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Operating Systems:
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You’re gonna need a bigger boat.

— Steven Spielberg, 

JAWS, 1975



Hardware and Control StructuresHardware and Control Structures

nTwo characteristics fundamental to memory 
management:

1) all memory references are logical addresses that are 
dynamically translated into physical addresses at run timedynamically translated into physical addresses at run time

2) a process may be broken up into a number of  pieces that 
don’t need to be contiguously located in main memory 
during execution

n If  these two characteristics are present, it is not 
necessary that all of  the pages or segments of  a 
process be in main memory during execution



TerminologyTerminology



n Operating system brings into main memory a few pieces of  the 
program

n Resident set - portion of  process that is in main memoryn Resident set - portion of  process that is in main memory

n An interrupt is generated when an address is needed that is not 
in main memory

n Operating system places the process                                              
in a blocking state

Continued . . .



Execution of a ProcessExecution of a Process
n Piece of  process that contains the logical address is brought into 
main memory
n operating system issues a disk I/O Read request
another process is dispatched to run while the disk I/O takes n another process is dispatched to run while the disk I/O takes 
place

n an interrupt is issued when disk I/O is complete, which causes 
the operating system to place the affected process in the Ready 
state



ImplicationsImplications

n More processes may be maintained in main memory
n only load in some of  the pieces of  each process
n with so many processes in main memory, it is very likely a n with so many processes in main memory, it is very likely a 
process will be in the Ready state at any particular time

n A process may be larger than all of  main memory



Real and Virtual MemoryReal and Virtual Memory

Real memory
• main memory, the actual RAM

Virtual memory
• memory on disk
• allows for effective multiprogramming and relieves the 
user of  tight constraints of  main memory



Table 8.2  Table 8.2  

Characteristics of Characteristics of 

Paging and Paging and 

SegmentationSegmentationSegmentationSegmentation



To avoid this, the 
A state in which 
the system spends 
most of  its time 
swapping process 
pieces rather than 
executing 
instructions

To avoid this, the 
operating system tries 
to guess, based on 
recent history, which 
pieces are least likely 
to be used in the near 

future



Principle of LocalityPrinciple of Locality

n Program and data references within a process tend to cluster

n Only a few pieces of  a process will be needed over a short 
period of  timeperiod of  time

n Therefore it is possible to make intelligent guesses about which 
pieces will be needed in the future

n Avoids thrashing



Paging BehaviorPaging Behavior

n During the lifetime of  the 
process, references are 
confined to a subset of  pages



For virtual memory to be practical and 
effective:

• hardware must support paging and 
segmentation 
• operating system must include software for 
managing the movement of  pages and/or 
segments between secondary memory and 
main memory



PagingPaging

n The term virtual memory is usually associated with systems that 
employ paging

n Use of  paging to achieve virtual memory was first reported for n Use of  paging to achieve virtual memory was first reported for 
the Atlas computer

n Each process has its own page table
n each page table entry contains the frame number of  the 
corresponding page in main memory



Memory Memory 
Management Management 
FormatsFormats



Address TranslationAddress Translation



TwoTwo--Level Level 
Hierarchical Page TableHierarchical Page Table



Address TranslationAddress Translation



n Page number portion of  a virtual address is mapped into a hash 
value
n hash value points to inverted page tablen hash value points to inverted page table

n Fixed proportion of  real memory is required for the tables 
regardless of  the number of  processes or virtual pages supported

n Structure is called inverted because it indexes page table entries by 
frame number rather than by virtual page number





Inverted Page TableInverted Page Table

Each entry in the page table includes:

Page Process Control Chain Page 
number

Process 
identifier

• the process 
that owns 
this page

Control 
bits

• includes 
flags and 
protection 
and locking 
information

Chain 
pointer

• the index 
value of  the 
next entry 
in the chain
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Inverted Page Table 

 Rather than each process having a page table and keeping track 
of all possible logical pages, track all physical pages 

 One entry for each real page of memory 
 Entry consists of the virtual address of the page stored in that 

real memory location, with information about the process that 
owns that page 

 Decreases memory needed to store each page table, but 
increases time needed to search the table when a page 
reference occurs 

 Use hash table to limit the search to one — or at most a few — 
page-table entries 
 TLB can accelerate access 

 But how to implement shared memory? 
 One mapping of a virtual address to the shared physical 

address 



Translation LookasideTranslation Lookaside
Buffer (TLB)Buffer (TLB)

n To overcome the effect of  
doubling the memory 
access time, most virtual 

n Each virtual memory 
reference can cause two 
physical memory accesses: access time, most virtual 

memory schemes make 
use of  a special high-speed 
cache called a translation 
lookaside buffer

physical memory accesses:
n one to fetch the page 
table entry

n one to fetch the data



Use of a TLB



TLB TLB 
OperationOperation



Associative MappingAssociative Mapping
n The TLB only contains some of  the page table entries so we 
cannot simply index into the TLB based on page number
n each TLB entry must include the page number as well as the 
complete page table entrycomplete page table entry

n The processor is equipped with hardware that allows it to 
interrogate simultaneously a number of  TLB entries to 
determine if  there is a match on page number



Direct Versus Direct Versus 
Associative LookupAssociative Lookup



TLB and Cache OperationTLB and Cache Operation



Page SizePage Size
n The smaller the page size, the lesser the amount of  internal 
fragmentation
n however, more pages are required per process
more pages per process means larger page tablesn more pages per process means larger page tables

n for large programs in a heavily multiprogrammed environment 
some portion of  the page tables of  active processes must be in 
virtual memory instead of  main memory

n the physical characteristics of  most secondary-memory devices 
favor a larger page size for more efficient block transfer of  data



Paging Behavior of a ProgramPaging Behavior of a Program



Example: Page SizesExample: Page Sizes



Page SizePage Size
The design issue of  
page size is related to 
the size of  physical 
main memory and 
program size

main memory is 
getting larger and 
address space used by 
applications is also 

growing

n Contemporary programming 
techniques used in large 
programs tend to decrease the 
locality of  references within a 
process

program size growing

most obvious on 
personal computers 
where applications are 
becoming increasingly 

complex



SegmentationSegmentation

n Segmentation 
allows the 
programmer to 

Advantages:
• simplifies handling 
of  growing data 
structuresprogrammer to 

view memory as 
consisting of  
multiple address 
spaces or 
segments

structures
• allows programs to 
be altered and 
recompiled 
independently
• lends itself  to 
sharing data 
among processes
• lends itself  to 
protection



Segment OrganizationSegment Organization
n Each segment table entry contains the starting address of  the 
corresponding segment in main memory and the length of  the 
segment

n A bit is needed to determine if  the segment is already in main n A bit is needed to determine if  the segment is already in main 
memory

n Another bit is needed to determine if  the segment has been 
modified since it was loaded in main memory



Address Translation



Combined Paging and Combined Paging and 
SegmentationSegmentation

In a combined In a combined 
paging/segmentation system 
a user’s address space is 
broken up into a number of  
segments. Each segment is 
broken up into a number of  
fixed-sized pages which are 
equal in length to a main 

memory frame

Segmentation is visible to the 
programmer

Paging is transparent to the 
programmer



Address TranslationAddress Translation



Combined Segmentation Combined Segmentation 
and Pagingand Paging



Protection and SharingProtection and Sharing
n Segmentation lends itself  to the implementation of  protection 
and sharing policies

n Each entry has a base address and length so inadvertent memory n Each entry has a base address and length so inadvertent memory 
access can be controlled

n Sharing can be achieved by segments referencing multiple 
processes



Protection 
Relationships
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End-­‐to-­‐end	
  Core	
  i7	
  Address	
  TranslaZon	
  
CPU	
  

VPN	
   VPO	
  
36	
   12	
  

TLBT	
   TLBI	
  
4	
  32	
  

...	
  

L1	
  TLB	
  (16	
  sets,	
  4	
  entries/set)	
  

VPN1	
   VPN2	
  
9	
  9	
  

PTE	
  

CR3	
  

PPN	
   PPO	
  
40	
   12	
  

Page	
  tables	
  

TLB	
  
miss	
  

TLB	
  
hit	
  

Physical	
  
address	
  	
  

(PA)	
  

Result	
  
32/64	
  

...	
  

CT	
   CO	
  
40	
   6	
  

CI	
  
6	
  

L2,	
  L3,	
  and	
  	
  
main	
  memory	
  

L1	
  d-­‐cache	
  	
  
(64	
  sets,	
  8	
  lines/set)	
  

L1	
  
hit	
  

L1	
  
miss	
  

Virtual	
  address	
  (VA)	
  

VPN3	
   VPN4	
  
9	
  9	
  

PTE	
   PTE	
   PTE	
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Core	
  i7	
  Level	
  1-­‐3	
  Page	
  Table	
  Entries	
  

Page	
  table	
  physical	
  base	
  address	
   Unused	
   G	
   PS	
   A	
   CD	
   WT	
   U/S	
   R/W	
   P=1	
  

Each	
  entry	
  references	
  a	
  4K	
  child	
  page	
  table	
  

P:	
  Child	
  page	
  table	
  present	
  in	
  physical	
  memory	
  (1)	
  or	
  not	
  (0).	
  

R/W:	
  Read-­‐only	
  or	
  read-­‐write	
  access	
  access	
  permission	
  for	
  all	
  reachable	
  pages.	
  

U/S:	
  user	
  or	
  supervisor	
  (kernel)	
  mode	
  access	
  permission	
  for	
  all	
  reachable	
  pages.	
  

WT:	
  Write-­‐through	
  or	
  write-­‐back	
  cache	
  policy	
  for	
  the	
  child	
  page	
  table.	
  	
  

CD:	
  Caching	
  disabled	
  or	
  enabled	
  for	
  the	
  child	
  page	
  table.	
  	
  

A:	
  	
  Reference	
  bit	
  (set	
  by	
  MMU	
  on	
  reads	
  and	
  writes,	
  cleared	
  by	
  so`ware).	
  

PS:	
  	
  Page	
  size	
  either	
  4	
  KB	
  or	
  4	
  MB	
  (defined	
  for	
  Level	
  1	
  PTEs	
  only).	
  

G:	
  Global	
  page	
  (don’t	
  evict	
  from	
  TLB	
  on	
  task	
  switch)	
  

Page	
  table	
  physical	
  base	
  address:	
  40	
  most	
  significant	
  bits	
  of	
  physical	
  page	
  table	
  
address	
  (forces	
  page	
  tables	
  to	
  be	
  4KB	
  aligned)	
  

51	
   12	
  11	
   9	
   8	
   7	
   6	
   5	
   4	
   3	
   2	
   1	
   0	
  

Unused	
  XD	
  

Available	
  for	
  OS	
  (page	
  table	
  locaZon	
  on	
  disk)	
   P=0	
  

52	
  62	
  63	
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Core	
  i7	
  Level	
  4	
  Page	
  Table	
  Entries	
  

Page	
  physical	
  base	
  address	
   Unused	
   G	
   D A	
   CD	
   WT	
   U/S	
   R/W	
   P=1	
  

Each	
  entry	
  references	
  a	
  4K	
  child	
  page	
  

P:	
  Child	
  page	
  is	
  present	
  in	
  memory	
  (1)	
  or	
  not	
  (0)	
  

R/W:	
  Read-­‐only	
  or	
  read-­‐write	
  access	
  permission	
  for	
  child	
  page	
  

U/S:	
  User	
  or	
  supervisor	
  mode	
  access	
  

WT:	
  Write-­‐through	
  or	
  write-­‐back	
  cache	
  policy	
  for	
  this	
  page	
  

CD:	
  Cache	
  disabled	
  (1)	
  or	
  enabled	
  (0)	
  

A:	
  Reference	
  bit	
  (set	
  by	
  MMU	
  on	
  reads	
  and	
  writes,	
  cleared	
  by	
  so`ware)	
  	
  

D:	
  Dirty	
  bit	
  (set	
  by	
  MMU	
  on	
  writes,	
  cleared	
  by	
  so`ware)	
  

G:	
  Global	
  page	
  (don’t	
  evict	
  from	
  TLB	
  on	
  task	
  switch)	
  

Page	
  physical	
  base	
  address:	
  40	
  most	
  significant	
  bits	
  of	
  physical	
  page	
  address	
  
(forces	
  pages	
  to	
  be	
  4KB	
  aligned)	
  

51	
   12	
  11	
   9	
   8	
   7	
   6	
   5	
   4	
   3	
   2	
   1	
   0	
  

Unused	
  XD	
  

Available	
  for	
  OS	
  (page	
  locaZon	
  on	
  disk)	
   P=0	
  

52	
  62	
  63	
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Core	
  i7	
  Page	
  Table	
  TranslaZon	
  

CR3	
  

Physical	
  	
  	
  
address	
  
of	
  page	
  

Physical	
  	
  
address	
  
of	
  L1	
  PT	
  

9	
  

VPO	
  
9	
   12	
   Virtual	
  	
  

address	
  

L4	
  PT	
  
Page	
  	
  
table	
  

L4	
  PTE	
  

PPN	
   PPO	
  
40	
   12	
   Physical	
  	
  

address	
  

Offset	
  into	
  	
  
physical	
  and	
  	
  
virtual	
  page	
  

VPN	
  3	
   VPN	
  4	
  VPN	
  2	
  VPN	
  1	
  

L3	
  PT	
  
Page	
  middle	
  
directory	
  

L3	
  PTE	
  

L2	
  PT	
  
Page	
  upper	
  
directory	
  

L2	
  PTE	
  

L1	
  PT	
  
Page	
  global	
  
directory	
  

L1	
  PTE	
  

9	
  9	
  

40	
  
/	
  

40	
  
/	
  

40	
  
/	
  

40	
  
/	
  

40	
  
/	
  

12	
  /	
  

512	
  GB	
  	
  
region	
  	
  
per	
  entry	
  

1	
  GB	
  	
  
region	
  	
  
per	
  entry	
  

2	
  MB	
  	
  
region	
  	
  
per	
  entry	
  

4	
  KB	
  
region	
  	
  
per	
  entry	
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Virtual	
  Memory	
  of	
  a	
  Linux	
  Process	
  

Kernel	
  code	
  and	
  data	
  

Memory	
  mapped	
  region	
  	
  
for	
  shared	
  libraries	
  

RunZme	
  heap	
  (malloc)	
  

Program	
  text	
  (.text)	
  
IniZalized	
  data	
  (.data)	
  
UniniZalized	
  data	
  (.bss)	
  

User	
  stack	
  

0	
  

%esp 

Process	
  
virtual	
  
memory	
  

brk 

Physical	
  memory	
  IdenJcal	
  	
  for	
  
each	
  process	
  

Process-­‐specific	
  data	
  
	
  structs	
  	
  (ptables,	
  

task	
  and	
  mm	
  structs,	
  
kernel	
  stack)	
   Kernel	
  

virtual	
  	
  
memory	
  

0x08048000 (32) 
0x00400000 (64) 

Different	
  for	
  
each	
  process	
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vm_next	
  

vm_next	
  

Linux	
  Organizes	
  VM	
  as	
  CollecZon	
  of	
  “Areas”	
  	
  

task_struct 
mm_struct 

pgd	
  mm	
  

mmap	
  

vm_area_struct 

vm_end	
  

vm_prot	
  
vm_start	
  

vm_end	
  

vm_prot	
  
vm_start	
  

vm_end	
  

vm_prot	
  

vm_next	
  

vm_start	
  

Process	
  virtual	
  memory	
  

Text	
  

Data	
  

Shared	
  libraries	
  

0	
  

  pgd:	
  	
  
  Page	
  global	
  directory	
  address	
  
  Points	
  to	
  L1	
  page	
  table	
  

  vm_prot:	
  
  Read/write	
  permissions	
  for	
  	
  

this	
  area	
  

  vm_flags	
  
  Pages	
  shared	
  with	
  other	
  

processes	
  or	
  private	
  to	
  this	
  
process	
  

vm_flags	
  

vm_flags	
  

vm_flags	
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Linux	
  Page	
  Fault	
  Handling	
  	
  

read	
  
1	
  

write	
  

2	
  

read	
  

3	
  

vm_next	
  

vm_next	
  

vm_area_struct	
  

vm_end	
  

vm_prot	
  
vm_start	
  

vm_end	
  

vm_prot	
  
vm_start	
  

vm_end	
  

vm_prot	
  

vm_next	
  

vm_start	
  

Process	
  virtual	
  memory	
  

text	
  

data	
  

shared	
  libraries	
  

vm_flags	
  

vm_flags	
  

vm_flags	
  

Segmentation fault:	
  
accessing	
  a	
  non-­‐exisZng	
  page	
  

Normal	
  page	
  fault	
  

ProtecZon	
  excepZon:	
  
e.g.,	
  violaZng	
  permission	
  by	
  
wriZng	
  to	
  a	
  read-­‐only	
  page	
  (Linux	
  
reports	
  as	
  SegmentaZon	
  fault)	
  



Carnegie Mellon 

23 

Memory	
  Mapping	
  
  VM	
  areas	
  iniZalized	
  by	
  associaZng	
  them	
  with	
  disk	
  objects.	
  

  Process	
  is	
  known	
  as	
  memory	
  mapping.	
  	
  

  Area	
  can	
  be	
  backed	
  by	
  (i.e.,	
  get	
  its	
  iniZal	
  values	
  from)	
  :	
  
  Regular	
  file	
  on	
  disk	
  (e.g.,	
  an	
  executable	
  object	
  file)	
  

  Ini0al	
  page	
  bytes	
  come	
  from	
  a	
  sec0on	
  of	
  a	
  file	
  
  Anonymous	
  file	
  (e.g.,	
  nothing)	
  

  First	
  fault	
  will	
  allocate	
  a	
  physical	
  page	
  full	
  of	
  0's	
  (demand-­‐zero	
  page)	
  

  Once	
  the	
  page	
  is	
  wriien	
  to	
  (dirJed),	
  it	
  is	
  like	
  any	
  other	
  page	
  

  Dirty	
  pages	
  are	
  copied	
  back	
  and	
  forth	
  between	
  memory	
  and	
  a	
  
special	
  swap	
  file.	
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Demand	
  paging	
  

  Key	
  point:	
  no	
  virtual	
  pages	
  are	
  copied	
  into	
  physical	
  
memory	
  unZl	
  they	
  are	
  referenced!	
  
  Known	
  as	
  demand	
  paging	
  

  Crucial	
  for	
  Zme	
  and	
  space	
  efficiency	
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Sharing	
  Revisited:	
  Shared	
  Objects	
  

  Process	
  1	
  	
  maps	
  
the	
  shared	
  
object.	
  	
  

Shared 
object 

Physical 
memory 

Process 1 
virtual memory 

Process 2 
virtual memory 
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Sharing	
  Revisited:	
  Shared	
  Objects	
  

Shared 
object 

Physical 
memory 

Process 1 
virtual memory 

Process 2 
virtual memory 

  Process	
  2	
  maps	
  
the	
  shared	
  
object.	
  	
  

  NoZce	
  how	
  the	
  
virtual	
  
addresses	
  can	
  
be	
  different.	
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Sharing	
  Revisited:	
  	
  
Private	
  Copy-­‐on-­‐write	
  (COW)	
  Objects	
  

  Two	
  processes	
  
mapping	
  a	
  private	
  
copy-­‐on-­‐write	
  
(COW)	
  	
  object.	
  	
  

  Area	
  flagged	
  as	
  
private	
  copy-­‐on-­‐
write	
  

  PTEs	
  in	
  private	
  
areas	
  are	
  flagged	
  
as	
  read-­‐only	
  

Private  
copy-on-write object 

Physical 
memory 

Process 1 
virtual memory 

Process 2 
virtual memory 

 Private 
copy-on-write 
area 
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Sharing	
  Revisited:	
  	
  
Private	
  Copy-­‐on-­‐write	
  (COW)	
  Objects	
  

  InstrucZon	
  wriZng	
  
to	
  private	
  page	
  
triggers	
  
protecZon	
  fault.	
  	
  

  Handler	
  creates	
  
new	
  R/W	
  page.	
  	
  

  InstrucZon	
  
restarts	
  upon	
  
handler	
  return.	
  	
  

  Copying	
  deferred	
  
as	
  long	
  as	
  
possible!	
  

Private   
copy-on-write object 

Physical 
memory 

Process 1 
virtual memory 

Process 2 
virtual memory 

Copy-on-write 

Write to private 
copy-on-write 

page 
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The	
  fork	
  FuncZon	
  Revisited	
  

  VM	
  and	
  memory	
  mapping	
  explain	
  how	
  fork	
  provides	
  private	
  
address	
  space	
  for	
  each	
  process.	
  	
  

  To	
  create	
  virtual	
  address	
  for	
  new	
  new	
  process	
  
  Create	
  exact	
  copies	
  of	
  current	
  mm_struct,	
  vm_area_struct,	
  and	
  

page	
  tables.	
  	
  

  Flag	
  each	
  page	
  in	
  both	
  processes	
  as	
  read-­‐only	
  
  Flag	
  each	
  vm_area_struct in	
  both	
  processes	
  as	
  private	
  COW	
  

  On	
  return,	
  each	
  process	
  has	
  exact	
  copy	
  of	
  virtual	
  memory	
  

  Subsequent	
  writes	
  create	
  new	
  pages	
  using	
  COW	
  mechanism.	
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The	
  execve	
  FuncZon	
  Revisited	
  
  To	
  load	
  and	
  run	
  a	
  new	
  

program	
  a.out	
  in	
  the	
  
current	
  process	
  using	
  
execve:	
  

  Free vm_area_struct’s	
  
and	
  page	
  tables	
  for	
  old	
  areas	
  

  Create	
  vm_area_struct’s	
  
and	
  page	
  tables	
  for	
  new	
  
areas	
  
  Programs	
  and	
  ini0alized	
  data	
  

backed	
  by	
  object	
  files.	
  
  .bss  and	
  stack	
  backed	
  by	
  

anonymous	
  files	
  .	
  	
  

  Set	
  PC	
  to	
  entry	
  point	
  
in	
  .text 
  Linux	
  will	
  fault	
  in	
  code	
  and	
  

data	
  pages	
  as	
  needed.	
  

Memory mapped region  
for shared libraries 

Runtime heap (via malloc) 

Program text (.text) 

Initialized data (.data) 

Uninitialized data (.bss) 

User stack 

0 

Private, demand-zero 

libc.so 
.data 
.text Shared, file-backed 

Private, demand-zero 

Private, demand-zero 

Private, file-backed 

a.out 
.data 
.text 
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User-­‐Level	
  Memory	
  Mapping	
  
void *mmap(void *start, int len, 
           int prot, int flags, int fd, int offset)	
  

  Map	
  len	
  bytes	
  starZng	
  at	
  offset	
  offset of	
  the	
  file	
  specified	
  
by	
  file	
  descripZon	
  fd,	
  preferably	
  at	
  address	
  start	
  	
  
  start:	
  may	
  be	
  0	
  for	
  “pick	
  an	
  address”	
  

  prot:	
  PROT_READ,	
  PROT_WRITE,	
  ...	
  

  flags:	
  MAP_ANON,	
  MAP_PRIVATE,	
  MAP_SHARED,	
  ...	
  

  Return	
  a	
  pointer	
  to	
  start	
  of	
  mapped	
  area	
  (may	
  not	
  be	
  start)	
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User-­‐Level	
  Memory	
  Mapping	
  
void *mmap(void *start, int len, 
           int prot, int flags, int fd, int offset)	
  

len bytes	
  

start 
(or	
  address	
  	
  

chosen	
  by	
  kernel)	
  

Process	
  virtual	
  memory	
  Disk	
  file	
  specified	
  by	
  	
  
file	
  descriptor	
  fd 

len bytes	
  

offset 
(bytes)	
  

0 0 
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Using	
  mmap	
  to	
  Copy	
  Files	
  

#include "csapp.h" 

/* 
 * mmapcopy - uses mmap to copy 
 *            file fd to stdout 
 */ 
void mmapcopy(int fd, int size) 
{ 

    /* Ptr to mem-mapped VM area */ 
    char *bufp; 

    bufp = Mmap(NULL, size, 
                PROT_READ,  
                MAP_PRIVATE, fd, 0); 
    Write(1, bufp, size); 
    return; 
} 

/* mmapcopy driver */ 
int main(int argc, char **argv) 
{ 
    struct stat stat; 
    int fd; 

    /* Check for required cmdline arg */ 
    if (argc != 2) { 
        printf("usage: %s <filename>\n”,   
                argv[0]); 
        exit(0); 
    } 

    /* Copy the input arg to stdout */ 
    fd = Open(argv[1], O_RDONLY, 0); 
    Fstat(fd, &stat); 
    mmapcopy(fd, stat.st_size); 
    exit(0); 
} 

  Copying	
  without	
  transferring	
  data	
  to	
  user	
  space	
  .	
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Memory-Mapped Files 

 Memory-mapped file I/O allows file I/O to be treated as routine 
memory access by mapping a disk block to a page in memory 

 A file is initially read using demand paging 
 A page-sized portion of the file is read from the file system into 

a physical page 
 Subsequent reads/writes to/from the file are treated as 

ordinary memory accesses 
 Simplifies and speeds file access by driving file I/O through 

memory rather than read() and write() system calls 

 Also allows several processes to map the same file allowing the 
pages in memory to be shared 

 But when does written data make it to disk? 
 Periodically and / or at file close() time 

 For example, when the pager scans for dirty pages 
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Memory-Mapped File Technique for all I/O 

 Some OSes  uses memory mapped files for standard I/O 
 Process can explicitly request memory mapping a file via mmap() 

system call 
 Now file mapped into process address space 

 For standard I/O (open(), read(), write(), close()), mmap 
anyway 
 But map file into kernel address space 
 Process still does read() and write() 

 Copies data to and from kernel space and user space 
 Uses efficient memory management subsystem 

 Avoids needing separate subsystem 
 COW can be used for read/write non-shared pages 
 Memory mapped files can be  used for shared memory (although 

again via separate system calls) 



Operating System SoftwareOperating System Software

The design of  the memory management 
portion of  an operating system depends on 
three fundamental areas of  choice:three fundamental areas of  choice:
• whether or not to use virtual memory techniques
• the use of  paging or segmentation or both
• the algorithms employed for various aspects of  
memory management



Policies for Virtual MemoryPolicies for Virtual Memory
n Key issue:  Performance

§ minimize page faults



n Determines when a 
page should be 
brought into 

Two main 
types:brought into 

memory
types:

Demand 
Paging Prepaging



Demand Paging Demand Paging 
n Demand Paging

n only brings pages into main memory when a reference is made 
to a location on the page

n many page faults when process is first started 
n principle of  locality suggests that as more and more pages are 
brought in, most future references will be to pages that have 
recently been brought in, and page faults should drop to a very 
low level



PrepagingPrepaging

n Prepaging
n pages other than the one demanded by a page fault are brought 
in
exploits the characteristics of  most secondary memory devicesn exploits the characteristics of  most secondary memory devices

n if  pages of  a process are stored contiguously in secondary 
memory it is more efficient to bring in a number of  pages at 
one time

n ineffective if  extra pages are not referenced
n should not be confused with “swapping”
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Non-Uniform Memory Access 

 So far all memory accessed equally 
 Many systems are NUMA – speed of access to memory varies 

 Consider system boards containing CPUs and memory, 
interconnected over a system bus 

 Optimal performance comes from allocating memory “close to” 
the CPU on which the thread is scheduled 
 And modifying the scheduler to schedule the thread on the 

same system board when possible 
 Solved by Solaris by creating lgroups  

 Structure to track CPU / Memory low latency groups 
 Used my schedule and pager 
When possible schedule all threads of a process and 

allocate all memory for that process within the lgroup 
 



Placement PolicyPlacement Policy
nDetermines where in real memory a process 
piece is to reside

n Important design issue in a segmentation systemn Important design issue in a segmentation system

n Paging or combined paging with segmentation 
placing is irrelevant because hardware performs 
functions with equal efficiency

n For NUMA systems an automatic placement 
strategy is desirable



Replacement PolicyReplacement Policy
nDeals with the selection of  a page in main memory 
to be replaced when a new page must be brought in

n objective is that the page that is removed be the page n objective is that the page that is removed be the page 
least likely to be referenced in the near future

n The more elaborate the replacement policy the 
greater the hardware and software overhead to 
implement it



§ When a frame is locked the page currently stored in that frame 
may not be replaced

§ kernel of  the OS as well as key control structures are held § kernel of  the OS as well as key control structures are held 
in locked frames

§ I/O buffers and time-critical areas may be locked into 
main memory frames

§ locking is achieved by associating a lock bit with each 
frame



Algorithms used for 
the selection of  a the selection of  a 
page to replace:
• Optimal
• Least recently used (LRU)
• First-in-first-out (FIFO)
• Clock



§ Selects the page for which the time to the 
next reference is the longest

§ Produces three page faults after the frame § Produces three page faults after the frame 
allocation has been filled



Least Recently Used Least Recently Used 
(LRU)(LRU)

n Replaces the page that has not been referenced for the longest 
time

n By the principle of  locality, this should be the page least likely n By the principle of  locality, this should be the page least likely 
to be referenced in the near future

n Difficult to implement
n one approach is to tag each page with the time of  last 
reference
n this requires a great deal of  overhead



LRU ExampleLRU Example



FirstFirst--inin--FirstFirst--out (FIFO)out (FIFO)
n Treats page frames allocated to a process as a circular buffer

n Pages are removed in round-robin style
§ simple replacement policy to implement§ simple replacement policy to implement

n Page that has been in memory the longest is replaced





Clock PolicyClock Policy
n Requires the association of  an additional bit with each frame

n referred to as the use bit

n When a page is first loaded in memory or referenced, the use bit 
is set to 1is set to 1

n The set of  frames is considered to be a circular buffer

n Any frame with a use bit of  1 is passed over by the algorithm

n Page frames visualized as laid out in a circle





Clock Clock 
PolicyPolicy





Clock Clock 
PolicyPolicyPolicyPolicy



Combined ExamplesCombined Examples



n Improves paging 
performance and 
allows the use of  
a simpler page 

A replaced page is 
not lost, but 

rather assigned to 
one of  two lists:

a simpler page 
replacement 
policy

Free page list

list of  page frames 
available for 
reading in pages

Modified page list

pages are written 
out in clusters 



Replacement Policy and Cache SizeReplacement Policy and Cache Size

n With large caches, replacement of  pages can have a performance 
impact
n if  the page frame selected for replacement is in the cache, that 
cache block is lost as well as the page that it holdscache block is lost as well as the page that it holds

n in systems using page buffering, cache performance can be 
improved with a policy for page placement in the page buffer

n most operating systems place pages by selecting an arbitrary 
page frame from the page buffer



n The OS must decide how many pages to bring into main memory
n the smaller the amount of  memory allocated to each process, 
the more processes can reside in memory

n small number of  pages loaded increases page faultsn small number of  pages loaded increases page faults
n beyond a certain size, further allocations of  pages will not 
effect the page fault rate



Resident Set SizeResident Set Size

Fixed-allocation Variable-allocation
n allows the number of  page 
frames allocated to a 

n gives a process a fixed 
number of  frames in main frames allocated to a 

process to be varied over 
the lifetime of  the process

number of  frames in main 
memory within which to 
execute

n when a page fault occurs, 
one of  the pages of  that 
process must be replaced



n The scope of  a replacement strategy can be categorized as 
global or local
n both types are activated by a page fault when there are no free 
page framespage frames

Local

• chooses only among the resident pages of  the process that generated 
the page fault

Global 

• considers all unlocked pages in main memory 





Fixed Allocation, Local ScopeFixed Allocation, Local Scope

n Necessary to decide ahead of  time the amount of  
allocation to give a process

n If  allocation is too small, there will be a high page fault n If  allocation is too small, there will be a high page fault 
rate

• increased processor idle time
• increased time spent in 
swapping

If  allocation is too 
large, there will be 
too few programs 
in main memory



Variable Allocation Variable Allocation 
Global ScopeGlobal Scope

n Easiest to implement
n adopted in a number of  operating systems

n OS maintains a list of  free framesn OS maintains a list of  free frames

n Free frame is added to resident set of  process when a page fault 
occurs

n If  no frames are available the OS must choose a page currently in 
memory

n One way to counter potential problems is to use page buffering



n When a new process is loaded into main memory, allocate to it a 
certain number of  page frames as its resident set

n When a page fault occurs, select the page to replace from among n When a page fault occurs, select the page to replace from among 
the resident set of  the process that suffers the fault

n Reevaluate the allocation provided to the process and increase or 
decrease it to improve overall performance



Variable AllocationVariable Allocation
Local ScopeLocal Scope

n Decision to increase or decrease a resident set size is based 
on the assessment of  the likely future demands of  active 
processes

Key elements:

• criteria used to determine 
resident set size
• the timing of  changes



Figure 8.19Figure 8.19

Working Set Working Set 

of Process as of Process as of Process as of Process as 

Defined by Defined by 

Window SizeWindow Size
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Working-Set Model 
 ∆ ≡ working-set window ≡ a fixed number of page references  

Example:  10,000 instructions 
 WSSi (working set of Process Pi) = 

total number of pages referenced in the most recent ∆ (varies in time) 
 if ∆ too small will not encompass entire locality 
 if ∆ too large will encompass several localities 
 if ∆ = ∞ ⇒ will encompass entire program 

 D = Σ WSSi ≡ total demand frames  
 Approximation of locality 

 if D > m ⇒ Thrashing 

 Policy if D > m, then suspend or swap out one of the processes  
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Keeping Track of the Working Set 

 Approximate with interval timer + a reference bit 
 Example: ∆ = 10,000 

 Timer interrupts after every 5000 time units 
 Keep in memory 2 bits for each page 
 Whenever a timer interrupts copy and sets the values of all 

reference bits to 0 
 If one of the bits in memory = 1 ⇒ page in working set 

 Why is this not completely accurate? 
 Improvement = 10 bits and interrupt every 1000 time units 



Page Fault Frequency Page Fault Frequency 
(PFF)(PFF)

n Requires a use bit to be associated with each page in memory

n Bit is set to 1 when that page is accessed

n When a page fault occurs, the OS notes the virtual time since the 
last page fault for that process

n Does not perform well during the transient periods when there is 
a shift to a new locality
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Page-Fault Frequency 

 More direct approach than WSS 
 Establish “acceptable” page-fault frequency (PFF) rate 

and use local replacement policy 
 If actual rate too low, process loses frame 
 If actual rate too high, process gains frame 
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Working Sets and Page Fault Rates 
 Direct relationship between working set of a process and its 

page-fault rate 
 Working set changes over time 
 Peaks and valleys over time 
 



n Evaluates the working set of  a process at sampling instances based 
on elapsed virtual time

n Driven by three parameters:n Driven by three parameters:

the minimum 
duration of  the 
sampling 
interval

the maximum 
duration of  the 
sampling 
interval

the number of  
page faults that 
are allowed to 
occur between 
sampling 
instances



Cleaning PolicyCleaning Policy

n Concerned with determining when a modified page should be 
written out to secondary memory

Precleaning

allows the writing of  pages in batches

Demand Cleaning

a page is written out to secondary memory only when it has been selected for 
replacement



Load ControlLoad Control

n Determines the number of  processes that will be resident in main 
memory
n multiprogramming level

n Critical in effective memory management

n Too few processes, many occasions when all processes will be 
blocked and much time will be spent in swapping

n Too many processes will lead to thrashing



MultiprogrammingMultiprogramming



n If  the degree of  multiprogramming is to be reduced, one or more 
of  the currently resident processes must be swapped out

Six possibilities exist:
• Lowest-priority process
• Faulting process
• Last process activated
• Process with the smallest resident set
• Largest process
• Process with the largest remaining execution window



UnixUnix

n Intended to be machine independent so its memory 
management schemes will vary
n early Unix: variable partitioning with no virtual memory 
schemescheme

n current implementations of  UNIX and Solaris make use of  
paged virtual memory

• paging system
• kernel memory allocator

SVR4 and Solaris use 
two separate schemes:



Paging system Kernel Memory 
Allocator 

provides a virtual memory 
capability that allocates page frames 
in main memory to processes 

allocates page frames to disk block 
buffers

Allocator 

allocates memory for the kernel



UNIX SVR4 

Memory

Management 

Formats



Table 8.6 

UNIX SVR4 
Memory 
Management Management 
Parameters 
(page 1 of  2)
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UNIX SVR4 
Memory 
Management 
Parameters Parameters 
(page 2 of  2)



n The page frame data table is used for page replacement

n Pointers are used to create lists within the table
n all available frames are linked together in a list of  free frames n all available frames are linked together in a list of  free frames 
available for bringing in pages

n when the number of  available frames drops below a certain 
threshold, the kernel will steal a number of  frames to 
compensate



“Two Handed” “Two Handed” 

Clock Clock 

Page Page Page Page 

ReplacementReplacement



n The kernel generates and destroys small tables and buffers 
frequently during the course of  execution, each of  which requires 
dynamic memory allocation.

n Most of  these blocks are significantly smaller than typical pages n Most of  these blocks are significantly smaller than typical pages 
(therefore paging would be inefficient)

n Allocations and free operations must be made as fast as possible



n Technique adopted for SVR4

n UNIX often exhibits steady-state behavior in kernel memory 
demanddemand
n i.e. the amount of  demand for blocks of  a particular size 
varies slowly in time

n Defers coalescing until it seems likely that it is needed, and 
then coalesces as many blocks as possible



Lazy Buddy System AlgorithmLazy Buddy System Algorithm



Linux Linux 
Memory ManagementMemory Management

n Shares many characteristics with Unix

n Is quite complex

Two main 
aspects

• process virtual 
memory
• kernel memory 
allocation



n Three level page table structure:

Page directory Page middle directory Page table

process has a single page 
directory

each entry points to one page 
of  the page middle directory

must be in main memory for 
an active process

may span multiple pages

each entry points to one page 
in the page table

may also span multiple pages

each entry refers to one 
virtual page of  the process



Address TranslationAddress Translation



n Based on the clock algorithm

n The use bit is replaced with an 8-bit age variable
n incremented each time the page is accessedn incremented each time the page is accessed

n Periodically decrements the age bits
n a page with an age of  0 is an “old” page that has not been 
referenced is some time and is the best candidate for 
replacement

n A form of  least frequently used policy



n Kernel memory capability manages physical main memory page frames

n primary function is to allocate and deallocate frames for particular 
uses

Possible owners of  a frame include:

• user-space processes
• dynamically allocated kernel data
• static kernel code 

n A buddy algorithm is used so that memory for the kernel can be 
allocated and deallocated in units of  one or more pages

n Page allocator alone would be inefficient because the kernel requires 
small short-term memory chunks in odd sizes

n Slab allocation

n used by Linux to accommodate small chunks

• static kernel code 
• page cache



Windows Windows 
Memory ManagementMemory Management

n Virtual memory manager controls how memory is allocated and 
how paging is performed

n Designed to operate over a variety of  platforms

n Uses page sizes ranging from 4 Kbytes to 64 Kbytes



Windows Virtual Address MapWindows Virtual Address Map

n On 32 bit platforms each user process sees a separate 32 bit 
address space allowing 4 Gbytes of  virtual memory per process
§ by default half  is reserved for the OS
Large memory intensive applications run more effectively using n Large memory intensive applications run more effectively using 
64-bit Windows

n Most modern PCs use the AMD64 processor architecture which 
is capable of  running as either a 32-bit or 64-bit system



3232--Bit Bit 
Windows Windows 
Address Address Address Address 
SpaceSpace



Windows PagingWindows Paging

n On creation, a process can make use of  the entire user space of  
almost 2 Gbytes

n This space is divided into fixed-size pages managed in n This space is divided into fixed-size pages managed in 
contiguous regions allocated on 64 Kbyte boundaries

n Regions may be in one of  three states:

available reserved committed



n Windows uses variable allocation, local scope

n When activated, a process is assigned a data structure to manage 
its working set

n Working sets of  active processes are adjusted depending on the 
availability of  main memory



SummarySummary
n Desirable to:

n maintain as many processes in main memory as possible
n free programmers from size restrictions in program 
developmentdevelopment

n With virtual memory:
n all address references are logical references that are translated 
at run time to real addresses

n a process can be broken up into pieces
n two approaches are paging and segmentation
n management scheme requires both hardware and software 
support


