bits	
 of	
 physical	
 page	
 address	

(forces	
 pages	
 to	
 be	
 4KB	
 aligned)	

51	
 12	
 11	
 9	
 8	
 7	
 6	
 5	
 4	
 3	
 2	
 1	
 0	

Unused	
 XD	

Available	
 for	
 OS	
 (page	
 locaZon	
 on	
 disk)	
 P=0	

52	
 62	
 63	

Carnegie Mellon

17

Core	
 i7	
 Page	
 Table	
 TranslaZon	

CR3	

Physical	
 	
 	

address	

of	
 page	

Physical	
 	

address	

of	
 L1	
 PT	

9	

VPO	

9	
 12	
 Virtual	
 	

address	

L4	
 PT	

Page	
 	

table	

L4	
 PTE	

PPN	
 PPO	

40	
 12	
 Physical	
 	

address	

Offset	
 into	
 	

physical	
 and	
 	

virtual	
 page	

VPN	
 3	
 VPN	
 4	
 VPN	
 2	
 VPN	
 1	

L3	
 PT	

Page	
 middle	

directory	

L3	
 PTE	

L2	
 PT	

Page	
 upper	

directory	

L2	
 PTE	

L1	
 PT	

Page	
 global	

directory	

L1	
 PTE	

9	
 9	

40	

/	

40	

/	

40	

/	

40	

/	

40	

/	

12	
 /	

512	
 GB	
 	

region	
 	

per	
 entry	

1	
 GB	
 	

region	
 	

per	
 entry	

2	
 MB	
 	

region	
 	

per	
 entry	

4	
 KB	

region	
 	

per	
 entry	

Carnegie Mellon

19

Virtual	
 Memory	
 of	
 a	
 Linux	
 Process	

Kernel	
 code	
 and	
 data	

Memory	
 mapped	
 region	
 	

for	
 shared	
 libraries	

RunZme	
 heap	
 (malloc)	

Program	
 text	
 (.text)	

IniZalized	
 data	
 (.data)	

UniniZalized	
 data	
 (.bss)	

User	
 stack	

0	

%esp

Process	

virtual	

memory	

brk

Physical	
 memory	
 IdenJcal	
 	
 for	

each	
 process	

Process-­‐specific	
 data	

	
 structs	
 	
 (ptables,	

task	
 and	
 mm	
 structs,	

kernel	
 stack)	
 Kernel	

virtual	
 	

memory	

0x08048000 (32)
0x00400000 (64)

Different	
 for	

each	
 process	

Carnegie Mellon

20

vm_next	

vm_next	

Linux	
 Organizes	
 VM	
 as	
 CollecZon	
 of	
 “Areas”	
 	

task_struct
mm_struct

pgd	
 mm	

mmap	

vm_area_struct

vm_end	

vm_prot	

vm_start	

vm_end	

vm_prot	

vm_start	

vm_end	

vm_prot	

vm_next	

vm_start	

Process	
 virtual	
 memory	

Text	

Data	

Shared	
 libraries	

0	

  pgd:	
 	

  Page	
 global	
 directory	
 address	

  Points	
 to	
 L1	
 page	
 table	

  vm_prot:	

  Read/write	
 permissions	
 for	
 	

this	
 area	

  vm_flags	

  Pages	
 shared	
 with	
 other	

processes	
 or	
 private	
 to	
 this	

process	

vm_flags	

vm_flags	

vm_flags	

Carnegie Mellon

21

Linux	
 Page	
 Fault	
 Handling	
 	

read	

1	

write	

2	

read	

3	

vm_next	

vm_next	

vm_area_struct	

vm_end	

vm_prot	

vm_start	

vm_end	

vm_prot	

vm_start	

vm_end	

vm_prot	

vm_next	

vm_start	

Process	
 virtual	
 memory	

text	

data	

shared	
 libraries	

vm_flags	

vm_flags	

vm_flags	

Segmentation fault:	

accessing	
 a	
 non-­‐exisZng	
 page	

Normal	
 page	
 fault	

ProtecZon	
 excepZon:	

e.g.,	
 violaZng	
 permission	
 by	

wriZng	
 to	
 a	
 read-­‐only	
 page	
 (Linux	

reports	
 as	
 SegmentaZon	
 fault)	

Carnegie Mellon

23

Memory	
 Mapping	

  VM	
 areas	
 iniZalized	
 by	
 associaZng	
 them	
 with	
 disk	
 objects.	

  Process	
 is	
 known	
 as	
 memory	
 mapping.	
 	

  Area	
 can	
 be	
 backed	
 by	
 (i.e.,	
 get	
 its	
 iniZal	
 values	
 from)	
 :	

  Regular	
 file	
 on	
 disk	
 (e.g.,	
 an	
 executable	
 object	
 file)	

  Ini0al	
 page	
 bytes	
 come	
 from	
 a	
 sec0on	
 of	
 a	
 file	

  Anonymous	
 file	
 (e.g.,	
 nothing)	

  First	
 fault	
 will	
 allocate	
 a	
 physical	
 page	
 full	
 of	
 0's	
 (demand-­‐zero	
 page)	

  Once	
 the	
 page	
 is	
 wriien	
 to	
 (dirJed),	
 it	
 is	
 like	
 any	
 other	
 page	

  Dirty	
 pages	
 are	
 copied	
 back	
 and	
 forth	
 between	
 memory	
 and	
 a	

special	
 swap	
 file.	

Carnegie Mellon

24

Demand	
 paging	

  Key	
 point:	
 no	
 virtual	
 pages	
 are	
 copied	
 into	
 physical	

memory	
 unZl	
 they	
 are	
 referenced!	

  Known	
 as	
 demand	
 paging	

  Crucial	
 for	
 Zme	
 and	
 space	
 efficiency	
 	

Carnegie Mellon

25

Sharing	
 Revisited:	
 Shared	
 Objects	

  Process	
 1	
 	
 maps	

the	
 shared	

object.	
 	

Shared
object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Carnegie Mellon

26

Sharing	
 Revisited:	
 Shared	
 Objects	

Shared
object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

  Process	
 2	
 maps	

the	
 shared	

object.	
 	

  NoZce	
 how	
 the	

virtual	

addresses	
 can	

be	
 different.	

Carnegie Mellon

27

Sharing	
 Revisited:	
 	

Private	
 Copy-­‐on-­‐write	
 (COW)	
 Objects	

  Two	
 processes	

mapping	
 a	
 private	

copy-­‐on-­‐write	

(COW)	
 	
 object.	
 	

  Area	
 flagged	
 as	

private	
 copy-­‐on-­‐
write	

  PTEs	
 in	
 private	

areas	
 are	
 flagged	

as	
 read-­‐only	

Private
copy-on-write object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

 Private
copy-on-write
area

Carnegie Mellon

28

Sharing	
 Revisited:	
 	

Private	
 Copy-­‐on-­‐write	
 (COW)	
 Objects	

  InstrucZon	
 wriZng	

to	
 private	
 page	

triggers	

protecZon	
 fault.	
 	

  Handler	
 creates	

new	
 R/W	
 page.	
 	

  InstrucZon	

restarts	
 upon	

handler	
 return.	
 	

  Copying	
 deferred	

as	
 long	
 as	

possible!	

Private
copy-on-write object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Copy-on-write

Write to private
copy-on-write

page

Carnegie Mellon

29

The	
 fork	
 FuncZon	
 Revisited	

  VM	
 and	
 memory	
 mapping	
 explain	
 how	
 fork	
 provides	
 private	

address	
 space	
 for	
 each	
 process.	
 	

  To	
 create	
 virtual	
 address	
 for	
 new	
 new	
 process	

  Create	
 exact	
 copies	
 of	
 current	
 mm_struct,	
 vm_area_struct,	
 and	

page	
 tables.	
 	

  Flag	
 each	
 page	
 in	
 both	
 processes	
 as	
 read-­‐only	

  Flag	
 each	
 vm_area_struct in	
 both	
 processes	
 as	
 private	
 COW	

  On	
 return,	
 each	
 process	
 has	
 exact	
 copy	
 of	
 virtual	
 memory	

  Subsequent	
 writes	
 create	
 new	
 pages	
 using	
 COW	
 mechanism.	

Carnegie Mellon

30

The	
 execve	
 FuncZon	
 Revisited	

  To	
 load	
 and	
 run	
 a	
 new	

program	
 a.out	
 in	
 the	

current	
 process	
 using	

execve:	

  Free vm_area_struct’s	

and	
 page	
 tables	
 for	
 old	
 areas	

  Create	
 vm_area_struct’s	

and	
 page	
 tables	
 for	
 new	

areas	

  Programs	
 and	
 ini0alized	
 data	

backed	
 by	
 object	
 files.	

  .bss and	
 stack	
 backed	
 by	

anonymous	
 files	
 .	
 	

  Set	
 PC	
 to	
 entry	
 point	

in	
 .text
  Linux	
 will	
 fault	
 in	
 code	
 and	

data	
 pages	
 as	
 needed.	

Memory mapped region
for shared libraries

Runtime heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

Private, demand-zero

libc.so
.data
.text Shared, file-backed

Private, demand-zero

Private, demand-zero

Private, file-backed

a.out
.data
.text

Carnegie Mellon

31

User-­‐Level	
 Memory	
 Mapping	

void *mmap(void *start, int len,
 int prot, int flags, int fd, int offset)	

  Map	
 len	
 bytes	
 starZng	
 at	
 offset	
 offset of	
 the	
 file	
 specified	

by	
 file	
 descripZon	
 fd,	
 preferably	
 at	
 address	
 start	
 	

  start:	
 may	
 be	
 0	
 for	
 “pick	
 an	
 address”	

  prot:	
 PROT_READ,	
 PROT_WRITE,	
 ...	

  flags:	
 MAP_ANON,	
 MAP_PRIVATE,	
 MAP_SHARED,	
 ...	

  Return	
 a	
 pointer	
 to	
 start	
 of	
 mapped	
 area	
 (may	
 not	
 be	
 start)	

Carnegie Mellon

32

User-­‐Level	
 Memory	
 Mapping	

void *mmap(void *start, int len,
 int prot, int flags, int fd, int offset)	

len bytes	

start
(or	
 address	
 	

chosen	
 by	
 kernel)	

Process	
 virtual	
 memory	
 Disk	
 file	
 specified	
 by	
 	

file	
 descriptor	
 fd

len bytes	

offset
(bytes)	

0 0

Carnegie Mellon

33

Using	
 mmap	
 to	
 Copy	
 Files	

#include "csapp.h"

/*
 * mmapcopy - uses mmap to copy
 * file fd to stdout
 */
void mmapcopy(int fd, int size)
{

 /* Ptr to mem-mapped VM area */
 char *bufp;

 bufp = Mmap(NULL, size,
 PROT_READ,
 MAP_PRIVATE, fd, 0);
 Write(1, bufp, size);
 return;
}

/* mmapcopy driver */
int main(int argc, char **argv)
{
 struct stat stat;
 int fd;

 /* Check for required cmdline arg */
 if (argc != 2) {
 printf("usage: %s <filename>\n”,
 argv[0]);
 exit(0);
 }

 /* Copy the input arg to stdout */
 fd = Open(argv[1], O_RDONLY, 0);
 Fstat(fd, &stat);
 mmapcopy(fd, stat.st_size);
 exit(0);
}

  Copying	
 without	
 transferring	
 data	
 to	
 user	
 space	
 .	

9.57 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Memory-Mapped Files

 Memory-mapped file I/O allows file I/O to be treated as routine
memory access by mapping a disk block to a page in memory

 A file is initially read using demand paging
 A page-sized portion of the file is read from the file system into

a physical page
 Subsequent reads/writes to/from the file are treated as

ordinary memory accesses
 Simplifies and speeds file access by driving file I/O through

memory rather than read() and write() system calls

 Also allows several processes to map the same file allowing the
pages in memory to be shared

 But when does written data make it to disk?
 Periodically and / or at file close() time

 For example, when the pager scans for dirty pages

9.58 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Memory-Mapped File Technique for all I/O

 Some OSes uses memory mapped files for standard I/O
 Process can explicitly request memory mapping a file via mmap()

system call
 Now file mapped into process address space

 For standard I/O (open(), read(), write(), close()), mmap
anyway
 But map file into kernel address space
 Process still does read() and write()

 Copies data to and from kernel space and user space
 Uses efficient memory management subsystem

 Avoids needing separate subsystem
 COW can be used for read/write non-shared pages
 Memory mapped files can be used for shared memory (although

again via separate system calls)

Operating System SoftwareOperating System Software

The design of the memory management
portion of an operating system depends on
three fundamental areas of choice:three fundamental areas of choice:
• whether or not to use virtual memory techniques
• the use of paging or segmentation or both
• the algorithms employed for various aspects of
memory management

Policies for Virtual MemoryPolicies for Virtual Memory
n Key issue: Performance

§ minimize page faults

n Determines when a
page should be
brought into

Two main
types:brought into

memory
types:

Demand
Paging Prepaging

Demand Paging Demand Paging
n Demand Paging

n only brings pages into main memory when a reference is made
to a location on the page

n many page faults when process is first started
n principle of locality suggests that as more and more pages are
brought in, most future references will be to pages that have
recently been brought in, and page faults should drop to a very
low level

PrepagingPrepaging

n Prepaging
n pages other than the one demanded by a page fault are brought
in
exploits the characteristics of most secondary memory devicesn exploits the characteristics of most secondary memory devices

n if pages of a process are stored contiguously in secondary
memory it is more efficient to bring in a number of pages at
one time

n ineffective if extra pages are not referenced
n should not be confused with “swapping”

9.48 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Non-Uniform Memory Access

 So far all memory accessed equally
 Many systems are NUMA – speed of access to memory varies

 Consider system boards containing CPUs and memory,
interconnected over a system bus

 Optimal performance comes from allocating memory “close to”
the CPU on which the thread is scheduled
 And modifying the scheduler to schedule the thread on the

same system board when possible
 Solved by Solaris by creating lgroups

 Structure to track CPU / Memory low latency groups
 Used my schedule and pager
When possible schedule all threads of a process and

allocate all memory for that process within the lgroup

Placement PolicyPlacement Policy
nDetermines where in real memory a process
piece is to reside

n Important design issue in a segmentation systemn Important design issue in a segmentation system

n Paging or combined paging with segmentation
placing is irrelevant because hardware performs
functions with equal efficiency

n For NUMA systems an automatic placement
strategy is desirable

Replacement PolicyReplacement Policy
nDeals with the selection of a page in main memory
to be replaced when a new page must be brought in

n objective is that the page that is removed be the page n objective is that the page that is removed be the page
least likely to be referenced in the near future

n The more elaborate the replacement policy the
greater the hardware and software overhead to
implement it

§ When a frame is locked the page currently stored in that frame
may not be replaced

§ kernel of the OS as well as key control structures are held § kernel of the OS as well as key control structures are held
in locked frames

§ I/O buffers and time-critical areas may be locked into
main memory frames

§ locking is achieved by associating a lock bit with each
frame

Algorithms used for
the selection of a the selection of a
page to replace:
• Optimal
• Least recently used (LRU)
• First-in-first-out (FIFO)
• Clock

§ Selects the page for which the time to the
next reference is the longest

§ Produces three page faults after the frame § Produces three page faults after the frame
allocation has been filled

Least Recently Used Least Recently Used
(LRU)(LRU)

n Replaces the page that has not been referenced for the longest
time

n By the principle of locality, this should be the page least likely n By the principle of locality, this should be the page least likely
to be referenced in the near future

n Difficult to implement
n one approach is to tag each page with the time of last
reference
n this requires a great deal of overhead

LRU ExampleLRU Example

FirstFirst--inin--FirstFirst--out (FIFO)out (FIFO)
n Treats page frames allocated to a process as a circular buffer

n Pages are removed in round-robin style
§ simple replacement policy to implement§ simple replacement policy to implement

n Page that has been in memory the longest is replaced

Clock PolicyClock Policy
n Requires the association of an additional bit with each frame

n referred to as the use bit

n When a page is first loaded in memory or referenced, the use bit
is set to 1is set to 1

n The set of frames is considered to be a circular buffer

n Any frame with a use bit of 1 is passed over by the algorithm

n Page frames visualized as laid out in a circle

Clock Clock
PolicyPolicy

Clock Clock
PolicyPolicyPolicyPolicy

Combined ExamplesCombined Examples

n Improves paging
performance and
allows the use of
a simpler page

A replaced page is
not lost, but

rather assigned to
one of two lists:

a simpler page
replacement
policy

Free page list

list of page frames
available for
reading in pages

Modified page list

pages are written
out in clusters

Replacement Policy and Cache SizeReplacement Policy and Cache Size

n With large caches, replacement of pages can have a performance
impact
n if the page frame selected for replacement is in the cache, that
cache block is lost as well as the page that it holdscache block is lost as well as the page that it holds

n in systems using page buffering, cache performance can be
improved with a policy for page placement in the page buffer

n most operating systems place pages by selecting an arbitrary
page frame from the page buffer

n The OS must decide how many pages to bring into main memory
n the smaller the amount of memory allocated to each process,
the more processes can reside in memory

n small number of pages loaded increases page faultsn small number of pages loaded increases page faults
n beyond a certain size, further allocations of pages will not
effect the page fault rate

Resident Set SizeResident Set Size

Fixed-allocation Variable-allocation
n allows the number of page
frames allocated to a

n gives a process a fixed
number of frames in main frames allocated to a

process to be varied over
the lifetime of the process

number of frames in main
memory within which to
execute

n when a page fault occurs,
one of the pages of that
process must be replaced

n The scope of a replacement strategy can be categorized as
global or local
n both types are activated by a page fault when there are no free
page framespage frames

Local

• chooses only among the resident pages of the process that generated
the page fault

Global

• considers all unlocked pages in main memory

Fixed Allocation, Local ScopeFixed Allocation, Local Scope

n Necessary to decide ahead of time the amount of
allocation to give a process

n If allocation is too small, there will be a high page fault n If allocation is too small, there will be a high page fault
rate

• increased processor idle time
• increased time spent in
swapping

If allocation is too
large, there will be
too few programs
in main memory

Variable Allocation Variable Allocation
Global ScopeGlobal Scope

n Easiest to implement
n adopted in a number of operating systems

n OS maintains a list of free framesn OS maintains a list of free frames

n Free frame is added to resident set of process when a page fault
occurs

n If no frames are available the OS must choose a page currently in
memory

n One way to counter potential problems is to use page buffering

n When a new process is loaded into main memory, allocate to it a
certain number of page frames as its resident set

n When a page fault occurs, select the page to replace from among n When a page fault occurs, select the page to replace from among
the resident set of the process that suffers the fault

n Reevaluate the allocation provided to the process and increase or
decrease it to improve overall performance

Variable AllocationVariable Allocation
Local ScopeLocal Scope

n Decision to increase or decrease a resident set size is based
on the assessment of the likely future demands of active
processes

Key elements:

• criteria used to determine
resident set size
• the timing of changes

Figure 8.19Figure 8.19

Working Set Working Set

of Process as of Process as of Process as of Process as

Defined by Defined by

Window SizeWindow Size

9.53 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Working-Set Model
 ∆ ≡ working-set window ≡ a fixed number of page references

Example: 10,000 instructions
 WSSi (working set of Process Pi) =

total number of pages referenced in the most recent ∆ (varies in time)
 if ∆ too small will not encompass entire locality
 if ∆ too large will encompass several localities
 if ∆ = ∞ ⇒ will encompass entire program

 D = Σ WSSi ≡ total demand frames
 Approximation of locality

 if D > m ⇒ Thrashing

 Policy if D > m, then suspend or swap out one of the processes

9.54 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Keeping Track of the Working Set

 Approximate with interval timer + a reference bit
 Example: ∆ = 10,000

 Timer interrupts after every 5000 time units
 Keep in memory 2 bits for each page
 Whenever a timer interrupts copy and sets the values of all

reference bits to 0
 If one of the bits in memory = 1 ⇒ page in working set

 Why is this not completely accurate?
 Improvement = 10 bits and interrupt every 1000 time units

Page Fault Frequency Page Fault Frequency
(PFF)(PFF)

n Requires a use bit to be associated with each page in memory

n Bit is set to 1 when that page is accessed

n When a page fault occurs, the OS notes the virtual time since the
last page fault for that process

n Does not perform well during the transient periods when there is
a shift to a new locality

9.55 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Page-Fault Frequency

 More direct approach than WSS
 Establish “acceptable” page-fault frequency (PFF) rate

and use local replacement policy
 If actual rate too low, process loses frame
 If actual rate too high, process gains frame

9.56 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Working Sets and Page Fault Rates
 Direct relationship between working set of a process and its

page-fault rate
 Working set changes over time
 Peaks and valleys over time

n Evaluates the working set of a process at sampling instances based
on elapsed virtual time

n Driven by three parameters:n Driven by three parameters:

the minimum
duration of the
sampling
interval

the maximum
duration of the
sampling
interval

the number of
page faults that
are allowed to
occur between
sampling
instances

Cleaning PolicyCleaning Policy

n Concerned with determining when a modified page should be
written out to secondary memory

Precleaning

allows the writing of pages in batches

Demand Cleaning

a page is written out to secondary memory only when it has been selected for
replacement

Load ControlLoad Control

n Determines the number of processes that will be resident in main
memory
n multiprogramming level

n Critical in effective memory management

n Too few processes, many occasions when all processes will be
blocked and much time will be spent in swapping

n Too many processes will lead to thrashing

MultiprogrammingMultiprogramming

n If the degree of multiprogramming is to be reduced, one or more
of the currently resident processes must be swapped out

Six possibilities exist:
• Lowest-priority process
• Faulting process
• Last process activated
• Process with the smallest resident set
• Largest process
• Process with the largest remaining execution window

UnixUnix

n Intended to be machine independent so its memory
management schemes will vary
n early Unix: variable partitioning with no virtual memory
schemescheme

n current implementations of UNIX and Solaris make use of
paged virtual memory

• paging system
• kernel memory allocator

SVR4 and Solaris use
two separate schemes:

Paging system Kernel Memory
Allocator

provides a virtual memory
capability that allocates page frames
in main memory to processes

allocates page frames to disk block
buffers

Allocator

allocates memory for the kernel

UNIX SVR4

Memory

Management

Formats

Table 8.6

UNIX SVR4
Memory
Management Management
Parameters
(page 1 of 2)

Table 8.6

UNIX SVR4
Memory
Management
Parameters Parameters
(page 2 of 2)

n The page frame data table is used for page replacement

n Pointers are used to create lists within the table
n all available frames are linked together in a list of free frames n all available frames are linked together in a list of free frames
available for bringing in pages

n when the number of available frames drops below a certain
threshold, the kernel will steal a number of frames to
compensate

“Two Handed” “Two Handed”

Clock Clock

Page Page Page Page

ReplacementReplacement

n The kernel generates and destroys small tables and buffers
frequently during the course of execution, each of which requires
dynamic memory allocation.

n Most of these blocks are significantly smaller than typical pages n Most of these blocks are significantly smaller than typical pages
(therefore paging would be inefficient)

n Allocations and free operations must be made as fast as possible

n Technique adopted for SVR4

n UNIX often exhibits steady-state behavior in kernel memory
demanddemand
n i.e. the amount of demand for blocks of a particular size
varies slowly in time

n Defers coalescing until it seems likely that it is needed, and
then coalesces as many blocks as possible

Lazy Buddy System AlgorithmLazy Buddy System Algorithm

Linux Linux
Memory ManagementMemory Management

n Shares many characteristics with Unix

n Is quite complex

Two main
aspects

• process virtual
memory
• kernel memory
allocation

n Three level page table structure:

Page directory Page middle directory Page table

process has a single page
directory

each entry points to one page
of the page middle directory

must be in main memory for
an active process

may span multiple pages

each entry points to one page
in the page table

may also span multiple pages

each entry refers to one
virtual page of the process

Address TranslationAddress Translation

n Based on the clock algorithm

n The use bit is replaced with an 8-bit age variable
n incremented each time the page is accessedn incremented each time the page is accessed

n Periodically decrements the age bits
n a page with an age of 0 is an “old” page that has not been
referenced is some time and is the best candidate for
replacement

n A form of least frequently used policy

n Kernel memory capability manages physical main memory page frames

n primary function is to allocate and deallocate frames for particular
uses

Possible owners of a frame include:

• user-space processes
• dynamically allocated kernel data
• static kernel code

n A buddy algorithm is used so that memory for the kernel can be
allocated and deallocated in units of one or more pages

n Page allocator alone would be inefficient because the kernel requires
small short-term memory chunks in odd sizes

n Slab allocation

n used by Linux to accommodate small chunks

• static kernel code
• page cache

Windows Windows
Memory ManagementMemory Management

n Virtual memory manager controls how memory is allocated and
how paging is performed

n Designed to operate over a variety of platforms

n Uses page sizes ranging from 4 Kbytes to 64 Kbytes

Windows Virtual Address MapWindows Virtual Address Map

n On 32 bit platforms each user process sees a separate 32 bit
address space allowing 4 Gbytes of virtual memory per process
§ by default half is reserved for the OS
Large memory intensive applications run more effectively using n Large memory intensive applications run more effectively using
64-bit Windows

n Most modern PCs use the AMD64 processor architecture which
is capable of running as either a 32-bit or 64-bit system

3232--Bit Bit
Windows Windows
Address Address Address Address
SpaceSpace

Windows PagingWindows Paging

n On creation, a process can make use of the entire user space of
almost 2 Gbytes

n This space is divided into fixed-size pages managed in n This space is divided into fixed-size pages managed in
contiguous regions allocated on 64 Kbyte boundaries

n Regions may be in one of three states:

available reserved committed

n Windows uses variable allocation, local scope

n When activated, a process is assigned a data structure to manage
its working set

n Working sets of active processes are adjusted depending on the
availability of main memory

SummarySummary
n Desirable to:

n maintain as many processes in main memory as possible
n free programmers from size restrictions in program
developmentdevelopment

n With virtual memory:
n all address references are logical references that are translated
at run time to real addresses

n a process can be broken up into pieces
n two approaches are paging and segmentation
n management scheme requires both hardware and software
support

