
Operating Systems.
Memory Management

Operating Systems. Memory Management 1 / 91

Contents I

1 Introduction

2 Swapping

3 Relocation

4 Protection

5 Simple schemes
No multiprogramming systems
Multiprogramming Systems

6 Segmentation

7 Paging

8 Mixed systems

Operating Systems. Memory Management 2 / 91

Introduction

Introduction
Swapping
Relocation
Protection
Simple schemes
Segmentation
Paging
Mixed systems

Operating Systems. Memory Management 3 / 91

Introduction

Memory

Hardware view: Electronic circuits to store and retrieve information.

The Bit (binary element)is the storage unit, the byte (8 bits) is the
addressing unit.

Although the byte is the address resolution unit, we’ll consider words.
The Word is the natural unit of data used by a particular processor
design: the majority of the registers in a processor are usually word
sized and the largest piece of data that can be transferred to and
from the working memory in a single operation is a word.

Modern general purpose computers usually have a word size of 32 or 64
bits . . .

For historical reasons it is frequent to say word = 2bytes = 16bits,
double-word = 4bytes = 32 bits, quad-word = 8bytes = 64bits

Operating Systems. Memory Management 4 / 91

Introduction

Memory access

According to the way used to access the information contained in the
its cells, memory can be classified in :

Conventional memory: given a memory address (a number), the
memory system returns the data stored at that address
Associative memory Content-addressable memories (CAM): given an
input search data (tag), the CAM searches its entire memory to see if
that tag is stored anywhere in it. If the tag found, the CAM returns a
list of one or more storage addresses where the tag was found and it
can also return the complete contents of that storage address. Thus, a
CAM is the hardware embodiment of what in software terms would be
called an associative array or hash table. Used in cache memories.

Operating Systems. Memory Management 5 / 91

Introduction

���������������

�

����� ����
� �������������������

� ����������

�� �� �� ���������

����� ���
� ���� ����� ��� ����� ���������� �����

������ ������ ������
������� �� �����

��� ����
�����

������
������

��������������������������

� ������ ���
� �������� ��� ���� �� ���
������������ ���
� ���������� ������ ���
� ��������������������
�� �����

Figure: From R.E. Bryant et al. Computer Systems: A Programmer’s Perspective (2nd edition), Pearson 2014

Operating Systems. Memory Management 6 / 91

Introduction

���������������

��

���������� �������� ����������

����

��
�������

��
�������

����������������

������

����

��
�������

��
�������

����������������

������

��

����������������
���������������������

�����������

�����������������

�������������� ���������
����������������
����������������

�����������������
���������������
�����������������

�����������������
� ��� �������
��������������������

�������������������� ����
��� �������

Figure: From R.E. Bryant et al. Computer Systems: A Programmer’s Perspective (2nd edition), Pearson 2014

Operating Systems. Memory Management 7 / 91

Introduction

Memory hierarchy

The memory access time is the time required to access instructions or
data in memory (read and write operations),

the time elapsed between the moment an address is set on the address
bus and the moment the data is stored in memory or made available to
the CPU

It is desirable to have fast memories (short access times) with large
storage capacity. Unfortulately the faster and the larger memory is,
the higher it’s cost will be

For this reason, faster and more expensive memories are used where
memory accesses are more frequent.

Operating Systems. Memory Management 8 / 91

Introduction

Memory hierarchy

These requirements led to the idea of Memory Hierarchy: memory is
organised in layers according to access time and capacity

1 Processor Registers
2 Cache Memory
3 Main Memory
4 Hard Disk Drives
5 Tape Drives and Optical Discs

Operating Systems. Memory Management 9 / 91

Introduction

Memory Hierarchy

Operating Systems. Memory Management 10 / 91

Introduction

���������������

��

�������������������������������������

���������������������������� ��������������

��� ���������������������� �������� ������������ �����

��� �����

�������������
�����

����� �����

������� ������

��������

��������

���������

�����������

��� �����

����� �� ����

����� �� ����

���������

�������� ������

�������� ������

����������������

����������������

��� �����
������

������������������� ������ �����

��������� ������

��������������������

�����������������������

������� ��������������������� �����

�������� ����������� ������

���������������������

������� ��������������������������������������

���������� ������������ ��������������� ������� ������������

Figure: From R.E. Bryant et al. Computer Systems: A Programmer’s Perspective (2nd edition), Pearson 2014

Operating Systems. Memory Management 11 / 91

Introduction

The Operating Systems is a resource manager, which implies:

The OS must keep the accounting of the resource memory (assigned
and free memory blocks)
The OS must have a policy for memory allocation
The OS must allocate memory to the processes when they need it
The OS must release memory allocated to processes when they no
longer need it

Operating Systems. Memory Management 12 / 91

Introduction

Memory management

The OS must keep the accounting of the system memory

The OS has to know the amount of free memory: otherwise, this
memory could not be assigned to processes
The OS also has to register the memory allocated to each individual
process (via zones in the process tables)

Whenever a process is created or whenever a process requests
memory, the OS allocates memory to that process

When a process terminates the OS releases its assigned memory

The OS also manages the virtual memory system

Operating Systems. Memory Management 13 / 91

Introduction

Segments for a process virtual address space

Code (text).

Static Data. For global initialised var and static C vars. For
uninitialised global vars (BSS).

Heap. Dynamic memory (malloc).

Stack. Stack frames of function calls: arguments and local var
(automatic C vars), return addresses.

Operating Systems. Memory Management 14 / 91

Introduction

brk() System call

Sets the end of the data segment, which is the end of the heap.
Increasing the program “break” has the effect of allocating memory
to the process; decreasing the break deallocates memory.

brk() sets the end of the data segment to the addr specified as the
argument, and returns 0 on success.

sbrk() C function. Increments the program’s data space by increment
bytes. Calling sbrk() with an increment of 0 can be used to find the
current location of the program “break”. On success, sbrk() returns
the previous program break. (If the “break” was increased, then this
value is a pointer to the start of the newly allocated memory)

Operating Systems. Memory Management 15 / 91

Introduction

C malloc() package

Allows manual memory management for dynamic memory allocation
via a group of library functions.

The library functions are responsible for heap management instead of
user programs.

Package for explicit assignment and releasing memory vs. Garbage
Collectors.

Operating Systems. Memory Management 16 / 91

Introduction

malloc() C library function

malloc() allocates the requested bytes of memory and returns a
pointer to it.

free(ptr) releases the memory allocated with malloc().

calloc() assigns memory for n elements of size bytes each, realloc
resizes the block of allocated memory

These functions invoke the syscalls brk() and sbrk() to manage the
heap.

the mmap() system call maps files into a process address space.

Operating Systems. Memory Management 17 / 91

Introduction

Memory management: example

Compile and run this C program
/* this example comes from

http://www.enseignement.polytechnique.fr/informatique/INF583/ */

#include <stdlib.h>

#include <stdio.h>

double t[0x02000000];

void segments()

{

static int s = 42;

void *p = malloc(1024);

printf("stack\t%010p\nbrk\t%010p\nheap\t%010p\n

static(BSS)\t%010p\nstatic(initialized)\t%010p\ntext\t%010p\n",

&p, sbrk(0), p, t, &s, segments);

}

int main(int argc, char *argv[])

{

segments();

exit(0);

}

Operating Systems. Memory Management 18 / 91

Introduction

Memory management: example

Output (linux 64 bit system)
stack 0x7fff12f59468

brk 0x116ed000

heap 0x116cc010

static(BSS) 0x00601060

static(initialized) 0x00601038

text 0x004005d4

Operating Systems. Memory Management 19 / 91

Introduction

Memory management: example

Output (solaris 64 bit system)
stack 0xffff80ffbffff918

brk 0x10415360

heap 0x10411370

static(BSS) 0x00411360

static(initialized) 0x004112f8

text 0x00400ef8

Operating Systems. Memory Management 20 / 91

Introduction

Memory management: example

Output (solaris 32 bit system)
stack 0xfeffea3c

brk 0x18063060

heap 0x18061068

static(BSS) 0x08061060

static(initialized) 0x0806101c

text 0x08050d50

Operating Systems. Memory Management 21 / 91

Introduction

Memory management: example

Compile and run this C program
#include <stdlib.h>

#include <unistd.h>

#include <stdio.h>

#include <limits.h>

#define TROZO 100*1024*1024

#define PUNTO (10*1024*1024)

void accede (char * p, unsigned long long tam)

{

unsigned long long i;

for (i=0; i< tam; i++){

p[i]=’a’;

if ((i%PUNTO)==0)

write (1,".",1); /*imprime un punto cada 10 Mbytes accedidos*/

}

}

Operating Systems. Memory Management 22 / 91

Introduction

Memory management: example

main (int argc,char*argv[])

{

char *p;

unsigned long long total=0, cantidad=TROZO;

unsigned long long maximo=ULLONG_MAX;

if (argv[1]!=NULL){

maximo=strtoull(argv[1],NULL,10);

if (argv[2]!=NULL)

cantidad=strtoull(argv[2],NULL,10);

}

while (total<maximo && (p=malloc(cantidad))!=NULL){

total+=cantidad;

printf ("asignados %llu (total:%llu) bytes en %p\n", cantidad,total,p);

accede (p,cantidad);

getchar();

}

printf ("Total asignacion: %llu\n",total);

sleep(10);

}

Operating Systems. Memory Management 23 / 91

Introduction

Output

output of command pmap PID
3742: ./a.out

0000000000400000 4K r-x-- /home/barreiro/teaching/teaching-so/examples_C_SystemCalls/memoryconsumersecure/a.out

0000000000600000 4K r---- /home/barreiro/teaching/teaching-so/examples_C_SystemCalls/memoryconsumersecure/a.out

0000000000601000 4K rw--- /home/barreiro/teaching/teaching-so/examples_C_SystemCalls/memoryconsumersecure/a.out

00007ff7b22c9000 307212K rw--- [anon]

00007ff7c4ecc000 1588K r-x-- /lib/x86_64-linux-gnu/libc-2.13.so

00007ff7c5059000 2048K ----- /lib/x86_64-linux-gnu/libc-2.13.so

00007ff7c5259000 16K r---- /lib/x86_64-linux-gnu/libc-2.13.so

00007ff7c525d000 4K rw--- /lib/x86_64-linux-gnu/libc-2.13.so

00007ff7c525e000 24K rw--- [anon]

00007ff7c5264000 132K r-x-- /lib/x86_64-linux-gnu/ld-2.13.so

00007ff7c545f000 12K rw--- [anon]

00007ff7c5480000 16K rw--- [anon]

00007ff7c5484000 4K r---- /lib/x86_64-linux-gnu/ld-2.13.so

00007ff7c5485000 8K rw--- /lib/x86_64-linux-gnu/ld-2.13.so

00007fff4562e000 132K rw--- [stack]

00007fff456e6000 4K r-x-- [anon]

ffffffffff600000 4K r-x-- [anon]

total 311216K

Operating Systems. Memory Management 24 / 91

Introduction

Output

after another assignment
3742: ./a.out

0000000000400000 4K r-x-- /home/barreiro/teaching/teaching-so/examples_C_SystemCalls/memoryconsumersecure/a.out

0000000000600000 4K r---- /home/barreiro/teaching/teaching-so/examples_C_SystemCalls/memoryconsumersecure/a.out

0000000000601000 4K rw--- /home/barreiro/teaching/teaching-so/examples_C_SystemCalls/memoryconsumersecure/a.out

00007ff7abec8000 409616K rw--- [anon]

00007ff7c4ecc000 1588K r-x-- /lib/x86_64-linux-gnu/libc-2.13.so

00007ff7c5059000 2048K ----- /lib/x86_64-linux-gnu/libc-2.13.so

00007ff7c5259000 16K r---- /lib/x86_64-linux-gnu/libc-2.13.so

00007ff7c525d000 4K rw--- /lib/x86_64-linux-gnu/libc-2.13.so

00007ff7c525e000 24K rw--- [anon]

00007ff7c5264000 132K r-x-- /lib/x86_64-linux-gnu/ld-2.13.so

00007ff7c545f000 12K rw--- [anon]

00007ff7c5480000 16K rw--- [anon]

00007ff7c5484000 4K r---- /lib/x86_64-linux-gnu/ld-2.13.so

00007ff7c5485000 8K rw--- /lib/x86_64-linux-gnu/ld-2.13.so

00007fff4562e000 132K rw--- [stack]

00007fff456e6000 4K r-x-- [anon]

ffffffffff600000 4K r-x-- [anon]

total 413620K

Operating Systems. Memory Management 25 / 91

Introduction

Memory fragmentation

File systems and memory can show internal and external
fragmentation

Internal fragmentation: Wasted memory because assignation is made
in blocks of n bytes and the requests of processes are not an exact
multiple of n.
External fragmentation: Wasted memory that can not be assigned
because it is not contiguous. External fragmentation appears in
systems with (pure) segmentation..

Operating Systems. Memory Management 26 / 91

Swapping

Introduction
Swapping
Relocation
Protection
Simple schemes
Segmentation
Paging
Mixed systems

Operating Systems. Memory Management 27 / 91

Swapping

Swapping

(The Swap) area is a part of the disk used as auxiliar memory

A running process needs to be in memory. Swapping can increase the
multiprogramming level,

If a process in the swap zone is selected by the scheduler, the process
needs to be loaded in memory, which increases the context switch time.
To swap processes that are waiting for I/O to be completed (pending
I/O), the OS must transfer I/O to the system buffers in kernel space
and then to the I/O device. This also adds overhead.
For these reasons, modern Operating Systems usually swap pages and
rarely swap whole processes.

Operating Systems. Memory Management 28 / 91

Swapping

Swapping

Swapping of whole processes in old systems to increase the
multiprogramming level.

swapping

Modern systems with virtual memory swap the less referenced pages.

paging

The illusion of infinite memory in virtual memory systems

Operating Systems. Memory Management 29 / 91

Swapping

Swapping

The swapping area can be a dedicated partition or a file in the disk.

A swapping file is a more flexible solution, its location and size can be
changed easily.

But accessing a swapping file is less efficient because it uses the
indirections of the file system to access the data.

MS Windows systems use a swap file, while Unix and Linux systems
use swap partitions, although swap files can be configured for these
systems.

Operating Systems. Memory Management 30 / 91

Swapping

Swap file in MS Windows

Operating Systems. Memory Management 31 / 91

Relocation

Introduction
Swapping
Relocation
Protection
Simple schemes
Segmentation
Paging
Mixed systems

Operating Systems. Memory Management 32 / 91

Relocation

Memory management: relocation

We start with source code − > (compilation) − > object code

Several object code files − > (linking) − > executable file

Executabe file − > (load and execution) − > process in memory

Source code − > executable file − > process in memory

In the source code there are variables, functions, procedures, . . .

In the process in memory there are contents of memory addresses,
jumps to addresses that contain code

Where and when these transformations are done?

Operating Systems. Memory Management 33 / 91

Relocation

Memory management: relocation

Absolute code: Addresses are obtained at compilation (and/or
linking) time (example: MS-DOS .COM files)

At compilation/linking time it is necessary to know the addresses for
execution of the program
Lack of portability of the executable file. It can not run in other
memory locations.

Static relocation: Addresses are obtained when the program is
loaded in memory (the executable file contains relative references)
(example: MS-DOS EXE files)

After loaded in memory, the program can not be moved to other
memory location
Swapping is possible only if processes return to the same memory
positions they used before being swapped out (fixed partitions)

Operating Systems. Memory Management 34 / 91

Relocation

Static relocation

Operating Systems. Memory Management 35 / 91

Relocation

Memory management: relocation

Dynamic relocation: Addresses are obtained at execution time. The
running process uses memory references which are not the references
to physical memory positions. (example: MS XP Windows EXE files)

No restrictions to swapping. Swapped processes can be swapped in
memory in any memory location.
Distinction between Virtual or Logical address space and Physical
address space.
By reasons of efficiency it is necessary hardware that translates logical
addresses in physical addresses.

Modern systems use dynamic relocation

With dynamic relocation, linking can be postponed to execution time.
Dynamic linking (MS Windows DLLs, lib*.so in linux).

Operating Systems. Memory Management 36 / 91

Relocation

Dynamic Relocation

Operating Systems. Memory Management 37 / 91

Protection

Introduction
Swapping
Relocation
Protection
Simple schemes
Segmentation
Paging
Mixed systems

Operating Systems. Memory Management 38 / 91

Protection

Protection

Memory must be protected

A process can not directly access the OS memory
A process can not access memory of other processes

Simplest hardware to support protection

Two limit registers
One base (relocation) register and one limit register

Operating Systems. Memory Management 39 / 91

Protection

Protection

Two limit registers

Every address generated by a running process must be in the range of
the values stored in the limit registers. Otherwise an exception is
produced.
The hardware provides these limit registers.
The values of the registers are updated in a context swicht and stored
in the Process Control Block.
Changing the values of these registers is a privileged instruction (kernel
mode)

Operating Systems. Memory Management 40 / 91

Protection

Protection and relocation

With base (relocation) and limit register

Base register contains value of smallest physical address. Limit register
contains range of logical addresses. Each logical address must be less
than the limit register (otherwise, an exception is produced), which is
added to the address contained in the base register.
The hardware provides these base and limit registers.
The values of the registers are updated in a context swicht and stored
in the Process Control Block.
Changing the values of these registers is a privileged instruction (kernel
mode)
This hardware supports protection and dynamic relocation.

Operating Systems. Memory Management 41 / 91

Protection

Base and limit registers

Operating Systems. Memory Management 42 / 91

Protection

Protection and relocation

With base (relocation) and limit register

The program has the illusion of running on a dedicated machine, with
memory starting at address zero.
Segmented system with only one segment.

Operating Systems. Memory Management 43 / 91

Protection

Protection

In modern systems memory protection is supported by the addressing
mechanisms.

Segmentation and paging provide effective memory protection and
relocation.

It is necessary at least two execution modes: user mode and kernel or
system mode.

Operating Systems. Memory Management 44 / 91

Simple schemes

Introduction
Swapping
Relocation
Protection
Simple schemes
Segmentation
Paging
Mixed systems

Operating Systems. Memory Management 45 / 91

Simple schemes No multiprogramming systems

Simple schemes

No multiprogramming systems
Multiprogramming Systems

Operating Systems. Memory Management 46 / 91

Simple schemes No multiprogramming systems

Simple schemes: No multiprogramming systems

In Operating Systems without multiprogramming there were only two
memory areas: one for the OS and one for the user process.

Typically the OS in the low positions of memory and the rest for the
user process. Concept of simple monitor (IBSYS for IBM 7094)

First generation of personal computers: OS in high addresses of
memory (in ROM) and the rest for user processes

OS in low positions of memory but with some parts of the OS in the
high positions: First versions of MS-DOS

Operating Systems. Memory Management 47 / 91

Simple schemes Multiprogramming Systems

Simple schemes

No multiprogramming systems
Multiprogramming Systems

Operating Systems. Memory Management 48 / 91

Simple schemes Multiprogramming Systems

Memory management: Simple schemes

For multiprogrammed OS the simplest scheme is to split the memory
in partitions with a process in each partition.

Two alternatives

Fixed size partitions: Allows for a fixed number of processes in memory
Variable size partitions: The number and size of partitions can vary

Operating Systems. Memory Management 49 / 91

Simple schemes Multiprogramming Systems

Memory management: Simple schemes

Fixed size partitions

Internal and external fragmentation
Used in IBM OS/360 MFT (Multiprogramming with a Fixed number of
Tasks)

Variable size partitions

Negligible internal fragmentation, but also suffers from external
fragmentation
Compactation of memory to solve external fragmentation. Very high
cost.
Used in IBM OS/360 MVT (Multiprogramming with a Variable
number of Tasks)

Operating Systems. Memory Management 50 / 91

Segmentation

Introduction
Swapping
Relocation
Protection
Simple schemes
Segmentation
Paging
Mixed systems

Operating Systems. Memory Management 51 / 91

Segmentation

Memory management: Segmentation

Memory-management scheme that supports user view of memory

A program is a collection of segments

A segment is a logical unit such as: main program, procedure,
function, method, object, local variables, global variables, common
block, stack, symbol table, arrays, etc

Operating Systems. Memory Management 52 / 91

Segmentation

Memory management: Segmentation

The address space of a process has variable size blocks called
segments

A logical address is composed of a segment (or segment number) and
an offset inside the segment, <segment-number, offset>

The segment number is the entry number in the Segment Table for
that process. Each entry of the Segment Table contains the Base
Address, i.e. the starting physical address for the associated segment,
and the segment size (Limit).

Segment-table base register (STBR) points to the segment table’s
location in memory
Segment-table length register (STLR) indicates number of segments
used by a program
segment number s is legal if s < STLR

Operating Systems. Memory Management 53 / 91

Segmentation

Memory management: Segmentation

Changing the values of these registers in a context switch is a
privileged instruction. The values are stored in the Process Control
Block.

segment number s is legal if s < STLR

logical address: <segment-number, offset>

physical address: Base Address + offset

if the offset is less than the limit, the physical address is obtained
adding the offset to the Base Address, otherwise an addressing error
is produced and a trap to the OS

Operating Systems. Memory Management 54 / 91

Segmentation

Memory management: Segmentation

Protection, with each entry in the segment table associate:

validation bit (legal/illegal segment)
read/write/execute privileges
kernel/user mode accesible segment

Protection bits associated with segments; code sharing occurs at
segment level

Since segments vary in length, memory allocation is a dynamic
storage-allocation problem

Operating Systems. Memory Management 55 / 91

Segmentation

Memory management: Segmentation

Operating Systems. Memory Management 56 / 91

Segmentation

Segmentation: example

Let us consider a system with segmentation with the following
properties:

logical addresses of 16 bits (4 bits for the segment number, 12 bits for
the offset)
each entry of the segment table has 28 bits, the 12 most significant for
the limit and the 16 least bits for the base address
A process has 2 segments and the first two entries in the segment table
of the process contain the values 0x2EE0400 and 0x79E2020
respectively

What physical address corresponds to a reference to logical address
0x12F0?
What physical address corresponds to a reference to logical address
0x0342?
What physical address corresponds to a reference to logical address
0x021F?
What physical address corresponds to a reference to logical address
0x190A?

Operating Systems. Memory Management 57 / 91

Segmentation

Memory management: Segmentation example

logical address 0x12F0, physical address 0x2310

a reference to the logical address 0x0342 causes an addressing error

logical address 0x021F, physical address 0x061F

a reference to the logical address 0x190A causes an addressing error

Operating Systems. Memory Management 58 / 91

Segmentation

Memory management: Segmentation

Operating Systems. Memory Management 59 / 91

Segmentation

Fragmentation in segmentation systems

Internal fragmentation.

The segment size is a multiple of a fixed number of bytes (for example
16 bytes), therefore allocated memory may be slightly larger than
requested memory; this size difference is memory internal to the
segment, but not being used

External fragmentation.

Segments are variable size memory blocks. After assigning and
releasing memory, holes (blocks of available memory) of various sizes
are scattered through memory.
External fragmentation: total memory space exists to satisfy a specific
request, but it is not contiguous. Compactation solves the problem at
the expense of computional cost.

Operating Systems. Memory Management 60 / 91

Segmentation

Segmentation: dynamic storage-allocation problem

The OS accounts for both the assigned and free memory. After
releasing a block of memory, adjacent free blocks are collapsed into a
larger free block.

How can the OS satisfy a request of size n from a list of free holes?

first fit Allocate the first hole that is big enough. Fast. Small holes
appear in low areas of memory and large holes in high areas, assuming
the search for holes start in the low areas.
next fit Allocate the next hole large enough, searching from the last
allocated block
best fit Allocate the smallest hole that is big enough; must search
entire list, unless ordered by size. Produces the smallest leftover hole.
worst fit Allocate the largest hole; must also search entire list.
Produces the largest leftover hole

First-fit and best-fit are found to operate better than worst-fit in
terms of speed and storage utilization

Operating Systems. Memory Management 61 / 91

Segmentation

Segmentation: amount of memory in holes

In a system with segmentation, given s the average size of a segment
and k = average size of a hole

average size of a segment

memory in holes
total memory = k

k+2

for n segments, the amount of memory in segments is ns.

two adjacents holes collapse into a single hole, therefore there are
double number of segments than holes. For n

2 holes the amount of
memory in holes is n

2ks

therefore the rate is
memory in holes
total memory =

n
2
ks

n
2
ks+ns = k

k+2

Operating Systems. Memory Management 62 / 91

Segmentation

Memory management: Segmentation

Hardware support is needed

It enables dynamic relocation

It enables memory protection

Sharing data or code segments is possible

Operating Systems. Memory Management 63 / 91

Segmentation

Memory management: Segmentation

Intel 8086, 4 segments with a segment register for each segment
(code CS, data DS, stack SS, extra ES), no segment tables in
memory. No memory protection: any program could access any
memory area. (16bits segment, 16 bits offset). 1 Megabyte (20 bits
physical address space)

Segmentation in Intel 80286: 1 Gigabyte addressable virtual memory
in segments up to 64K (16 bits segment, 16 bit offset). 16 megabytes
physically addressable (physical addresses). Segment table for a
process in memory, pointed by the contents of a processor register.
MS Windows 3.1 in standard mode used this segmentation
mechanism. Windows 3.1 Enhanced model to operate with i386
processor.

Intel 386, Paged Segmentation (next chapter)

Operating Systems. Memory Management 64 / 91

Paging

Introduction
Swapping
Relocation
Protection
Simple schemes
Segmentation
Paging
Mixed systems

Operating Systems. Memory Management 65 / 91

Paging

Memory management: paging

Physical address space of a process can be noncontiguous; process
can be allocated physical memory wherever available

Avoids external fragmentation, still has internal fragmentation

Avoids problem of varying sized memory chunks

Enables dynamic relocation, protection and sharing of memory

Operating Systems. Memory Management 66 / 91

Paging

Memory management: paging

Divide physical memory into fixed-sized blocks called frames. Size is
power of 2, between 512 bytes and 16 Mbytes

Divide logical memory into blocks of same size called pages

The OS keeps track of all free frames. To run a program of size N
pages, the OS needs to find N free frames and load program in them

The OS sets up a page table to translate logical to physical addresses.
A processor register (Page Table Base Register) contains the base
address of the page table for a process. Changing the value of this
register in a context switch is a privileged instruction (kernel mode).
The value is stored in the Process Control Block, and loaded again
when the process is scheduled to run

Operating Systems. Memory Management 67 / 91

Paging

Memory management: paging

Address generated by CPU is divided into:

Page number (p) used as an index into a page table which contains
base address of each page in physical memory

Page offset (d) combined with base address to define the physical
memory address that is if fact accesses

Operating Systems. Memory Management 68 / 91

Paging

Memory management: paging

Operating Systems. Memory Management 69 / 91

Paging

Paging: Example

Consider a system with 16 bits logical addresses, 7 most significant
bits for the page number and the 9 least significant bits for the offset
in the page.

Page size is 512 bytes = 29

A process makes a reference to a memory address 0x095f (0000 1001
0101 1111)

This is a reference to page number 4 and page offset 0x15f

Operating Systems. Memory Management 70 / 91

Paging

Paging: Example

In the entry for page 4 in the page table, we can get the physical
address for this page

Let us assume that the Base Address of the Physical Page is 0xAE00
(1010 1110 0000 0000)

Therefore the final physical address is es 0xAF5F (1010 11111 0101
1111)

Operating Systems. Memory Management 71 / 91

Paging

Paging

With paging the memory for a process need not be contigous

The page size is defined by the hardaware, for example:

The Intel x86 32 bits architecture has a page size of 4 Kbytes
The Sparc architecture has a page size of 8 Kbytes

No external fragmentation

Internal fragmentation

The larger the page sizes the larger the internal fragmentation will be

Smaller page sizes mean more entries in the page tables for
processess, so more memory is lost in page tables

Operating Systems. Memory Management 72 / 91

Paging

Paging

The OS must account for: the free physical pages (frames), the
frames assigned to processes

The OS manages the table pages of different process in the context
switch

Processes’ view of the memory and physical memory are now very
different

Memory Protection: because of the way paging is implemented, a
process can only access its own memory following its page table, and
its Page Table can only be changed by the OS

Paging allows memory sharing among processes: the associated
entries in their page tables point to the same physical pages

Operating Systems. Memory Management 73 / 91

Paging

Memory management: paging

Operating Systems. Memory Management 74 / 91

Paging

Paging

Hardware support is needed (for example no paging on intel 286,
paging available on i386)

Each entry of the PT has other information beside the address of the
physical page: valid bit (1 for a valid page number, i.e., the page
exists for this process) , access bit (1 page was accessed, but can be 0
for a accessed page after a bit reset), dirty (modified page) bit, read
only, read write, privilege level (kernel only, user), etc.

Operating Systems. Memory Management 75 / 91

Paging

Paging: Implementation of the Page Table

Dedicated registers: The processor has registers to store the page
table of the running processes. I

In a context switch the page table is stored in the Process Control
Block, and the registers are loaded with the page table of the new
running process.
Address translation is fast because the page table is in the processor
registers
High cost because many processor registers are needed, for this reason
it is not used in modern systems
Slow context switch because many registers are implied

Operating Systems. Memory Management 76 / 91

Paging

Paging: Implementation of the Page Table

In memory: Page tables are kept in main memory.

The Page-table base register (PTBR) points to the page table of the
running process and the Page-table length register (PTLR) indicates
the size of the page table. In a context switch the page table is stored
in the Process Control Block, and the registers are loaded with the
page table base address and the value of the size of the page table of
the new running process.
Address translation is slow because every data/instruction access
requires two memory accesses: one for the page table and another for
the data/instruction
Fast context switch because only two registers are implied
The two memory access problem can be solved by the use of a special
fast-lookup hardware cache (associative memory) called look-aside
buffers (TLBs)

Operating Systems. Memory Management 77 / 91

Paging

Paging: Implementation of the Page Table

The TLB is an associative memory that performs a parallel search,
i.e., the TLB contains pairs < numberoflogicalpage, framenumber >.

Given a logical address (p, d), If p is in associative register contained
in the TLB, get frame number out, otherwise get frame number from
page table in memory

Operating Systems. Memory Management 78 / 91

Paging

Paging: Implementation of the Page Table

Some TLBs store address-space identifiers (ASIDs) in each TLB
entry. This uniquely identifies each process to provide address-space
protection for that process. Otherwise theres a need to flush it at
every context switch

TLBs typically small (64 to 1,024 entries)

On a TLB miss, value is loaded into the TLB for faster access next
time

Replacement policies must be considered
Some entries can be wired down for permanent fast access

Operating Systems. Memory Management 79 / 91

Paging

Memory management: Paging with TLB

Operating Systems. Memory Management 80 / 91

Paging

Paging: Effective access time with TLBs

Let’s consider that TLB Associative Lookup time is ε (time unit).
Can be < 10% of memory access time

We define the hit ratio (α) as the percentage of times that a page
number is found in the associative registers. The bigger the number
of associative registers the highest the hit ratio will be

The Effective Access Time for a memory with access time T is

EAT = α(T + ε) + (1 − α)(2T + ε)

Consider the following example α = 80% , ε = 20ns for TLB search,
100ns for memory access

EAT = 0.80x120 + 0.20x220 = 140ns (instead of 200 ns without TLB)

The more realistic example where α = 99%, ε = 20ns for TLB search,
100ns for memory access, yields

EAT = 0.99x120 + 0.01x220 = 121ns (instead of 200 ns without TLB)

Operating Systems. Memory Management 81 / 91

Paging

Inverted page tables

in systems with virtual memory, there are many pages of the
processes that are not loaded in physical memory; however the page
tables of each process have to be large enough to accommodate the
whole address space of the process

A 32 bits address space using 4K pages would need 220 pages. The
table page for a process would have to have 220 entries. Assuming 4
bytes entries, each page table would need 4 Mb

Two solutions

multilevel paging (mixed systems)
inverted page tables

one entry for each physical frame
each entry has information about the page contained in that frame
(proccess and logical address)
To optimice the search time usually a hash function is used
Used in the PowerPC and IBM AS/400 architectures

Operating Systems. Memory Management 82 / 91

Mixed systems

Introduction
Swapping
Relocation
Protection
Simple schemes
Segmentation
Paging
Mixed systems

Operating Systems. Memory Management 83 / 91

Mixed systems

Mixed system

A combination of paging and/or segmentation

As paging provides better memory usage, there’s always paging as the
last managing system

paged segmentation: ancient systems, used in IBM system 370, the
page table of a proccess was segmented
multilevel paging
paged segmentation the segments are paged

As an example we’ll discuss the x86 32bits archictecture: two level
paged segmentation

Operating Systems. Memory Management 84 / 91

Mixed systems

Memory management in the 32 bit PC architecture

As an example of actual memory management scheme we’ll look at
the 32 bit PC architecture: segmentation with two levels of paging

Each addres is comprised of

selector (16 bits) 13 bits for the segment number, 1 bit to select
table(GDT-Global Decriptor Table or LDT-Local Descriptor Table) and
2 bits for the privilege level
offset 32 bits

The 13 bits of the segment number (selector) serve as an index in a
segment table (descriptor table) where we get, among other things,

a 32 bits base address
20 bits limit (which represents a 32 bit addressing if page granularity is
selected)

Operating Systems. Memory Management 85 / 91

Mixed systems

Memory management in the 32 bit PC architecture

Operating Systems. Memory Management 86 / 91

Mixed systems

32 bit PC: Segment selector

Operating Systems. Memory Management 87 / 91

Mixed systems

32 bit PC: Segment selector

Operating Systems. Memory Management 88 / 91

Mixed systems

Memory management in the 32 bit PC architecture

the 32 bit base address is added to the 32 bit offset yielding a 32 bit
linear address

The first 10 bits correspond to an entry in the page directory table,
where we get, among othe things, the address of a page table
The next 10 bits represent an index in the page table we got in the
previous step, where we get the physical address of a page frame
The next 12 bits represent an offset in the aforementioned page frame

The pages are sized 4K

Each page table has 1024 four bytes entries (its format can be seen in
one of the following figures). Each page table occupies one page

Operating Systems. Memory Management 89 / 91

Mixed systems

32 bit PC: linear address

Operating Systems. Memory Management 90 / 91

Mixed systems

32 bit PC: page table entry

Operating Systems. Memory Management 91 / 91

	Introduction
	Swapping
	Relocation
	Protection
	Simple schemes
	No multiprogramming systems
	Multiprogramming Systems

	Segmentation
	Paging
	Mixed systems

