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_ Operating Systems:
Internals and Design Principles

You're gonna need a bigger boat.

— Steven Spielberg,
JAWS, 1975




Hardware and Control Structures

m Two characteristics fundamental to memory
management:

1) all memory references are logical addresses that are
dynamically translated into physical addresses at run time

2) a process may be broken up into a number of pieces that
don’t need to be contiguously located in main memory
during execution

m If these two characteristics are present, it 1s not
necessary that all of the pages or segments of a
process be in main memory during execution



Terminology

Virtual memory

A storage allocation scheme in which secondary memory can be
addressed as though it were part of main memory. The addresses a
program may use to reference memory are distinguished from the
addresses the memory system uses to identify physical storage sites,
and program-generated addresses are translated automatically to the
corresponding machine addresses.The size of virtual storage is
limited by the addressing scheme of the computer system and by the
amount of secondary memory available and not by the actual
number of main storage locations.

Virtual address

The address assigned to a location in virtual memory to allow that
location to be accessed as though it were part of main memory.

Virtual address
space

The virtual storage assigned to a process.

Address space

The range of memory addresses available to a process.

Real address

The address of a storage location in main memory.




Execution of a Process

m Operating system brings into main memory a few pieces of the
program

m Resident set - portion of process that 1s in main memory

m An interrupt is generated when an address 1s needed that is not
In main memory

m Operating system places the process
in a blocking state

Continued . . .
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- Execution of a Process

m Piece of process that contains the logical address 1s brought into
main memory

m operating system issues a disk I/0O Read request

m another process is dispatched to run while the disk I/0 takes
place

m an interrupt 1s issued when disk I/0 is complete, which causes
the operating system to place the affected process in the Ready
state




- Implications
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m More processes may be maintained in main memory
m only load in some of the pieces of each process

m with so many processes in main memory, it 1s very likely a
process will be in the Ready state at any particular time

m A process may be larger than all of main memory




Real and Virtual Memory

/ >
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e main memory, the actual RAM \&ﬁ’y/'
Virtual memory

 memory on disk

« allows for effective multiprogramming and relieves the
user of tight constraints of main memory



Table 8.2

Characteristics of
Paging and

Segmentation

Simple Paging

Virtual Memory
Paging

Simple Segmentation

Virtual Memory
Segmentation

Main memory
partitioned into small
fixed-size chunks called
frames

Main memory
partitioned into small
fixed-size chunks called
frames

Main memory not
partitioned

Main memory not
partitioned

Program broken into
pages by the compiler or
memory management
system

Program broken into
pages by the compiler or
memory management
system

Program segments
specified by the
programmer to the
compiler (i.e., the
decision is made by the
programmer)

Program segments
specified by the
programmer to the
compiler (i.e., the
decision is made by the
programmer)

Internal
fragmentation
within frames

Internal fragmentation
within frames

No internal
fragmentation

No internal
fragmentation

No external
fragmentation

No external
fragmentation

External fragmentation

External fragmentation

Operating system must
maintain a page table
for each process
showing which frame
each page occupies

Operating system must
maintain a page table
for each process
showing which frame
each page occupies

Operating system must
maintain a segment
table for each process
showing the load
address and length of
each segment

Operating system must
maintain a segment
table for each process
showing the load
address and length of
each segment

Operating system must
maintain a free frame
list

Operating system must
maintain a free frame
list

Operating system must
maintain a list of free
holes in main memory

Operating system must
maintain a list of free
holes in main memory

Processor uses page
number, offset to
calculate absolute
address

Processor uses page
number, offset to
calculate absolute
address

Processor uses segment
number, offset to
calculate absolute
address

Processor uses segment
number, offset to
calculate absolute
address

All the pages of a
process must be in main
memory for process to
run, unless overlays are
used

Not all pages of a
process need be in main
memory frames for the
process to run. Pages
may be read in as
needed

All the segments of a
process must be in main
memory for process to
run, unless overlays are
used

Not all segments of a
process need be in main
memory for the process
to run. Segments may
be read in as needed

Reading a page into
main memory may
require writing a page
out to disk

Reading a segment into
main memory may
require writing one or
more segments out to
disk




A state in which

the system spends
most of its time
swapping process
pieces rather than
executing
instructions

Thrashing

To avoid this, the
operating system tries
to guess, based on
recent history, which
pieces are least likely
to be used in the near
future




Principle;.‘of LOCaiitY :

m Program and data references within a process tend to cluster

m Only a few pieces of a process will be needed over a short
period of time

m Therefore it is possible to make intelligent guesses about which
pieces will be needed in the future

m Avoids thrashing




Paging Behavior

i ! . & 1 1 ¥
T 'u':h.'wlrmllrul:la."di";.,:il;,mfu““‘”“““"?"' e et

sl

m During the lifetime of the
process, references are
confined to a subset of pages

Prage mimbers

f |

Execution time ——=

Figure #.1 Paging Behavior



Suvvort Needed for Vlrtual
- Memory

For virtual memory to be practical and
effective:

* hardware must support paging and
segmentation

 operating system must include software for
managing the movement of pages and/or
segments between secondary memory and
main memory




- Paging

m The term virtual memory is usually associated with systems that
employ paging

m Use of paging to achieve virtual memory was first reported for
the Atlas computer

m Each process has its own page table

m cach page table entry contains the frame number of the
corresponding page in main memory



Virtual Address M
I Page Number | Offset . emory

Page Table Entry Management

2 1 Centrol Bits Frame Number
(a) Paging only I Ormats
Virtual Address

I Segment Number | Offset .

Segment Table Entry

P|MJOther Conirol Bits Length Segment Base

(b) Segmentation only

Virtual Address
Segment Number Page Number Offzet
Segment Table Entry
Control Bits Length Segment Base

Page Table Entry

P|MpOther Control Bits Frame Number P= present bit
M = Modified bit

(¢) Combined segmentation and paging



Address Translation
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| 1

Virtual Address : Physical Address | :

| Page # ‘ Offset ‘ [ ‘Frame #‘ Offset |—|7
| * 1
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1 _ 1
1 Register 1
n bits | Page Table Ptr| 1
| 1
| 1
] Page Table e bits 1
| 1
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| 1
| 1
| 1
1 1 Y
| 1
| 1
Program I Paging Mechanism 1 Main Memory

| 1

Figure 8.3 Address Translation in a Paging System



Two-Level
Hierarchical Page Table

N\

4-kbyte root
page table

4-Mbyte user

- N \\\
4-Gbyte user . .
address space

Figure 8.4 A Two-Level Hierarchical Page Table



Address Translation
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Figure 8.5 Address Translation in a Two-Level Paging System



Inverted Page Table

m Page number portion of a virtual address is mapped into a hash
value

m hash value points to inverted page table

m Fixed proportion of real memory is required for the tables
regardless of the number of processes or virtual pages supported

m Structure 1s called inverted because it indexes page table entries by
frame number rather than by virtual page number




Inverted Page Table

Virtual Address

n bits
Page # | Offset
Control
n bits bits
A Process
hash m hits Page # 1D Chain
function 0
> 1
J
y L J
2m_1 Frame #| Offset
m bits
Inverted Page Table Real Address

(one entry for each
physical memory frame)

Figure 8.6 Inverted Page Table Structure



Inverted Page Table

Each entry in the page table includes:

Page Process Chain
number identifier pointer

* the process ¢ includes e the index
that owns flags and value of the
this page protection next entry

and locking  1n the chain
information



g Inverted Page Table

m Rather than each process having a page table and keeping track
of all possible logical pages, track all physical pages

m One entry for each real page of memory

Entry consists of the virtual address of the page stored in that
real memory location, with information about the process that
owns that page

m Decreases memory needed to store each page table, but
increases time needed to search the table when a page
reference occurs

B Use hash table to limit the search to one — or at most a few —
page-table entries

e TLB can accelerate access
® But how to implement shared memory?

e One mapping of a virtual address to the shared physical
address

Rl
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Translatmn Lookas1de
' Buffer (TLB)

m Each virtual memory m To overcome the effect of
reference can cause two doubhng the ey
physical memory accesses: access time, most virtual

memory schemes make
use of a special high-speed
cache called a translation

lookaside buffer

m one to fetch the page
table entry

m one to fetch the data



Use of a TLB

Virtual Address

Page # ‘ Offset |

Translation
Lookaside Buffer

TLE hit

TLE miss

YYYYYYY

Page Table

Main Memory

O EfsetI

)

Page fault

v r v
|Frmne #‘ Offset }7

Real Address

Load
page

Secondary

-

Memory

Figure 8.7 Use of a Translation Lookaside Buffer



Return to

Faulted Instruction
* CPU checks the TLB
Page Tahle
Entry in ®
TLB? l
__________________ | I ’ ( : I ; . I ‘ ' I l
Page Fault |
Handling Routine :
I
05 Instructs CPU :
to Read the Page
from Disk Memory?
CPU Activates N
1/0 Hardware Update TLB

|

CPU Generates
Physical Address

|

I

I

I

I

|

|

I

I

I

I

|

|

I

I

I

I

|

|

| Page Transferred
: from Disk to
I
|
|
I
I
I
I
|
|
I
I
I
I
|
|
|
I
I
I

Main Memory

k.

No Perform Page
Replacement

Page Tables
Updated

Figure 8.8 Operation of Paging and Translation Lookaside Buffer (TLB) [FURHS7]



- Associative Mapping

m The TLB only contains some of the page table entries so we
cannot simply index into the TLB based on page number

m cach TLB entry must include the page number as well as the
complete page table entry

m The processor is equipped with hardware that allows it to
interrogate simultaneously a number of TLB entries to
determine 1if there 1s a match on page number




irect Versus
ssociative Lookup
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Page Table
(a) Direct mapping (b} Associative mapping

Figure 8.9 Direct Versus Associative Lookup for Page Table Entries



TLB and Cache Operation

TLE Operation

L DL L LR L L L L

1
! Virtual Address

l
Page # | Offset
TLE

1
1
1
i :
! 1
' 1
' 1
= 1
! TLE miss '
i TLB 1

: it b Cache Operation .

I s :
! Real Address E
: v '
L;»+4:—1|» Remainder Hit & Value
; I —

! — Cache 1

H — . u

Miss .

; < :

i :

U I

v

\/\ Main

Memory

Page Table

Value

¥

M

Figure 8.10 Translation Lookaside Buffer and Cache Operation



Page Size

m The smaller the page size, the lesser the amount of internal
fragmentation

m however, more pages are required per process
B more pages per process means larger page tables

m for large programs in a heavily multiprogrammed environment
some portion of the page tables of active processes must be in
virtual memory instead of main memory

m the physical characteristics of most secondary-memory devices
favor a larger page size for more efficient block transfer of data



Paging Behavior of a Program

Page Faull Rale
Page Fault Rate

Y

ia) Page Size (b} Number of Page Frames Allocated

P = size of entire process
W = working set size
N = total number of pages in process

Figure 8.11 Typical Paging Behavior of a Program



Example: Page Sizes

Computer

Page Size

Atlas

Honeywell-Multics

IBM 370/XA and 370/ESA
VAX family

IBM AS/400

DEC Alpha

MIPS

UltraSPARC

Pentium

IBM POWER

Itanium

512 48-bit words

1024 36-bit words

4 Kbytes

512 bytes

512 bytes

8 Kbytes

4 Kbytes to 16 Mbytes
8 Kbytes to 4 Mbytes
4 Kbytes or 4 Mbytes
4 Kbytes

4 Kbytes to 256 Mbytes




“ Page Size . 3

The design issue of main memory is
page size 1s related to getting larger and

the size of physical address space used by
main memory and applications is also
program size growing

m Contemporary programming
techniques used in large
programs tend to decrease the

most obvious on
: L personal computers
locality of references within a where applications are
process becoming increasingly
complex




Segmentation

m Segmentation
allows the
programmer to
VIEW memory as
consisting of
multiple address
spaces or
segments

Advantages:

simplifies handling
of growing data
structures

allows programs to
be altered and
recompiled
independently

lends itself to
sharing data
among processes

lends 1tself to
protection
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~ Segment Organization

m Each segment table entry contains the starting address of the
corresponding segment in main memory and the length of the
segment

m A bit 1s needed to determine if the segment 1s already in main
memory

m Another bit 1s needed to determine if the segment has been
modified since it was loaded 1n main memory




Address Translation

d

1 1
| ]
Virtual Address 1 Segment Table 1
1 1
‘ Seg # | Offset = d | [ ————* + Base +d }—ﬁ

| 1 1
[ ]
1 _ 1
- Register 1
| Seg Table Ptr| |
| ]
1 1
I Segment Table 1
1 1
| ]
| ]
1 1
1 1
| |Length | Base 1
| ]
1 1
1 1
1 1
| ]
Program ! Segmentation Mechanism !
1 1
1 1

Figure 8.12 Address Translation in a Segmentation System

Main Memory
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Segment



Combmed Paglng and
Segmentation

-j'

In a combined
paging/segmentation system Segmentation is visible to the
a user’s address space 1s programmer
broken up into a number of

segments. Each segment 1s
broken up into a number of
fixed-sized pages which are Paging is transparent to the
equal in length to a main programmer
memory frame




Address Translation

| |
| |

Virtual Address 1 i
| | 3

| Seg # | Page#‘ Offset | [ I Frame # Offset
| | 1
] ]
i i
| |
I |Seg Table Pir |
| . |
1 segment i Page
1 Table 1 Table
| | =
| | s
| | ¥ &
. ST
| |
| |
| |
| |
| |
| |
| |
Program . Segmentation 1§ Paging

| ; . | j .
. Mechanism . Mechanism

fosetI

[N
™

\_/\

Page
Frame

-

Main Memory

Figure 8.13 Address Translation in a Segmentation/Paging System



Combined Segmentation
and Paging

Virtual Address
Segment Number Page Number Offset

Segment Table Entry

Control Bits Length Segment Base

Page Table Entry

P|M[Other Control Bits Frame Number P= present bit
M = Modified bit

(¢) Combined segmentation and paging



Protection and Sharing

m Segmentation lends itself to the implementation of protection
and sharing policies

m Each entry has a base address and length so inadvertent memory
access can be controlled

m Sharing can be achieved by segments referencing multiple
processes




Address  Main Memory

0
o 20K -
Dispatcher
rotection 35K No aceess
allowed
S0K
[ ] { ]
Relationships | Preesa
30K
0K Branch instruction
inot allowed)
Process B - s
data (allowed)
140K
Process C
E e eSS EEE . Reference to
data (not allowed)
190K

Figure 8.14 Protection Relationships Between Segments



Carnegie Mellon

End-to-end Core i7 Address Translation

32/64
CPU
< Result [« I‘?’ L3, and
Virtual address (VA) 4 main memory
36 | 12 _
|, VPN |vpo, 11 L1
32 I 4 hit miss
TLBT | TLBI
| L1 d-cache
I Il i ! TLB (64 sets, 8 lines/set)
> hit «
TLB > <
miss : :
—>] | | | | LT T T T T T T Je
A A A A A A A
L1 TLB (16 sets, 4 entries/set)
v9 9 9 9 %0 | V1 20 6| 6
VPN1 | VPN2 | VPN3 | VPN4 PPN PPO ) cT cllco
T ' Physical _
CR3 J address
> pTEU > PTE U L»| PTE U Ls| PTE (PA)

Page tables »



Carnegie Mellon

Core i7 Level 1-3 Page Table Entries

63 62 52 51 12 11 9 8 7 6 5 4 3 2 1 0
XD Unused Page table physical base address Unused G | PS A | CD | WT|U/S R/W|P=1
Available for OS (page table location on disk) P=0

Each entry references a 4K child page table

P: Child page table present in physical memory (1) or not (0).

R/W: Read-only or read-write access access permission for all reachable pages.
U/S: user or supervisor (kernel) mode access permission for all reachable pages.
WT: Write-through or write-back cache policy for the child page table.

CD: Caching disabled or enabled for the child page table.

A: Reference bit (set by MMU on reads and writes, cleared by software).

PS: Page size either 4 KB or 4 MB (defined for Level 1 PTEs only).

G: Global page (don’t evict from TLB on task switch)

Page table physical base address: 40 most significant bits of physical page table
address (forces page tables to be 4KB aligned)
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Carnegie Mellon

Core i7 Level 4 Page Table Entries

63 62 52 51 12 11 9 8 7 6 5 4 3 2 1 0
XD | Unused Page physical base address Unused G D| A|CD|WT|U/S[R/W|P=1
Available for OS (page location on disk) P=0

Each entry references a 4K child page

P: Child page is present in memory (1) or not (0)

R/W: Read-only or read-write access permission for child page

U/S: User or supervisor mode access

WT: Write-through or write-back cache policy for this page

CD: Cache disabled (1) or enabled (0)

A: Reference bit (set by MMU on reads and writes, cleared by software)
D: Dirty bit (set by MMU on writes, cleared by software)

G: Global page (don’t evict from TLB on task switch)

Page physical base address: 40 most significant bits of physical page address
(forces pages to be 4KB aligned)

16



Carnegie Mellon

Core i7 Page Table Translation

9 9 9 E 12 Virtual
VPN 1 VPN 2 VPN 3 VPN 4 VPO
address
L1 PT L2 PT L3 PT L4 PT
Page global Page upper Page middle Page
40 directory lag. directory 40 directory 40 table
CR3 71T
Physical
address Offset into
of L1 PT /12 physical and
— L1PTE » L2 PTE » L3PTE — “—» LAPTE virtual page
Physical
address
512 GB 1GB 2 MB 4 KB of page
region region region region
per entry per entry per entry per entry
40
l 7
40 12 Physical
PPN PPO

address

17
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Different for )
each process

-

Identical for
each process

Process-specific data
structs (ptables,
task and mm structs,
kernel stack)

Physical memory

Kernel code and data

User stack

%esp —

v

Memory mapped region
for shared libraries

t

brk —

0x08048000 (32)

Runtime heap (malloc)

Uninitialized data (.bss)

Initialized data (.data)

Program text (.text)

0x00400000 (64)

N

AN

‘

Virtual Memory of a Linux Process

Kernel
virtual
memory

Process
virtual
memory

Carnegie Mellon
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Carnegie Mellon

Linux Organizes VM as Collection of “Areas”

Process virtual memory
vm_area struct

task_struct >
mm_struct vm_end
mm i’ pgd vm_start
vim_prot
mmap vm_flags
Shared libraries
g vm_end
vm_start g
u pgd: vm_prot Data
= Page global directory address vm_flags
® Points to L1 page table
m vm_prot: Text
= Read/write permissions for >
this area vm_end
vm_start >
m vm_flags vm_prot
= Pages shared with other vm_flags 0
vim_next

processes or private to this
process 20



Linux Page Fault Handling

vm_area_struct Process virtual memory

vm_end

vm_start

vim_prot

vm_flags

shared libraries
read Segmentation fault:

> T accessing a non-existing page

vm_en

vm_start .

vm_prot d d

vm_flags S read  Normal page fault

text Protection exception:

"B  Write e.g., violating permission by

vm_start —— writing to a read-only page (Linux

vm_prot reports as Segmentation fault)

vm_flags

vm_next

21



Carnegie Mellon

Memory Mapping

m VM areas initialized by associating them with disk objects.

" Process is known as memory mapping.

m Area can be backed by (i.e., get its initial values from) :
= Regular file on disk (e.g., an executable object file)
= |nitial page bytes come from a section of a file
= Anonymous file (e.g., nothing)
= First fault will allocate a physical page full of 0's (demand-zero page)
= Once the page is written to (dirtied), it is like any other page

m Dirty pages are copied back and forth between memory and a
special swap file.

23



Carnegie Mellon

Demand paging

m Key point: no virtual pages are copied into physical
memory until they are referenced!
= Known as demand paging

m Crucial for time and space efficiency

24



Carnegie Mellon

Sharing Revisited: Shared Objects

.rtProIcess1 Physical .rtProIcessm 2o m Process 1 maps
virtual memo memo virtual me
Y Y i the shared
object.
Shared

object
25



Sharing Revisited: Shared Objects

| Process 1 Physical | Prolcess 2 m Process 2 maps
virtual memory TnemO\rY virtual memory the shared
object.
m Notice how the
o virtual
e addresses can
be different.
Shared
object

26



Sharing Revisited:
Private Copy-on-write (COW) Objects

Process 1
virtual memory

Physical
memory

Private

copy-on-write object

~
~
~
~
~
~
~
~
S
\\ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~
\\ Y
\\ /
4
~
N7/
~
~
4 ~
4
/ ’
/
4

Process 2

virtual memory

Private
copy-on-write
area

Two processes

Carnegie Mellon

mapping a private

copy-on-write
(COW) obiject.
Area flagged as

private copy-on-
write

PTEs in private
areas are flagged
as read-only

27



Carnegie Mellon

Sharing Revisited:
Private Copy-on-write (COW) Objects

Process 1 Physical Process 2 m Instruction writing
virtual memory memory virtual memory to private page
et N triggers
\Q?N‘q'ﬂ?te protection fault.
» ’ Write to private = Handler creates
[T e copy-onwrite €W R/W page.
page m Instruction
restarts upon
handler return.
m Copying deferred
Private as long as

copy-on-write object possible!

28



Carnegie Mellon

The £ork Function Revisited

m VM and memory mapping explain how fork provides private
address space for each process.

m To create virtual address for new new process

" Create exact copies of currentmm struct, vm area struct,and
page tables.

= Flag each page in both processes as read-only
" Flageachvm area struct inboth processes as private COW

m Onreturn, each process has exact copy of virtual memory

m Subsequent writes create new pages using COW mechanism.

29



Carnegie Mellon

The execve Function Revisited

User stack } Private, demand-zero ® To load and run a new
program a.out in the
l current process using
execve.
libc.so 1
.data Memory mapped region . m Free vm area struct’s
A Shared, file-backed —
X e and page tables for old areas
1 m Createvin_area struct’s
and page tables for new
Runtime heap (via malloc) } Private, demand-zero areas
®" Programs and initialized data
Uninitialized data (.bss) } Private, demand-zero backed by object files.
a.out " _bss andstack backed by
data Initialized data (.data) anonymous files .
text Private, file-backed
e Program text (.text)
m Set PC to entry point
0 in . text

® Linux will fault in code and
data pages as needed.

30



User-Level Memory Mapping

void *mmap (void *start, int len,
int prot, int flags, int f£d, int offset)

m Map len bytes starting at offset of£set of the file specified
by file description £d, preferably at address start
" start: may be O for “pick an address”
= prot: PROT_READ, PROT_WRITE, ...
= flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED, ...

m Return a pointer to start of mapped area (may not be start)

31



Carnegie Mellon

User-Level Memory Mapping

void *mmap (void *start, int len,
int prot, int flags, int fd, int offset)

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ D
............................................... \ Jen bytes
— <« start
""""""""""""""""""""""""""""" (or address
len bytes§ | | chosen by kernel)
offset N
(bytes)
0 0
Disk file specified by Process virtual memory
file descriptor £d

32



Carnegie Mellon

Using mmap to Copy Files

m Copying without transferring data to user space.

#include "csapp.h"

/*

* mmapcopy - uses mmap to copy
* file £fd to stdout
*/

void mmapcopy (int f£d, int size)

{

/* Ptr to mem-mapped VM area */
char *bufp;

bufp = Mmap (NULL, size,
PROT_READ,
MAP PRIVATE, fd, 0);
Write (1, bufp, size);
return;

/* mmapcopy driver */
int main(int argc, char **argv)

{

struct stat stat;
int £d;

/* Check for required cmdline arg */
if (argc '= 2) {
printf ("usage: %s <filename>\n",
argv[0]);
exit (0) ;
}

/* Copy the input arg to stdout */
fd = Open(argv[1l], O RDONLY, O0);
Fstat (fd, é&stat);

mmapcopy (fd, stat.st size);

exit (0) ; -

33



-7 Memory-Mapped Files

B Memory-mapped file 1/0O allows file 1/0O to be treated as routine
memory access by mapping a disk block to a page in memory

m A file is initially read using demand paging

e A page-sized portion of the file is read from the file system into
a physical page

e Subsequent reads/writes to/from the file are treated as
ordinary memory accesses

B Simplifies and speeds file access by driving file I/O through
memory rather than read() and write() system calls

m Also allows several processes to map the same file allowing the
pages in memory to be shared

® But when does written data make it to disk?
e Periodically and / or at file close() time

e For example, when the pager scans for dirty pages

- '. ‘,_\ A '.-\:‘
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«g»’ Memory-Mapped File Technique for all I/O
Some OSes uses memory mapped files for standard 1/O
Process can explicitly request memory mapping a file via mmap ()
system call
e Now file mapped into process address space
m For standard I/O (open(), read(), write(), close()), mmap
anyway
e But map file into kernel address space
e Process still does read() and write()
» Copies data to and from kernel space and user space
e Uses efficient memory management subsystem
» Avoids needing separate subsystem
m COW can be used for read/write non-shared pages
®m Memory mapped files can be used for shared memory (although

again via separate system calls)

£ h
o ‘i‘i‘;{'
Al A9 .

Operating System Concepts — 9th Edition 9.58 Silberschatz, Galvin and Gagne ©2013



Operating System Software

The design of the memory management

portion of an operating system depends on
three fundamental areas of choice:

* whether or not to use virtual memory techniques
* the use of paging or segmentation or both

e the algorithms employed for various aspects of
memory management



Policies for Virtual Memory

m Key 1ssue: Performance

" minimize page faults

Fetch Policy
Demand paging
Prepaging

Placement Policy

Replacement Policy
Basic Algorithms
Optimal
Least recently used (LRU)
First-in-first-out (FIFO)
Clock
Page Buffering

Resident Set Management
Resident set size
Fixed
Variable
Replacement Scope
Global
Local

Cleaning Policy
Demand
Precleaning

Load Control

Degree of multiprogramming




* “Fetch Policy.

m Determines when a
page should be
brought into
memory

Demand
Paging

Prepaging




DémanPaging

m Demand Paging

only brings pages into main memory when a reference is made
to a location on the page

many page faults when process 1s first started

principle of locality suggests that as more and more pages are
brought in, most future references will be to pages that have
recently been brought in, and page faults should drop to a very
low level




Prepaging

m Prepaging

pages other than the one demanded by a page fault are brought
n

exploits the characteristics of most secondary memory devices

if pages of a process are stored contiguously in secondary
memory it 1s more efficient to bring 1n a number of pages at
one time

ineffective if extra pages are not referenced
should not be confused with “swapping”
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“$£»”  Non-Uniform Memory Access

m So far all memory accessed equally
B Many systems are NUMA — speed of access to memory varies

e Consider system boards containing CPUs and memory,
interconnected over a system bus

m Optimal performance comes from allocating memory “close to”
the CPU on which the thread is scheduled

e And modifying the scheduler to schedule the thread on the
same system board when possible

e Solved by Solaris by creating Igroups
» Structure to track CPU / Memory low latency groups
» Used my schedule and pager

» When possible schedule all threads of a process and
allocate all memory for that process within the Igroup
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‘Placement Policy

m Determines where in real memory a process
piece 1s to reside

m Important design issue in a segmentation system

m Paging or combined paging with segmentation
placing is irrelevant because hardware performs
functions with equal efficiency

® For NUMA systems an automatic placement
strategy 1s desirable



Replacement Policy

m Deals with the selection of a page in main memory
to be replaced when a new page must be brought 1n

m objective is that the page that 1s removed be the page
least likely to be referenced in the near future

m The more elaborate the replacement policy the
greater the hardware and software overhead to
implement 1t



‘Frame Locking

" When a frame 1s locked the page currently stored in that frame
may not be replaced

" kernel of the OS as well as key control structures are held
in locked frames

" [/0 buffers and time-critical areas may be locked into
main memory frames

" locking 1s achieved by associating a lock bit with each
frame




Algorithms used for
the selection of a

page to replace:
~ ay, * Optimal
: E) « Least recently used (LRU)
[  First-in-first-out (FIFO)

* Clock




Optimal Policy -

= Selects the page for which the time to the
next reference is the longest

= Produces three page faults after the frame
allocation has been filled

Page address

7 1 7 = 7
sream . ! . ' -+ . 4
3 121 ] 3 3 3 3 F 4 F 3 3
OPI 3 3 3 3 3 ] 3 ] ]
I 5 5 5 5 5 5 5
F= page fauli cocurring after the frame allocation is initially filled

Figure 8.15  Behavior of Four Page Replacement Algorithms



Least Recently Used
(LRU)

m Replaces the page that has not been referenced for the longest
time

m By the principle of locality, this should be the page least likely
to be referenced in the near future

m Difficult to implement

m one approach is to tag each page with the time of last
reference

10101001100
00010011101

m this requires a great deal of overhead 1100011100

S

B



LRU Example

Page address

stream : 3 2 | 5 7 M s E 1 - ;
- 2 2 2 ] 2 2 3 3 3 3 3
LRU 3 3 3 5 5 B 5 3 = 5 3
l L L 4 4 3 ] 7] £
F F F F

F= page faull occwrring afier the frame allocation is imtially filled

Pigure H.15  Behavior of Four Fage Replacement Algorithms



First-in-First-out (FIFO)

m Treats page frames allocated to a process as a circular buffer

m Pages are removed in round-robin style
= simple replacement policy to implement

m Page that has been in memory the longest 1s replaced

10101001100
00010011101
11100011100

= Wy
el
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FIFO Example

Page address

2 1 2 2| |5 5 5 5 3] |3 3] |3

FIFD E] k] E] 3 Pl 2 ] 3 ] 5 5
] ] ] 3 4 3 4 4 2

F F F F F F

F= page fault occwrring ofter the frame allacation is mitially tilled

Figure 8.15  Behavior of Four Page Replacement Algorithms



Clock Policy ;

m Requires the association of an additional bit with each frame

m referred to as the use bit

m When a page is first loaded in memory or referenced, the use bit
is set to 1

m The set of frames is considered to be a circular buffer

m Any frame with a use bit of 1 is passed over by the algorithm

m Page frames visualized as laid out in a circle ® ®



Clock Policy Example

Page address
drean 2 3 2 I 3 2 4 5 3 2 5 2
3| [2*] [2*]»{2*] [3*] [5*}~{5"}e{5°] [3*] [B)={3*]{3"
CLOCK - <20 O T T 0 O - I I T
[ = [Tl 1] (%] 8% 3] (4] (5% [5%
F F F F F

Figure 815 Behavior of Four Page Replacement Algorithms

F= page fault occurring after the frame allocation is inatially filled




First frame in

circular buffer of
n-1 0 frames that are

candidates for replacement O ‘
P 1 1

n-1

next frame
peinter

(a) State of buffer just prior to a page replacement

(b} State of buffer just after the next page replacement

Figure 8.16 Example of Clock Policy Operation



Comparison of Algorithms

40 A

g FIFO
E 35
£ 3| cLock
="
—] -
z 25 LRU
= 20
Z s OPT
= 10
.
= 2
I:I i
6 8 10 12 14

Number of Frames Allocated

Figure 8.17 Comparison of Fixed-Allocation, Local Page Replacement Algorithms



n-1

Page 7

modified

Page 13
not accessed

recently;
not modified

Page 47
not accessed
recently;

8 not modified
Next
replaced Page 46
not accessed

recently;
modified / Page 121
accessed
recently;

not modified

Page @
not accessed not accessed
recently: recently;

modified

Figure 8.18 The Clock Page-Replacement Algorithm [GOLDS9]

First frame in
circular buffer
for this process

0

Page 94
not accessed
recently:

not modified

Page 05
accessed
recently:
not modified

Page 96
acressed
recently;
not modified

3 Last
replaced

Page 97
not accessed
recently;
modified

Page 45

accessed
recently:
not modified

Cloc
Polic



Combined Examples

Page address

dTeam 7 2 7 L 5 2 4 5 3 2 5 2
jd i 3 7 7 ER . En F z bz 2
OPT 3 3 3 3 3 3 3 E F3 3 3
] sl BEsl 5] 58 Bl E5 sl 5
F F F
= Z 2 Z 2 1 3 3
LEU 3 3 3 3 5 20 = 5 ER 5 E3
] 1 I 4 4 ] 2 2 2
F F E F
2 2 2 5 e E| 3 3
FIFD 3 1 EH 2 2 5 5
1 1 1 4 4 4 4 4 | 2
F F F F F F
™ ¢ | [J#lsfde | 5% || 3% || 5 1= E2
CLOCK —={ | [&® 3= a* g' ba| 2 Bl
- I® I ] 4+ a* 4 4 5%
F F F F F

F= page fault ccuwrring after the frame allocation is initially filled

Figure 8.15  Behavior of Four Page Replacement Algorithms



m Improves paging A replaced page is

not lost, but

performance and rather assigned to
allows the use of i
a simpler page |
replacement

policy

Free page list

Modified page list

J/ Y,

list of page frames

available for pages are written

out in clusters

reading in pages

J Y,




Replacemént Policy and Cache Size

m With large caches, replacement of pages can have a performance
impact

m if the page frame selected for replacement is in the cache, that
cache block is lost as well as the page that 1t holds

m in systems using page buffering, cache performance can be
improved with a policy for page placement in the page buffer

B most operating systems place pages by selecting an arbitrary
page frame from the page buffer




Resident. Set Management

m The OS must decide how many pages to bring into main memory

m the smaller the amount of memory allocated to each process,
the more processes can reside in memory

m small number of pages loaded increases page faults

m beyond a certain size, further allocations of pages will not
effect the page fault rate

’\/_EL
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Resident Set Size-

Fixed-allocation Variable-allocation
m gives a process a fixed m allows the number of page
number of frames in main frames allocated to a
memory within which to process to be varied over
execute the lifetime of the process

m when a page fault occurs,
one of the pages of that
process must be replaced



Replacement Scope

m The scope of a replacement strategy can be categorized as
global or local

m both types are activated by a page fault when there are no free
page frames

» chooses only among the resident pages of the process that generated
the page fault

Global

« considers all unlocked pages in main memory



Resident Set
Management Summary

Fixed Allocation

Variable Allocation

Local Replacement

Global Replacement

*Number of frames allocated
to a process is fixed.

*Page to be replaced is chosen
from among the frames
allocated to that process.

*Not possible.

*The number of frames
allocated to a process may be
changed from time to time to
maintain the working set of
the process.

*Page to be replaced is chosen
from among the frames
allocated to that process.

*Page to be replaced is chosen
from all available frames in
main memory; this causes
the size of the resident set of

processes to vary.




FixedAllOgatibn, Local Scope

m Necessary to decide ahead of time the amount of
allocation to give a process

m If allocation 1s too small, there will be a high page fault
rate

. , : I
bl o[z G RER( « increased processor idle time

large, there will b : : :
wsv Renolll « increased time spent in

too few programs :
in main memory Swapping




" Variable Allocation
" Global Scope -

m Easiest to implement

m adopted in a number of operating systems
m OS maintains a list of free frames

m Free frame 1s added to resident set of process when a page fault
occurs

m [f no frames are available the OS must choose a page currently in
memory

m One way to counter potential problems is to use page buffering



Vanable Allocatmn
~ Local Scope

m When a new process 1s loaded into main memory, allocate to it a
certain number of page frames as its resident set

m When a page fault occurs, select the page to replace from among
the resident set of the process that suffers the fault

m Reevaluate the allocation provided to the process and increase or
decrease 1t to improve overall performance




Variable Allocation
- Local Scope

m Decision to increase or decrease a resident set size is based
on the assessment of the likely future demands of active
processes

e criteria used to determine
resident set size

* the timing of changes




Sequence of

Page Window Size, A
References

2 3 4 5
24 24 24 24 24 Figure 8. 19
15 24 15 24 15 24 15 24 15
18 1518 24 1518 241518 241518
23 18 23 1518 23 241518 23 24 15 18 23
24 23 24 18 23 24 o . Working Set
17 2417 232417 18 23 24 17 1518 23 24

17

18 17 18 2417 18 o 18 23 24 17 Of Process as
24 18 24 . 2417 18 .
18 . 18 24 o 2417 18 Deﬁned by
17 1817 241817 o . 2 &
— — — . - Window Size
15 17 15 17 15 1817 15 241817 15
24 15 24 17 15 24 17 15 24 .
17 2417 . o 17 15 24
24 . 24 17 o .
18 2418 17 24 18 17 24 18 1517 24 18




T Working-Set Model

m A =working-set window = a fixed number of page references
Example: 10,000 instructions

m WSS, (working set of Process P;) =
total number of pages referenced in the most recent A (varies in time)

e if A too small will not encompass entire locality
e if Atoo large will encompass several localities
e if A =00 = will encompass entire program

m D =X WSS, = total demand frames
e Approximation of locality

m if D> m = Thrashing

m Policy if D > m, then suspend or swap out one of the processes

page reference table
...2615777751623412344434344413234443444. ..

“ <

g by

WS(t,) ={1,2,5,6,7} WS(t,) = {34}

PSS
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Keeping Track of the Working Set

®m  Approximate with interval timer + a reference bit
m Example: A =10,000
e Timer interrupts after every 5000 time units
e Keep in memory 2 bits for each page

e Whenever a timer interrupts copy and sets the values of all
reference bits to 0

e If one of the bits in memory = 1 = page in working set
m Why is this not completely accurate?

B Improvement = 10 bits and interrupt every 1000 time units

P
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Page Fault Frequency
- (PFF) |

m Requires a use bit to be associated with each page in memory
m Bit is set to 1 when that page is accessed

m When a page fault occurs, the OS notes the virtual time since the
last page fault for that process

m Does not perform well during the transient periods when there is
a shift to a new locality



/

=

s,

JE—
T Page-Fault Frequency

® More direct approach than WSS

m Establish “acceptable” page-fault frequency (PFF) rate
and use local replacement policy

e If actual rate too low, process loses frame
e If actual rate too high, process gains frame

A

2 increase number
e of frames
5 upper bound
)
(@)
©
o
lower bound
decrease number
of frames

v

number of frames
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{-3‘5 Working Sets and Page Fault Rates

m  Direct relationship between working set of a process and its

page-fault rate

®m  Working set changes over time

m Peaks and valleys over time

working set
1
page
fault
rate
0 »
time
Operating System Concepts — 9t Edition 9.56
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Variable-interval Sampled
Working Set (VSWS)

m Evaluates the working set of a process at sampling instances based
on elapsed virtual time

m Driven by three parameters:

the number of
page faults that
are allowed to

the minimum the maximum
duration of the duration of the

occur between
sampling
istances

sampling sampling
interval interval




Cleallillg POlicy )

m Concerned with determining when a modified page should be
written out to secondary memory

Demand Cleaning

~ a page is written out to secondary memory only when it has been selected for

teplacement

Precleaning

~ allows the writing of paiges:in batches




[.oad Control

m Determines the number of processes that will be resident in main
memory

m  multiprogramming level
m Critical 1n effective memory management

m Too few processes, many occasions when all processes will be
blocked and much time will be spent in swapping

m Too many processes will lead to thrashing




Multiprogramming

A

Processor Utilization

Multiprogramming Level

Figure 8.21 Multiprogramming Effects



Process Suspension

m If the degree of multiprogramming is to be reduced, one or more
of the currently resident processes must be swapped out

S1x possibilities exist:

» Lowest-priority process

» Faulting process

 Last process activated

» Process with the smallest resident set

» Largest process

» Process with the largest remaining execution window




m Intended to be machine independent so its memory
management schemes will vary

m carly Unix: variable partitioning with no virtual memory
scheme

SVR4 and Solaris use

a2 11s make use of

two separate schemes:

* paging system
* kernel memory allocator




: Paging System and
Kernel Memory Allocator

. Kernel Memory
Paging system Allocator

e N
provides a virtual memory
capability that allocates page frames allocates memory for the kernel

in main memory to processes
\ J

( )

allocates page frames to disk block
buffers




UNIX SVR4
Memory
Management

Formats

Chpy
i 2 Nnds|Rafe]| . | Prs
Pape frame number Age u T R Valid Rt
WTlaZ ;
{a) Page table emry
swap device number Device black number Type of storage
{b) Disk block descriptor
Reference Logical Block Pfdnin
Page state 5 :
ot device e her pointer
{c) Page frame data table entry
Reference Page/storage
Coumnt it rurm ber

{d) Swap-use table emtry

Figure .21 UNIX SVR4 Memory Management Formats




Page Table Entry
Page frame number
Refers to frame in real memory.
Table 8.6 &
. Indicates how long the page has been in memory without being referenced. The length and

contents of this ficld arc processor dependent.

Copy on write
Set when more than one process shares a page. If one of the processes writes into the page, a

separate copy of the page must first be made for all other processes that share the page. This
[ l NI >< S V Iz 4 feature allows the copy operation to be deferred until necessary and avoided in cases where it turns

out not to be necessary.

Memory Modify

Indicates page has been modified.

Management Tt

Indicates page has been referenced. This bit is set to O when the page is first loaded and may be
periodically reset by the page replacement algorithm.

Parameters Vst

Indicates page is in main memory.

(page 1 of 2) Protect

Indicates whether write operation is allowed.

Disk Block Descriptor

Swap device number
Logical device number of the secondary device that holds the corresponding page. This allows
morc than onc device to be used for swapping.

Device block number
Block location of page on swap device.

Type of storage
Storage may be swap unit or executable file. In the latter case, there is an indication as to whether
the virtual memory to be allocated should be cleared first.




Page Frame Data Table Entry

Table 8.6

Page state
Indicates whether this frame is available or has an associated page. In the latter
case, the status of the page is specified: on swap device, in executable file, or

UNIX SVR4 DMA in progress.

Reference count
MemOl‘y Number of processes that reference the page.

Management Logical device

Logical device that contains a copy of the page.

Parameters S
Block location of the page copy on the logical device.
(page 2 of 2)
Pfdata pointer
Pointer to other pfdata table entries on a list of free pages and on a hash queue of
pages.

Swap-Use Table Entry

Reference count
Number of page table entries that point to a page on the swap device.

Page/storage unit number
Page identifier on storage unit.




Page Replacement

m The page frame data table is used for page replacement

m Pointers are used to create lists within the table
m all available frames are linked together 1n a list of free frames
available for bringing in pages

m when the number of available frames drops below a certain
threshold, the kernel will steal a number of frames to
compensate




End of Beginning
page list of page list

“T'wo Handed”
Clock

handspregq

Page

Replacement

Figure 8.23 Two-Handed Clock Page-Replacement Algorithm



‘Kernel Memory Allocator

m The kernel generates and destroys small tables and buffers
frequently during the course of execution, each of which requires
dynamic memory allocation.

m Most of these blocks are significantly smaller than typical pages
(therefore paging would be inefficient)

m Allocations and free operations must be made as fast as possible




Lazy Buddy

m Technique adopted for SVR4

m UNIX often exhibits steady-state behavior in kernel memory
demand

m i.e. the amount of demand for blocks of a particular size
varies slowly in time

m Defers coalescing until it seems likely that it 1s needed, and

then coalesces as many blocks as possible
% [ [B



Lazy Buddy System Algorithm

Initial value of Djis 0

After an operation. the value of Dj is updated as follows

(I) if the next operation 1s a block allocate request:
if there i3 any free block, select one to allocate
if the selected block is locally free
then D;:=D; + 2
else Dj =D+ 1
otherwise
first get two blocks by splitting a larger one 1nto two (recursive operation)
allocate one and mark the other locally free
D; remains unchanged (but D may change for other block sizes because of the

recursive call)

(II) if the next operation 1s a block free request

Case D;j =2
mark 1t locally free and free it locally
Dj:=D;-2

Case D;j=1
mark it globally free and free it globally: coalesce if possible
D;=0

Case D; =0
mark it globally free and free it globally: coalesce if possible

select one locally free block of size 27 and free it globally; coalesce if possible
Df =0

Figure 8.24 Lazy Buddy System Algorithm



~ Linux
Memory Management

m Shares many characteristics with Unix

m [s quite complex

e process virtual
memory
IR e Basitel ° kernel memory
aspects allocation o




Linux Virtual Memory

m Three level page table structure:

Page directory Page middle directory Page table
4 4 4

.

process has a single page
directory

may span multiple pages

J

.

may also span multiple pages

J

9

A4

9

r

\.

each entry points to one page

of the page middle directory

each entry points to one page
in the page table

~\

f

\

each entry refers to one
virtual page of the process

\

J

9

r

must be in main memory for
an active process




Address Translation

Virtual address

crl
register

>

Global Directory Middle Directory Page Table Offset
Page table
Page middle
directory
Page
directory
>
T >

Page frame
in physical
memory

Figure 8.25 Address Translation in Linux Virtual Memory Scheme



Iinux Page Replacement

m Based on the clock algorithm

m The use bit 1s replaced with an 8-bit age variable
m incremented each time the page is accessed

m Periodically decrements the age bits

m a page with an age of 0 is an “old” page that has not been
referenced 1s some time and 1s the best candidate for
replacement

m A form of least frequently used policy



Kernel Memory Allocation

m Kernel memory capability manages physical main memory page frames
m primary function is to allocate and deallocate frames for particular

uses ] ]
Possible owners of a frame include:

* USer-space processes

» dynamically allocated kernel data
» static kernel code

* page cache

m A buddy algorithm 1s used so that memory for the kernel can be
allocated and deallocated in units of one or more pages

m Page allocator alone would be inefficient because the kernel requires
small short-term memory chunks in odd sizes

m Slab allocation

m used by Linux to accommodate small chunks



-Windows
Memory Management

m Virtual memory manager controls how memory is allocated and
how paging 1s performed

m Designed to operate over a variety of platforms

m Uses page sizes ranging from 4 Kbytes to 64 Kbytes




Windows Virtual Address Map

m On 32 bit platforms each user process sees a separate 32 bit
address space allowing 4 Gbytes of virtual memory per process

" by default half is reserved for the OS

m [arge memory intensive applications run more effectively using
64-bit Windows

m Most modern PCs use the AMD64 processor architecture which
1s capable of running as either a 32-bit or 64-bit system




|
64-Kbyte region for _ t

NULL-pointer assignments
iinaccessible)

°
2.Ghyte user
address space = 1
iunreserved, nsable)
64-Kbyte region for > v
bad pointer assignments 4
(inaccessible) re S S
2-Ghyte region for : ; p aC e

the operating system
iinacessible)

IxFFFFFFEFF ¥

Figure 8.26 Windows Default 32-bit Virtual Address Space



"Windows Paging

m On creation, a process can make use of the entire user space of
almost 2 Gbytes

m This space is divided into fixed-size pages managed in
contiguous regions allocated on 64 Kbyte boundaries

m Regions may be in one of three states:

available reserved




. Resident Set -
Management System

m Windows uses variable allocation, local scope

m When activated, a process is assigned a data structure to manage
its working set

m Working sets of active processes are adjusted depending on the
availability of main memory




Summary

m Desirable to:
B maintain as many processes in main memory as possible

m free programmers from size restrictions in program
development

m With virtual memory:

m all address references are logical references that are translated
at run time to real addresses

B a process can be broken up into pieces
m two approaches are paging and segmentation

® management scheme requires both hardware and software
support



