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Hardware and Control StructuresHardware and Control Structures

nTwo characteristics fundamental to memory 
management:

1) all memory references are logical addresses that are 
dynamically translated into physical addresses at run timedynamically translated into physical addresses at run time

2) a process may be broken up into a number of  pieces that 
don’t need to be contiguously located in main memory 
during execution

n If  these two characteristics are present, it is not 
necessary that all of  the pages or segments of  a 
process be in main memory during execution



TerminologyTerminology



n Operating system brings into main memory a few pieces of  the 
program

n Resident set - portion of  process that is in main memoryn Resident set - portion of  process that is in main memory

n An interrupt is generated when an address is needed that is not 
in main memory

n Operating system places the process                                              
in a blocking state

Continued . . .



Execution of a ProcessExecution of a Process
n Piece of  process that contains the logical address is brought into 
main memory
n operating system issues a disk I/O Read request
another process is dispatched to run while the disk I/O takes n another process is dispatched to run while the disk I/O takes 
place

n an interrupt is issued when disk I/O is complete, which causes 
the operating system to place the affected process in the Ready 
state



ImplicationsImplications

n More processes may be maintained in main memory
n only load in some of  the pieces of  each process
n with so many processes in main memory, it is very likely a n with so many processes in main memory, it is very likely a 
process will be in the Ready state at any particular time

n A process may be larger than all of  main memory



Real and Virtual MemoryReal and Virtual Memory

Real memory
• main memory, the actual RAM

Virtual memory
• memory on disk
• allows for effective multiprogramming and relieves the 
user of  tight constraints of  main memory



Table 8.2  Table 8.2  

Characteristics of Characteristics of 

Paging and Paging and 

SegmentationSegmentationSegmentationSegmentation



To avoid this, the 
A state in which 
the system spends 
most of  its time 
swapping process 
pieces rather than 
executing 
instructions

To avoid this, the 
operating system tries 
to guess, based on 
recent history, which 
pieces are least likely 
to be used in the near 

future



Principle of LocalityPrinciple of Locality

n Program and data references within a process tend to cluster

n Only a few pieces of  a process will be needed over a short 
period of  timeperiod of  time

n Therefore it is possible to make intelligent guesses about which 
pieces will be needed in the future

n Avoids thrashing



Paging BehaviorPaging Behavior

n During the lifetime of  the 
process, references are 
confined to a subset of  pages



For virtual memory to be practical and 
effective:

• hardware must support paging and 
segmentation 
• operating system must include software for 
managing the movement of  pages and/or 
segments between secondary memory and 
main memory



PagingPaging

n The term virtual memory is usually associated with systems that 
employ paging

n Use of  paging to achieve virtual memory was first reported for n Use of  paging to achieve virtual memory was first reported for 
the Atlas computer

n Each process has its own page table
n each page table entry contains the frame number of  the 
corresponding page in main memory



Memory Memory 
Management Management 
FormatsFormats



Address TranslationAddress Translation



TwoTwo--Level Level 
Hierarchical Page TableHierarchical Page Table



Address TranslationAddress Translation



n Page number portion of  a virtual address is mapped into a hash 
value
n hash value points to inverted page tablen hash value points to inverted page table

n Fixed proportion of  real memory is required for the tables 
regardless of  the number of  processes or virtual pages supported

n Structure is called inverted because it indexes page table entries by 
frame number rather than by virtual page number





Inverted Page TableInverted Page Table

Each entry in the page table includes:

Page Process Control Chain Page 
number

Process 
identifier

• the process 
that owns 
this page

Control 
bits

• includes 
flags and 
protection 
and locking 
information

Chain 
pointer

• the index 
value of  the 
next entry 
in the chain
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Inverted Page Table 

 Rather than each process having a page table and keeping track 
of all possible logical pages, track all physical pages 

 One entry for each real page of memory 
 Entry consists of the virtual address of the page stored in that 

real memory location, with information about the process that 
owns that page 

 Decreases memory needed to store each page table, but 
increases time needed to search the table when a page 
reference occurs 

 Use hash table to limit the search to one — or at most a few — 
page-table entries 
 TLB can accelerate access 

 But how to implement shared memory? 
 One mapping of a virtual address to the shared physical 

address 



Translation LookasideTranslation Lookaside
Buffer (TLB)Buffer (TLB)

n To overcome the effect of  
doubling the memory 
access time, most virtual 

n Each virtual memory 
reference can cause two 
physical memory accesses: access time, most virtual 

memory schemes make 
use of  a special high-speed 
cache called a translation 
lookaside buffer

physical memory accesses:
n one to fetch the page 
table entry

n one to fetch the data



Use of a TLB



TLB TLB 
OperationOperation



Associative MappingAssociative Mapping
n The TLB only contains some of  the page table entries so we 
cannot simply index into the TLB based on page number
n each TLB entry must include the page number as well as the 
complete page table entrycomplete page table entry

n The processor is equipped with hardware that allows it to 
interrogate simultaneously a number of  TLB entries to 
determine if  there is a match on page number



Direct Versus Direct Versus 
Associative LookupAssociative Lookup



TLB and Cache OperationTLB and Cache Operation



Page SizePage Size
n The smaller the page size, the lesser the amount of  internal 
fragmentation
n however, more pages are required per process
more pages per process means larger page tablesn more pages per process means larger page tables

n for large programs in a heavily multiprogrammed environment 
some portion of  the page tables of  active processes must be in 
virtual memory instead of  main memory

n the physical characteristics of  most secondary-memory devices 
favor a larger page size for more efficient block transfer of  data



Paging Behavior of a ProgramPaging Behavior of a Program



Example: Page SizesExample: Page Sizes



Page SizePage Size
The design issue of  
page size is related to 
the size of  physical 
main memory and 
program size

main memory is 
getting larger and 
address space used by 
applications is also 

growing

n Contemporary programming 
techniques used in large 
programs tend to decrease the 
locality of  references within a 
process

program size growing

most obvious on 
personal computers 
where applications are 
becoming increasingly 

complex



SegmentationSegmentation

n Segmentation 
allows the 
programmer to 

Advantages:
• simplifies handling 
of  growing data 
structuresprogrammer to 

view memory as 
consisting of  
multiple address 
spaces or 
segments

structures
• allows programs to 
be altered and 
recompiled 
independently
• lends itself  to 
sharing data 
among processes
• lends itself  to 
protection



Segment OrganizationSegment Organization
n Each segment table entry contains the starting address of  the 
corresponding segment in main memory and the length of  the 
segment

n A bit is needed to determine if  the segment is already in main n A bit is needed to determine if  the segment is already in main 
memory

n Another bit is needed to determine if  the segment has been 
modified since it was loaded in main memory



Address Translation



Combined Paging and Combined Paging and 
SegmentationSegmentation

In a combined In a combined 
paging/segmentation system 
a user’s address space is 
broken up into a number of  
segments. Each segment is 
broken up into a number of  
fixed-sized pages which are 
equal in length to a main 

memory frame

Segmentation is visible to the 
programmer

Paging is transparent to the 
programmer



Address TranslationAddress Translation



Combined Segmentation Combined Segmentation 
and Pagingand Paging



Protection and SharingProtection and Sharing
n Segmentation lends itself  to the implementation of  protection 
and sharing policies

n Each entry has a base address and length so inadvertent memory n Each entry has a base address and length so inadvertent memory 
access can be controlled

n Sharing can be achieved by segments referencing multiple 
processes



Protection 
Relationships
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End-‐to-‐end	  Core	  i7	  Address	  TranslaZon	  
CPU	  

VPN	   VPO	  
36	   12	  

TLBT	   TLBI	  
4	  32	  

...	  

L1	  TLB	  (16	  sets,	  4	  entries/set)	  

VPN1	   VPN2	  
9	  9	  

PTE	  

CR3	  

PPN	   PPO	  
40	   12	  

Page	  tables	  

TLB	  
miss	  

TLB	  
hit	  

Physical	  
address	  	  

(PA)	  

Result	  
32/64	  

...	  

CT	   CO	  
40	   6	  

CI	  
6	  

L2,	  L3,	  and	  	  
main	  memory	  

L1	  d-‐cache	  	  
(64	  sets,	  8	  lines/set)	  

L1	  
hit	  

L1	  
miss	  

Virtual	  address	  (VA)	  

VPN3	   VPN4	  
9	  9	  

PTE	   PTE	   PTE	  
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Core	  i7	  Level	  1-‐3	  Page	  Table	  Entries	  

Page	  table	  physical	  base	  address	   Unused	   G	   PS	   A	   CD	   WT	   U/S	   R/W	   P=1	  

Each	  entry	  references	  a	  4K	  child	  page	  table	  

P:	  Child	  page	  table	  present	  in	  physical	  memory	  (1)	  or	  not	  (0).	  

R/W:	  Read-‐only	  or	  read-‐write	  access	  access	  permission	  for	  all	  reachable	  pages.	  

U/S:	  user	  or	  supervisor	  (kernel)	  mode	  access	  permission	  for	  all	  reachable	  pages.	  

WT:	  Write-‐through	  or	  write-‐back	  cache	  policy	  for	  the	  child	  page	  table.	  	  

CD:	  Caching	  disabled	  or	  enabled	  for	  the	  child	  page	  table.	  	  

A:	  	  Reference	  bit	  (set	  by	  MMU	  on	  reads	  and	  writes,	  cleared	  by	  so`ware).	  

PS:	  	  Page	  size	  either	  4	  KB	  or	  4	  MB	  (defined	  for	  Level	  1	  PTEs	  only).	  

G:	  Global	  page	  (don’t	  evict	  from	  TLB	  on	  task	  switch)	  

Page	  table	  physical	  base	  address:	  40	  most	  significant	  bits	  of	  physical	  page	  table	  
address	  (forces	  page	  tables	  to	  be	  4KB	  aligned)	  

51	   12	  11	   9	   8	   7	   6	   5	   4	   3	   2	   1	   0	  

Unused	  XD	  

Available	  for	  OS	  (page	  table	  locaZon	  on	  disk)	   P=0	  

52	  62	  63	  
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Core	  i7	  Level	  4	  Page	  Table	  Entries	  

Page	  physical	  base	  address	   Unused	   G	   D A	   CD	   WT	   U/S	   R/W	   P=1	  

Each	  entry	  references	  a	  4K	  child	  page	  

P:	  Child	  page	  is	  present	  in	  memory	  (1)	  or	  not	  (0)	  

R/W:	  Read-‐only	  or	  read-‐write	  access	  permission	  for	  child	  page	  

U/S:	  User	  or	  supervisor	  mode	  access	  

WT:	  Write-‐through	  or	  write-‐back	  cache	  policy	  for	  this	  page	  

CD:	  Cache	  disabled	  (1)	  or	  enabled	  (0)	  

A:	  Reference	  bit	  (set	  by	  MMU	  on	  reads	  and	  writes,	  cleared	  by	  so`ware)	  	  

D:	  Dirty	  bit	  (set	  by	  MMU	  on	  writes,	  cleared	  by	  so`ware)	  

G:	  Global	  page	  (don’t	  evict	  from	  TLB	  on	  task	  switch)	  

Page	  physical	  base	  address:	  40	  most	  significant	  bits	  of	  physical	  page	  address	  
(forces	  pages	  to	  be	  4KB	  aligned)	  

51	   12	  11	   9	   8	   7	   6	   5	   4	   3	   2	   1	   0	  

Unused	  XD	  

Available	  for	  OS	  (page	  locaZon	  on	  disk)	   P=0	  

52	  62	  63	  
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Core	  i7	  Page	  Table	  TranslaZon	  

CR3	  

Physical	  	  	  
address	  
of	  page	  

Physical	  	  
address	  
of	  L1	  PT	  

9	  

VPO	  
9	   12	   Virtual	  	  

address	  

L4	  PT	  
Page	  	  
table	  

L4	  PTE	  

PPN	   PPO	  
40	   12	   Physical	  	  

address	  

Offset	  into	  	  
physical	  and	  	  
virtual	  page	  

VPN	  3	   VPN	  4	  VPN	  2	  VPN	  1	  

L3	  PT	  
Page	  middle	  
directory	  

L3	  PTE	  

L2	  PT	  
Page	  upper	  
directory	  

L2	  PTE	  

L1	  PT	  
Page	  global	  
directory	  

L1	  PTE	  

9	  9	  

40	  
/	  

40	  
/	  

40	  
/	  

40	  
/	  

40	  
/	  

12	  /	  

512	  GB	  	  
region	  	  
per	  entry	  

1	  GB	  	  
region	  	  
per	  entry	  

2	  MB	  	  
region	  	  
per	  entry	  

4	  KB	  
region	  	  
per	  entry	  
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Virtual	  Memory	  of	  a	  Linux	  Process	  

Kernel	  code	  and	  data	  

Memory	  mapped	  region	  	  
for	  shared	  libraries	  

RunZme	  heap	  (malloc)	  

Program	  text	  (.text)	  
IniZalized	  data	  (.data)	  
UniniZalized	  data	  (.bss)	  

User	  stack	  

0	  

%esp 

Process	  
virtual	  
memory	  

brk 

Physical	  memory	  IdenJcal	  	  for	  
each	  process	  

Process-‐specific	  data	  
	  structs	  	  (ptables,	  

task	  and	  mm	  structs,	  
kernel	  stack)	   Kernel	  

virtual	  	  
memory	  

0x08048000 (32) 
0x00400000 (64) 

Different	  for	  
each	  process	  
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vm_next	  

vm_next	  

Linux	  Organizes	  VM	  as	  CollecZon	  of	  “Areas”	  	  

task_struct 
mm_struct 

pgd	  mm	  

mmap	  

vm_area_struct 

vm_end	  

vm_prot	  
vm_start	  

vm_end	  

vm_prot	  
vm_start	  

vm_end	  

vm_prot	  

vm_next	  

vm_start	  

Process	  virtual	  memory	  

Text	  

Data	  

Shared	  libraries	  

0	  

  pgd:	  	  
  Page	  global	  directory	  address	  
  Points	  to	  L1	  page	  table	  

  vm_prot:	  
  Read/write	  permissions	  for	  	  

this	  area	  

  vm_flags	  
  Pages	  shared	  with	  other	  

processes	  or	  private	  to	  this	  
process	  

vm_flags	  

vm_flags	  

vm_flags	  



Carnegie Mellon 

21 

Linux	  Page	  Fault	  Handling	  	  

read	  
1	  

write	  

2	  

read	  

3	  

vm_next	  

vm_next	  

vm_area_struct	  

vm_end	  

vm_prot	  
vm_start	  

vm_end	  

vm_prot	  
vm_start	  

vm_end	  

vm_prot	  

vm_next	  

vm_start	  

Process	  virtual	  memory	  

text	  

data	  

shared	  libraries	  

vm_flags	  

vm_flags	  

vm_flags	  

Segmentation fault:	  
accessing	  a	  non-‐exisZng	  page	  

Normal	  page	  fault	  

ProtecZon	  excepZon:	  
e.g.,	  violaZng	  permission	  by	  
wriZng	  to	  a	  read-‐only	  page	  (Linux	  
reports	  as	  SegmentaZon	  fault)	  
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Memory	  Mapping	  
  VM	  areas	  iniZalized	  by	  associaZng	  them	  with	  disk	  objects.	  

  Process	  is	  known	  as	  memory	  mapping.	  	  

  Area	  can	  be	  backed	  by	  (i.e.,	  get	  its	  iniZal	  values	  from)	  :	  
  Regular	  file	  on	  disk	  (e.g.,	  an	  executable	  object	  file)	  

  Ini0al	  page	  bytes	  come	  from	  a	  sec0on	  of	  a	  file	  
  Anonymous	  file	  (e.g.,	  nothing)	  

  First	  fault	  will	  allocate	  a	  physical	  page	  full	  of	  0's	  (demand-‐zero	  page)	  

  Once	  the	  page	  is	  wriien	  to	  (dirJed),	  it	  is	  like	  any	  other	  page	  

  Dirty	  pages	  are	  copied	  back	  and	  forth	  between	  memory	  and	  a	  
special	  swap	  file.	  
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Demand	  paging	  

  Key	  point:	  no	  virtual	  pages	  are	  copied	  into	  physical	  
memory	  unZl	  they	  are	  referenced!	  
  Known	  as	  demand	  paging	  

  Crucial	  for	  Zme	  and	  space	  efficiency	  	  
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Sharing	  Revisited:	  Shared	  Objects	  

  Process	  1	  	  maps	  
the	  shared	  
object.	  	  

Shared 
object 

Physical 
memory 

Process 1 
virtual memory 

Process 2 
virtual memory 
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Sharing	  Revisited:	  Shared	  Objects	  

Shared 
object 

Physical 
memory 

Process 1 
virtual memory 

Process 2 
virtual memory 

  Process	  2	  maps	  
the	  shared	  
object.	  	  

  NoZce	  how	  the	  
virtual	  
addresses	  can	  
be	  different.	  
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Sharing	  Revisited:	  	  
Private	  Copy-‐on-‐write	  (COW)	  Objects	  

  Two	  processes	  
mapping	  a	  private	  
copy-‐on-‐write	  
(COW)	  	  object.	  	  

  Area	  flagged	  as	  
private	  copy-‐on-‐
write	  

  PTEs	  in	  private	  
areas	  are	  flagged	  
as	  read-‐only	  

Private  
copy-on-write object 

Physical 
memory 

Process 1 
virtual memory 

Process 2 
virtual memory 

 Private 
copy-on-write 
area 
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Sharing	  Revisited:	  	  
Private	  Copy-‐on-‐write	  (COW)	  Objects	  

  InstrucZon	  wriZng	  
to	  private	  page	  
triggers	  
protecZon	  fault.	  	  

  Handler	  creates	  
new	  R/W	  page.	  	  

  InstrucZon	  
restarts	  upon	  
handler	  return.	  	  

  Copying	  deferred	  
as	  long	  as	  
possible!	  

Private   
copy-on-write object 

Physical 
memory 

Process 1 
virtual memory 

Process 2 
virtual memory 

Copy-on-write 

Write to private 
copy-on-write 

page 
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The	  fork	  FuncZon	  Revisited	  

  VM	  and	  memory	  mapping	  explain	  how	  fork	  provides	  private	  
address	  space	  for	  each	  process.	  	  

  To	  create	  virtual	  address	  for	  new	  new	  process	  
  Create	  exact	  copies	  of	  current	  mm_struct,	  vm_area_struct,	  and	  

page	  tables.	  	  

  Flag	  each	  page	  in	  both	  processes	  as	  read-‐only	  
  Flag	  each	  vm_area_struct in	  both	  processes	  as	  private	  COW	  

  On	  return,	  each	  process	  has	  exact	  copy	  of	  virtual	  memory	  

  Subsequent	  writes	  create	  new	  pages	  using	  COW	  mechanism.	  
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The	  execve	  FuncZon	  Revisited	  
  To	  load	  and	  run	  a	  new	  

program	  a.out	  in	  the	  
current	  process	  using	  
execve:	  

  Free vm_area_struct’s	  
and	  page	  tables	  for	  old	  areas	  

  Create	  vm_area_struct’s	  
and	  page	  tables	  for	  new	  
areas	  
  Programs	  and	  ini0alized	  data	  

backed	  by	  object	  files.	  
  .bss  and	  stack	  backed	  by	  

anonymous	  files	  .	  	  

  Set	  PC	  to	  entry	  point	  
in	  .text 
  Linux	  will	  fault	  in	  code	  and	  

data	  pages	  as	  needed.	  

Memory mapped region  
for shared libraries 

Runtime heap (via malloc) 

Program text (.text) 

Initialized data (.data) 

Uninitialized data (.bss) 

User stack 

0 

Private, demand-zero 

libc.so 
.data 
.text Shared, file-backed 

Private, demand-zero 

Private, demand-zero 

Private, file-backed 

a.out 
.data 
.text 
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User-‐Level	  Memory	  Mapping	  
void *mmap(void *start, int len, 
           int prot, int flags, int fd, int offset)	  

  Map	  len	  bytes	  starZng	  at	  offset	  offset of	  the	  file	  specified	  
by	  file	  descripZon	  fd,	  preferably	  at	  address	  start	  	  
  start:	  may	  be	  0	  for	  “pick	  an	  address”	  

  prot:	  PROT_READ,	  PROT_WRITE,	  ...	  

  flags:	  MAP_ANON,	  MAP_PRIVATE,	  MAP_SHARED,	  ...	  

  Return	  a	  pointer	  to	  start	  of	  mapped	  area	  (may	  not	  be	  start)	  
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User-‐Level	  Memory	  Mapping	  
void *mmap(void *start, int len, 
           int prot, int flags, int fd, int offset)	  

len bytes	  

start 
(or	  address	  	  

chosen	  by	  kernel)	  

Process	  virtual	  memory	  Disk	  file	  specified	  by	  	  
file	  descriptor	  fd 

len bytes	  

offset 
(bytes)	  

0 0 
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Using	  mmap	  to	  Copy	  Files	  

#include "csapp.h" 

/* 
 * mmapcopy - uses mmap to copy 
 *            file fd to stdout 
 */ 
void mmapcopy(int fd, int size) 
{ 

    /* Ptr to mem-mapped VM area */ 
    char *bufp; 

    bufp = Mmap(NULL, size, 
                PROT_READ,  
                MAP_PRIVATE, fd, 0); 
    Write(1, bufp, size); 
    return; 
} 

/* mmapcopy driver */ 
int main(int argc, char **argv) 
{ 
    struct stat stat; 
    int fd; 

    /* Check for required cmdline arg */ 
    if (argc != 2) { 
        printf("usage: %s <filename>\n”,   
                argv[0]); 
        exit(0); 
    } 

    /* Copy the input arg to stdout */ 
    fd = Open(argv[1], O_RDONLY, 0); 
    Fstat(fd, &stat); 
    mmapcopy(fd, stat.st_size); 
    exit(0); 
} 

  Copying	  without	  transferring	  data	  to	  user	  space	  .	  
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Memory-Mapped Files 

 Memory-mapped file I/O allows file I/O to be treated as routine 
memory access by mapping a disk block to a page in memory 

 A file is initially read using demand paging 
 A page-sized portion of the file is read from the file system into 

a physical page 
 Subsequent reads/writes to/from the file are treated as 

ordinary memory accesses 
 Simplifies and speeds file access by driving file I/O through 

memory rather than read() and write() system calls 

 Also allows several processes to map the same file allowing the 
pages in memory to be shared 

 But when does written data make it to disk? 
 Periodically and / or at file close() time 

 For example, when the pager scans for dirty pages 
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Memory-Mapped File Technique for all I/O 

 Some OSes  uses memory mapped files for standard I/O 
 Process can explicitly request memory mapping a file via mmap() 

system call 
 Now file mapped into process address space 

 For standard I/O (open(), read(), write(), close()), mmap 
anyway 
 But map file into kernel address space 
 Process still does read() and write() 

 Copies data to and from kernel space and user space 
 Uses efficient memory management subsystem 

 Avoids needing separate subsystem 
 COW can be used for read/write non-shared pages 
 Memory mapped files can be  used for shared memory (although 

again via separate system calls) 



Operating System SoftwareOperating System Software

The design of  the memory management 
portion of  an operating system depends on 
three fundamental areas of  choice:three fundamental areas of  choice:
• whether or not to use virtual memory techniques
• the use of  paging or segmentation or both
• the algorithms employed for various aspects of  
memory management



Policies for Virtual MemoryPolicies for Virtual Memory
n Key issue:  Performance

§ minimize page faults



n Determines when a 
page should be 
brought into 

Two main 
types:brought into 

memory
types:

Demand 
Paging Prepaging



Demand Paging Demand Paging 
n Demand Paging

n only brings pages into main memory when a reference is made 
to a location on the page

n many page faults when process is first started 
n principle of  locality suggests that as more and more pages are 
brought in, most future references will be to pages that have 
recently been brought in, and page faults should drop to a very 
low level



PrepagingPrepaging

n Prepaging
n pages other than the one demanded by a page fault are brought 
in
exploits the characteristics of  most secondary memory devicesn exploits the characteristics of  most secondary memory devices

n if  pages of  a process are stored contiguously in secondary 
memory it is more efficient to bring in a number of  pages at 
one time

n ineffective if  extra pages are not referenced
n should not be confused with “swapping”
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Non-Uniform Memory Access 

 So far all memory accessed equally 
 Many systems are NUMA – speed of access to memory varies 

 Consider system boards containing CPUs and memory, 
interconnected over a system bus 

 Optimal performance comes from allocating memory “close to” 
the CPU on which the thread is scheduled 
 And modifying the scheduler to schedule the thread on the 

same system board when possible 
 Solved by Solaris by creating lgroups  

 Structure to track CPU / Memory low latency groups 
 Used my schedule and pager 
When possible schedule all threads of a process and 

allocate all memory for that process within the lgroup 
 



Placement PolicyPlacement Policy
nDetermines where in real memory a process 
piece is to reside

n Important design issue in a segmentation systemn Important design issue in a segmentation system

n Paging or combined paging with segmentation 
placing is irrelevant because hardware performs 
functions with equal efficiency

n For NUMA systems an automatic placement 
strategy is desirable



Replacement PolicyReplacement Policy
nDeals with the selection of  a page in main memory 
to be replaced when a new page must be brought in

n objective is that the page that is removed be the page n objective is that the page that is removed be the page 
least likely to be referenced in the near future

n The more elaborate the replacement policy the 
greater the hardware and software overhead to 
implement it



§ When a frame is locked the page currently stored in that frame 
may not be replaced

§ kernel of  the OS as well as key control structures are held § kernel of  the OS as well as key control structures are held 
in locked frames

§ I/O buffers and time-critical areas may be locked into 
main memory frames

§ locking is achieved by associating a lock bit with each 
frame



Algorithms used for 
the selection of  a the selection of  a 
page to replace:
• Optimal
• Least recently used (LRU)
• First-in-first-out (FIFO)
• Clock



§ Selects the page for which the time to the 
next reference is the longest

§ Produces three page faults after the frame § Produces three page faults after the frame 
allocation has been filled



Least Recently Used Least Recently Used 
(LRU)(LRU)

n Replaces the page that has not been referenced for the longest 
time

n By the principle of  locality, this should be the page least likely n By the principle of  locality, this should be the page least likely 
to be referenced in the near future

n Difficult to implement
n one approach is to tag each page with the time of  last 
reference
n this requires a great deal of  overhead



LRU ExampleLRU Example



FirstFirst--inin--FirstFirst--out (FIFO)out (FIFO)
n Treats page frames allocated to a process as a circular buffer

n Pages are removed in round-robin style
§ simple replacement policy to implement§ simple replacement policy to implement

n Page that has been in memory the longest is replaced





Clock PolicyClock Policy
n Requires the association of  an additional bit with each frame

n referred to as the use bit

n When a page is first loaded in memory or referenced, the use bit 
is set to 1is set to 1

n The set of  frames is considered to be a circular buffer

n Any frame with a use bit of  1 is passed over by the algorithm

n Page frames visualized as laid out in a circle





Clock Clock 
PolicyPolicy





Clock Clock 
PolicyPolicyPolicyPolicy



Combined ExamplesCombined Examples



n Improves paging 
performance and 
allows the use of  
a simpler page 

A replaced page is 
not lost, but 

rather assigned to 
one of  two lists:

a simpler page 
replacement 
policy

Free page list

list of  page frames 
available for 
reading in pages

Modified page list

pages are written 
out in clusters 



Replacement Policy and Cache SizeReplacement Policy and Cache Size

n With large caches, replacement of  pages can have a performance 
impact
n if  the page frame selected for replacement is in the cache, that 
cache block is lost as well as the page that it holdscache block is lost as well as the page that it holds

n in systems using page buffering, cache performance can be 
improved with a policy for page placement in the page buffer

n most operating systems place pages by selecting an arbitrary 
page frame from the page buffer



n The OS must decide how many pages to bring into main memory
n the smaller the amount of  memory allocated to each process, 
the more processes can reside in memory

n small number of  pages loaded increases page faultsn small number of  pages loaded increases page faults
n beyond a certain size, further allocations of  pages will not 
effect the page fault rate



Resident Set SizeResident Set Size

Fixed-allocation Variable-allocation
n allows the number of  page 
frames allocated to a 

n gives a process a fixed 
number of  frames in main frames allocated to a 

process to be varied over 
the lifetime of  the process

number of  frames in main 
memory within which to 
execute

n when a page fault occurs, 
one of  the pages of  that 
process must be replaced



n The scope of  a replacement strategy can be categorized as 
global or local
n both types are activated by a page fault when there are no free 
page framespage frames

Local

• chooses only among the resident pages of  the process that generated 
the page fault

Global 

• considers all unlocked pages in main memory 





Fixed Allocation, Local ScopeFixed Allocation, Local Scope

n Necessary to decide ahead of  time the amount of  
allocation to give a process

n If  allocation is too small, there will be a high page fault n If  allocation is too small, there will be a high page fault 
rate

• increased processor idle time
• increased time spent in 
swapping

If  allocation is too 
large, there will be 
too few programs 
in main memory



Variable Allocation Variable Allocation 
Global ScopeGlobal Scope

n Easiest to implement
n adopted in a number of  operating systems

n OS maintains a list of  free framesn OS maintains a list of  free frames

n Free frame is added to resident set of  process when a page fault 
occurs

n If  no frames are available the OS must choose a page currently in 
memory

n One way to counter potential problems is to use page buffering



n When a new process is loaded into main memory, allocate to it a 
certain number of  page frames as its resident set

n When a page fault occurs, select the page to replace from among n When a page fault occurs, select the page to replace from among 
the resident set of  the process that suffers the fault

n Reevaluate the allocation provided to the process and increase or 
decrease it to improve overall performance



Variable AllocationVariable Allocation
Local ScopeLocal Scope

n Decision to increase or decrease a resident set size is based 
on the assessment of  the likely future demands of  active 
processes

Key elements:

• criteria used to determine 
resident set size
• the timing of  changes



Figure 8.19Figure 8.19

Working Set Working Set 

of Process as of Process as of Process as of Process as 

Defined by Defined by 

Window SizeWindow Size
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Working-Set Model 
 ∆ ≡ working-set window ≡ a fixed number of page references  

Example:  10,000 instructions 
 WSSi (working set of Process Pi) = 

total number of pages referenced in the most recent ∆ (varies in time) 
 if ∆ too small will not encompass entire locality 
 if ∆ too large will encompass several localities 
 if ∆ = ∞ ⇒ will encompass entire program 

 D = Σ WSSi ≡ total demand frames  
 Approximation of locality 

 if D > m ⇒ Thrashing 

 Policy if D > m, then suspend or swap out one of the processes  
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Keeping Track of the Working Set 

 Approximate with interval timer + a reference bit 
 Example: ∆ = 10,000 

 Timer interrupts after every 5000 time units 
 Keep in memory 2 bits for each page 
 Whenever a timer interrupts copy and sets the values of all 

reference bits to 0 
 If one of the bits in memory = 1 ⇒ page in working set 

 Why is this not completely accurate? 
 Improvement = 10 bits and interrupt every 1000 time units 



Page Fault Frequency Page Fault Frequency 
(PFF)(PFF)

n Requires a use bit to be associated with each page in memory

n Bit is set to 1 when that page is accessed

n When a page fault occurs, the OS notes the virtual time since the 
last page fault for that process

n Does not perform well during the transient periods when there is 
a shift to a new locality
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Page-Fault Frequency 

 More direct approach than WSS 
 Establish “acceptable” page-fault frequency (PFF) rate 

and use local replacement policy 
 If actual rate too low, process loses frame 
 If actual rate too high, process gains frame 
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Working Sets and Page Fault Rates 
 Direct relationship between working set of a process and its 

page-fault rate 
 Working set changes over time 
 Peaks and valleys over time 
 



n Evaluates the working set of  a process at sampling instances based 
on elapsed virtual time

n Driven by three parameters:n Driven by three parameters:

the minimum 
duration of  the 
sampling 
interval

the maximum 
duration of  the 
sampling 
interval

the number of  
page faults that 
are allowed to 
occur between 
sampling 
instances



Cleaning PolicyCleaning Policy

n Concerned with determining when a modified page should be 
written out to secondary memory

Precleaning

allows the writing of  pages in batches

Demand Cleaning

a page is written out to secondary memory only when it has been selected for 
replacement



Load ControlLoad Control

n Determines the number of  processes that will be resident in main 
memory
n multiprogramming level

n Critical in effective memory management

n Too few processes, many occasions when all processes will be 
blocked and much time will be spent in swapping

n Too many processes will lead to thrashing



MultiprogrammingMultiprogramming



n If  the degree of  multiprogramming is to be reduced, one or more 
of  the currently resident processes must be swapped out

Six possibilities exist:
• Lowest-priority process
• Faulting process
• Last process activated
• Process with the smallest resident set
• Largest process
• Process with the largest remaining execution window



UnixUnix

n Intended to be machine independent so its memory 
management schemes will vary
n early Unix: variable partitioning with no virtual memory 
schemescheme

n current implementations of  UNIX and Solaris make use of  
paged virtual memory

• paging system
• kernel memory allocator

SVR4 and Solaris use 
two separate schemes:



Paging system Kernel Memory 
Allocator 

provides a virtual memory 
capability that allocates page frames 
in main memory to processes 

allocates page frames to disk block 
buffers

Allocator 

allocates memory for the kernel



UNIX SVR4 

Memory

Management 

Formats



Table 8.6 

UNIX SVR4 
Memory 
Management Management 
Parameters 
(page 1 of  2)
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UNIX SVR4 
Memory 
Management 
Parameters Parameters 
(page 2 of  2)



n The page frame data table is used for page replacement

n Pointers are used to create lists within the table
n all available frames are linked together in a list of  free frames n all available frames are linked together in a list of  free frames 
available for bringing in pages

n when the number of  available frames drops below a certain 
threshold, the kernel will steal a number of  frames to 
compensate



“Two Handed” “Two Handed” 

Clock Clock 

Page Page Page Page 

ReplacementReplacement



n The kernel generates and destroys small tables and buffers 
frequently during the course of  execution, each of  which requires 
dynamic memory allocation.

n Most of  these blocks are significantly smaller than typical pages n Most of  these blocks are significantly smaller than typical pages 
(therefore paging would be inefficient)

n Allocations and free operations must be made as fast as possible



n Technique adopted for SVR4

n UNIX often exhibits steady-state behavior in kernel memory 
demanddemand
n i.e. the amount of  demand for blocks of  a particular size 
varies slowly in time

n Defers coalescing until it seems likely that it is needed, and 
then coalesces as many blocks as possible



Lazy Buddy System AlgorithmLazy Buddy System Algorithm



Linux Linux 
Memory ManagementMemory Management

n Shares many characteristics with Unix

n Is quite complex

Two main 
aspects

• process virtual 
memory
• kernel memory 
allocation



n Three level page table structure:

Page directory Page middle directory Page table

process has a single page 
directory

each entry points to one page 
of  the page middle directory

must be in main memory for 
an active process

may span multiple pages

each entry points to one page 
in the page table

may also span multiple pages

each entry refers to one 
virtual page of  the process



Address TranslationAddress Translation



n Based on the clock algorithm

n The use bit is replaced with an 8-bit age variable
n incremented each time the page is accessedn incremented each time the page is accessed

n Periodically decrements the age bits
n a page with an age of  0 is an “old” page that has not been 
referenced is some time and is the best candidate for 
replacement

n A form of  least frequently used policy



n Kernel memory capability manages physical main memory page frames

n primary function is to allocate and deallocate frames for particular 
uses

Possible owners of  a frame include:

• user-space processes
• dynamically allocated kernel data
• static kernel code 

n A buddy algorithm is used so that memory for the kernel can be 
allocated and deallocated in units of  one or more pages

n Page allocator alone would be inefficient because the kernel requires 
small short-term memory chunks in odd sizes

n Slab allocation

n used by Linux to accommodate small chunks

• static kernel code 
• page cache



Windows Windows 
Memory ManagementMemory Management

n Virtual memory manager controls how memory is allocated and 
how paging is performed

n Designed to operate over a variety of  platforms

n Uses page sizes ranging from 4 Kbytes to 64 Kbytes



Windows Virtual Address MapWindows Virtual Address Map

n On 32 bit platforms each user process sees a separate 32 bit 
address space allowing 4 Gbytes of  virtual memory per process
§ by default half  is reserved for the OS
Large memory intensive applications run more effectively using n Large memory intensive applications run more effectively using 
64-bit Windows

n Most modern PCs use the AMD64 processor architecture which 
is capable of  running as either a 32-bit or 64-bit system



3232--Bit Bit 
Windows Windows 
Address Address Address Address 
SpaceSpace



Windows PagingWindows Paging

n On creation, a process can make use of  the entire user space of  
almost 2 Gbytes

n This space is divided into fixed-size pages managed in n This space is divided into fixed-size pages managed in 
contiguous regions allocated on 64 Kbyte boundaries

n Regions may be in one of  three states:

available reserved committed



n Windows uses variable allocation, local scope

n When activated, a process is assigned a data structure to manage 
its working set

n Working sets of  active processes are adjusted depending on the 
availability of  main memory



SummarySummary
n Desirable to:

n maintain as many processes in main memory as possible
n free programmers from size restrictions in program 
developmentdevelopment

n With virtual memory:
n all address references are logical references that are translated 
at run time to real addresses

n a process can be broken up into pieces
n two approaches are paging and segmentation
n management scheme requires both hardware and software 
support


