
(OS - i/o)

Lesson 5: Input / Output

Operating Systems

Last rev.: December 2016

(OS - i/o)

INPUT/OUTPUT

Input/output
Structure of an i/o system
Structure of the i/o software
Types of input/output
Methods for input/output
Disk scheduling
Input/output in UNIX

(OS - i/o)
Input/output

Silberschatz, Galvin and Gagne 2002 , section 13.3
(http://www.wiley.com//college/silberschatz6e/0471417432/slides/slides.html)

http://www.wiley.com/college/silberschatz6e/0471417432/slides/slides.html

(OS - i/o)
Input/output

• i/o devices allow CPU to communicate with the external world: keyboards,
displays, printers, disks, …

• The communication between the CPU and an external element is similar
to the communication with main memory: data are both written and read

• However, the behavior is different: data are not always available (i.e. a
keyboard), and the device may not be ready to receive them (i.e. a printer)

• Since the behavior differs, the access methods are also different from
those used to access memory

(OS - i/o)

INPUT/OUTPUT

Input/output
Structure of an i/o system
Structure of the i/o software
Types of input/output
Methods for input/output
Disk scheduling
Input/output in UNIX

(OS - i/o)
Structure of an i/o system

• In theory, i/o devices would communicate with the CPU through the
system buses

• Since the i/o devices are highly heterogeneous, it would be very costly if
the CPU had to manage them directly. (the O.S. would have to know “all
the details”, CPU much faster than i/o devices,…)

• The devices are connected to a piece of hardware called device controller
(sometimes called device adapter).

• The device controller admits/receives abstract CPU commands and is the
responsible of transmitting them to the device (i.e. write block 2534 to
disk)

• The CPU is freed of very low-lever tasks (i.e. write data in side X of platter
Y, in cylinder Z, sector T)

(OS - i/o)
Structure of an i/o system

CPU Device

Controller

Commands

Status

Data

(OS - i/o)
Structure of an i/o system

• The device controller acts as an interface between the CPU and the i/o
device

• Each device controller can handle either one or several devices of the
same type (i.e. IDE controller two HDDs; or one HDD and one DVD unit)

• The controllers communicate with the CPU through some registers or
ports. They typically include:

– A control register: To send commands to the device
– A status register: To obtain information about the state of the i/o device or the

controller, data availability,…
• i.e. the previous command has already been completed
• i.e. bit to indicate that there were errors during the last i/o operation

– Data registers: They can be input registers (data-in register), output registers (data-out
register), or bi-directional registers.

• They are typically registers that can hold from 1 to 8 bytes.
• Some controllers contain FIFO chips that allow us to store small amounts of burst data until the host (CPU) or

the device is not ready to receive them.

(OS - i/o)
Structure of an i/o system

Windows 7 -- device manager -- screenshot

address
of i/o port

Interrupt
number

• We will see that the
registers of the
controller are located in
these addresses.
• Accessing this
addresses range allows
the communication
with the “ATA
controller”

(OS - i/o)
Structure of an i/o system

• The device controller is in charge of
– Coordinating the data flow between either the CPU or the memory, and the peripheral

device.

– Communication with the CPU (CPU  controller):
• decoding the commands provided by the CPU,
• interchange of i/o data with the CPU,
• Recognizing the device address: It must realize that the data coming through the buses belong to (are sent to)

this device (and not to to any other device).

– Communication with the i/o device (controller device):
• Sending commands
• Data interchange
• Receiving status information

– Temporal storage of data (buffer) due to the fact that the speeds (of the CPU and of the
device) are very different.

• i.e. The CPU is much faster the controller keeps/receives the data that CPU is sending and that must be
written in the device… then the controller sends such data to the slow i/o device “step-by-step”.

– Error detection

Polling i/o,
Interrupts i/o

DMA

(OS - i/o)

INPUT/OUTPUT

Input/output
Structure of an i/o system
Structure of the i/o software
Types of input/output
Methods for input/output
Disk scheduling
Input/output in UNIX

(OS - i/o)
Structure of the i/o software

• How can a program write to a HDD if it does not know the type of disk that
is being dealt with?

• How can we add a new device without disturbing the operation of a
computer?

• Abstraction
– Eliminates the differences between devices by identifying a few generic classes/types.
– For each class, an interface (with some standard functions) is defined.

• Encapsulation
– The actual differences are encapsulated within the device drivers:

• Device drivers internally adapt to the particularities of the device, but
• Device drivers export one of the standard interfaces (their functions)

• Layers
– …

ABSTRACTION + ENCAPSULATION + LAYERS

(OS - i/o)
Structure of the i/o software

• Layers
– The i/o software is structured into layers.
– Device-driver layer hides differences among i/o

controllers from kernel

• Calls to the i/o subsystem can see the behavior of the different devices within
a few generic classes

– The applications do not note the differences when dealing with one hardware or another.

• The i/o subsystem (in the O.S.) is over the device driver layer, that hides the
differences between de different device controllers

• The fact that we have an i/o subsystem that is independent from the hardware
– Helps O.S. developers (they do not have to deal with “infinite” devices), and
– Helps hardware manufacturers:

• They create a hardware that is compatible with a given existing interface (host/controller)
• Or they write/create the device driver that establishes the interface with the new device and the O.S.’s in which it must

operate

Silberschatz, Galvin and Gagne 2002
(http://www.wiley.com//college/silberschatz6e/0471417432/slides/slides.html)

http://www.wiley.com/college/silberschatz6e/0471417432/slides/slides.html

(OS - i/o)
Structure of the i/o software

• The i/o software is structured into layers
– User level software: It provides the interface with the user. At this level we find tasks

such as data formatting.

– Device independent software: This layer is in charge al all the tasks related to space
allocation, privilege control, cache usage (if it exists)...

– Device driver: This is the software layer that communicates with the device controller,
and it is the unique piece of software that actually does it. Therefore, in order to allow a
device to be used by an O.S. only the corresponding device driver is needed. All the
knowledge about the specific details of the device are included in the device driver.

– Interrupt handler: It handles all the interrupts that come from the device.

USER MODE:

KERNEL MODE:
-Block/char
-Buffers/cache
-Dev management:

+ naming,
+ protection,
+ access ctrl,
+ i/o scheduling

(OS - i/o)
Structure of the i/o software

• Example: Let's see the work done in the different layers during a call to:
fprintf(fich,"%1.6f",x)

• User level software:
– It generates the expected string from x: one digit, one point, 6 decimal digits, and '\0'

• Therefore, it performs data formatting. For example, if x=1.324242, a 9-bytes string is created.

– From the FILE * fich parameter, it obtains the corresponding file descriptor (fd)
that will be needed in the subsequent write system call.

• Therefore, it handles the process of preparing everything to the system call. (write (fd, ptr_to_1.324242, 8))

strlen(ptr_to_1.324242)

(OS - i/o)
Structure of the i/o software

• Example: Let's see the work done in the different layers during the call to:
fprintf(fich,"%1.6f",x)

• Device independent software:
– It receives a file descriptor (fd), a source address from where data must be transferred

to the device (buffer) , and the number of bytes to transfer (N). write (fd, buffer, N)

– From the file descriptor (fd), it accesses the in-memory copy of the file inode and, using
the offset in the open-files table, it determines in which disk block (and the offset within
that block) data must be written.

– It checks if that block is already cached (otherwise it is brought into memory), and
transfers data from the user memory address to the cache. It marks that block from the
cache as modified. If a new data block must be assigned (the file grows), it is done at this
layer

– Finally, (depending on the cache usage) a call to the device driver will be performed to
write that block to disk.

Locate the block

-Bring block to cache
-Write data to block
-Assign additional

space if needed

Finally, transfer block
to disk (now or later)

Per-process
open-file table

0
1
2
3

...

System-wide
open-file table

inode pointer
o_rdonly
offset

active-inode
table

in-memory copy
of the inode

Disk

in-disk
inode

user kernel

data blocks

(OS - i/o)
Structure of the i/o software

• Example: Let's see the work done in the different layers during the call to:
fprintf(fich,"%1.6f",x)

• Device driver:
– It receives the command to write a block into a given device
– It determines which physical device must be accessed
– It determines the sector or sectors (as a logical block can be associated to K sectors, i.e. k*512 bytes)

within the disk (as well as their coordinates regarding cylinder and side) corresponding
to that block.

– It sends the appropriate commands to the registers of the device controller (in order to
perform the data transfer).

• Interrupt handler:
– When the device completes the request, it generates an interrupt that is managed by

the interrupt handler
– It wakes up the process that requested the i/o (in case it was a synchronous i/o)
– It frees the resources occupied by the i/o operation

(OS - i/o)
Structure of the i/o software

• Example: Let's see the work done in the different layers during the call to:
fprintf(fich,"%1.6f",x)

i/o system call: data formattinguser USER LEVEL SOFTWARE

DEVICE INDEPENDENT SOFTWARE

DEVICE DRIVER

INTERRUPT HANDLER

DEVICE CONTROLLER

DEVICE

kernel
(o.s.)

hardware

software

naming, protection, blocks, cache, buffers,
space allocation

Access to registers of the controller, check
state

Processes interrupt when i/o finishes,
wakes up driver..

In mem
user data

Kernel
copy

Block in
controller

Block in
disk

Leads i/o operation

Int.

(OS - i/o)

INPUT/OUTPUT

Input/output
Structure of an i/o system
Structure of the i/o software
Types of input/output
Methods for input/output
Disk scheduling
Input/output in UNIX

(OS - i/o)
Types of i/o

• Depending on the communication method between the CPU and the
devices we can distinguish:

– Explicit i/o
– Memory mapped i/o.

• Depending on the perception that the process has with respect to how the
i/o is performed:

– Synchronous i/o
– Asynchronous i/o

(OS - i/o)
Types of i/o

Communication method between the CPU and the devices
• Memory-mapped devices:

– Devices appear within the addresses space. Addresses space is shared between both the
memory and the devices

– It does not typically becomes a problem because i/o space << than addresses space
– To access the controller registers we use instructions of type MOV (as any other memory

read/write operation)
– Example: motorola 68000

• Separated i/o port space:
– We have a range of explicit i/o addresses (this system is called explicit i/o)
– Each i/o control register is assigned an i/o port number. The set of all the i/o ports makes

up the i/o port space
– Typically, there are special instructions to access this i/o space (i.e. IN/OUT in intel); a

different way is that a control register activates this space (i.e. powerpc).
– Example: MOV R1, 4  reads mem word 4, and sets value into R1

IN R1, 4  reads i/o port 4, and sets value into R1
– In this systems, there could also be memory-mapped devices

MOV cpu-reg, address

IN cpu-reg, port
OUT port, cpu-reg

(OS - i/o)
Types of i/o

Perception that the process has with respect to how the i/o is performed
• Synchronous and Asynchronous i/o

– Synchronous: The process "feels" that it has to wait until the i/o operation completes
– Asynchronous: The process "feels" that it has NOT to wait ... and someone will notify to

it that the i/o operation has completed.

• Since the CPU is much faster than the i/o devices, once the i/o operation
has started, the O.S. gives the CPU to a different task and leaves the
process that waits for the i/o into "waiting state"

– The process feels that the i/o is synchronous but it is actually asynchronous.
– When the i/o completes, the process will move from i/o queue to ready queue.

• Many O.S.'s permit also to perform asynchronous i/o's. The process
initiates the i/o and continues its execution. The process will be notified by
the O.S. when the i/o operation has completed.

– For example, notified by: (a) an interrupt, (b) changing the value of a variable within its
user space

(OS - i/o)

INPUT/OUTPUT

Input/output
Structure of an i/o system
Structure of the i/o software
Types of input/output
Methods for input/output (polling, interrupts, and DMA)
Disk scheduling
Input/output in UNIX

(OS - i/o)
Methods for i/o

i/o with polling (programmed i/o)
• It is the simplest way to perform an i/o operation
• To gain synchronization the CPU must ask (poll) to the device if it has a

new piece of data to deliver (in), or if it is ready to receive a new piece of
data (out).

• Busy waiting: CPU time is wasted each time we ask the device (the more
frequent we ask the more time is spent).

• It is slow, and data could even be lost if the device is not queried
frequently enough.

(OS - i/o)
Methods for i/o

i/o with polling (programmed i/o)

(Figs. Source: Tanembaum, Modern Op. Systems, 3er ed, S. 5.2)

Format a buffer into
user space

copy_from_user &
start printing ‘A’:

- copy ‘A’ to data register
- check status register

Transfer remaining
data 1-by-1

Figure 5.7: Steps for printing ‘ABCDEFGH’

Figure 5.8: Writing a string to a printer using programmed i/o

buffer

p p

(OS - i/o)
Methods for i/o

Interrupt-driven i/o
• The device asks for the CPU attention with an interrupt
• When the interrupt is detected, the O.S.

– Stops the current process and saves its state
– Transfers control to the interrupt service procedure (interrupt handler)
– Executes the interrupt service procedure
– After that, it continues the execution in the position where the interrupt stopped a prior

process.

• Those interrupt service procedures are in memory in some addresses
pointed to from interrupt vectors

• During the initialization process, the O.S. install those routines
– It checks which devices are connected
– Installs all the service procedures (handlers) in the interrupt vector

• The interrupt vector dispatches interrupts to correct handler

(OS - i/o)
Methods for i/o

Interrupt-driven i/o

Each entry in the interrupt vector points to a
interrupt handler (or chain of handlers) that
must be used to give service to that interrupt

Interrupt
handler0

1
2

255

n
Interrupt
handler

Interrupt
handler

(Fig. Source*: Silberschatz, Galving, and Gagne 2002)

Interrupt vector in Intel Pentium

(OS - i/o)
Methods for i/o

Interrupt-driven i/o

– The system call ends up with a call to the scheduler()
– The device (printer) raises an interrupt when it is ready and the interrupt handler drives

the transfer of the next piece of data

(Fig. Source*: Tanembaum, Modern Op. Systems, 3er ed, S. 5.2)

Figure 5.9: Writing a string to a printer interrupt-driven i/o. (a) code executed at the
time the system call is made. (b) Interrupt service procedure for the printer

interrupt handlersystem call

Printer ready?

copies 1st data to printer
(starts transfer)

puts process that is printing into
waiting-queue until someone calls
“unblock_user()”

ends transfer

copies
next data

i/o request

PRINTER

(OS - i/o)
Methods for i/o

i/o using DMA (Direct Memory Access)
• In polling i/o and interrupt-driven i/o the CPU leads the data transfer

when those data are ready: either checking the status register, or being
notified by the device with an interrupt (and handling such an interrupt).

• This has the following drawbacks:
– The transfer speed is limited by the speed of the CPU when moving those data from the

CPU register/memory controller/device
– While a data transfer is being done, the CPU must lead that transfer and cannot be

attending other stuff

• These are minor issues in slow devices where few data are transferred, but
they become a major issue with devices receiving/transferring a huge
amount of information (i.e. a hard disk drive).

• Solution: DMA Controller (Direct Memory Access)

(Fig. Source: Tanembaum, Modern Op. Systems, 3er ed, S. 5.2)

Polling i/o: CPU…
- starts transmission of each piece of data and,
- waits until the item was actually transmitted

Interrupt-drive i/o: CPU…
- starts transmission of each piece of data and,
- executes Interrupt Service Procedure when an
interrupt is raised by the device

i/o using DMA: CPU…
- initializes i/o operation (once for a set of data),
- executes the unique Interrupt Service Procedure
when an ending interrupt is raised by the DMA
controller

(OS - i/o)
Methods for i/o

i/o using DMA (Direct Memory Access)

– The system call ends up with a call to the scheduler()
– The DMA controller frees the CPU from leading the transfer of the buffer of data. CPU

has only to attend the final interrupt that notifies that data transfer is complete

(Partial Fig. Source: Tanembaum, Modern Op. Systems, 3er ed, S. 5.2)

Figure 5.10: Writing a string using DMA. (a) code executed when the print system call is
made. (b) Interrupt service procedure for the printer

interrupt handlersystem call

puts process that is printing into
waiting-queue until someone calls
“unblock_user()”

DMA
performs
polling i/o

i/o request

PRINTERDMA
controller

3

2

1

ends transfer

(OS - i/o)
Methods for i/o

i/o using DMA (Direct Memory Access)

• The DMA controller is in charge of the data transfer to the device
• The DMA controller provides all the address signals and all the bus-control

signals
• CPU must provide to the DMA controller the type of i/o operation (read /

write), the memory address for the data transfer, and the amount of bytes
to be transferred.

• When the data transfer completes the DMA controller raises an interrupt
to notify the CPU

• The bus must be shared between the CPU and the DMA controller. There
are several sharing methods

– Burst mode DMA
– Cycle-stealing DMA
– Transparent Bus

DMA
performs
polling i/o

i/o request

DeviceDMA
controller

raises
interrupt

Type, address, size

(Fig. Source: Silberschatz, 7th ed, Chap 13)

(OS - i/o)
Methods for i/o

i/o using DMA (Direct Memory Access)
• Burst-mode DMA (ráfaga)

– Once the DMA seizes the memory bus (that is, it has the control of the bus), it transfers
a whole block, and the CPU has to wait until the transfer completes.

• CPU has only to wait if it needs the bus, but it can continue accessing instructions and data from cache (L1,L2…)

– It is the fastest method
• Since “gaining access to the bus takes -some-time-” each time it seizes the bus it sends several words (block)

– This method is used in secondary storage devices, such as disks.

• Cycle-stealing DMA
– Each time DMA seizes the bus, it transfers a word and then returns bus control to CPU
– The data transfer is done with a sequence of DMA cycles interleaved with CPU cycles. For

example, every “x” CPU instructions executed the DMA tries to gain bus control

• Transparent Bus
– The DMA does only use the bus when the CPU is not using it (i.e. when the CPU is

decoding an instruction, using the ALU,…)
– The CPU can still access both the data and instructions in the cache while the DMA is

doing data transfer.
LOAD R1, 0xFFF0 --> memory access
LOAD R2, 0XFFE0 --> memory access
SUM R3, R2,R1 --> SUM in ALU
SAVE R3, 0XFFD0 --> memory access

(OS - i/o)

INPUT/OUTPUT

Input/output
Structure of an i/o system
Structure of the i/o software
Types of input/output
Methods for input/output
Disk sheduling
Input/output in UNIX

(OS - i/o)
Disk scheduling

Disks
• A traditional disk is formed by a set of platters that spin together
• Each of the surfaces of the platters is commonly named a side
• Each side/surface is composed of a series of circular concentric tracks
• The set with the same track along the different sides makes up a cylinder
• Each cylinder contains a series of sectors

– The sector is the basic i/o unit in a hard disk
– Each sector has typically 512 bytes

• Each sector is perfectly referred to by its three coordinates: cylinder, side,
and sector. Typically, the numbering of sides and cylinders starts with 0,
and sectors are numbered from 1 on.

• Only the device handler knows the physical features of the disk. The O.S.
sees the disk as a sequence of logical blocks.

– For example: a 1.4Mbytes floppy disk contains 80 cylinders, 2 sides, and 18 sectors per
track (2880 sectors of 512bytes each). If we format it with 4k blocks the O.S. will see it
as a sequence of 360 blocks, and each block contains 8 sectors.

• The space assignment (and free space management) refers to blocks, not
to sectors.

(OS - i/o)
Disk scheduling

Disk structure

arms

(OS - i/o)
Disk scheduling

Disk structure
• Example:

– Logical blocks 1,2,3,…N correspondence to physical sectors (cylinder, side, sector)

side 0
side 1

side 2
side 3

side 7
...

1

2

3 4

5

6

side 0

43

44

45 46

47

48

side 7

cylinder 0

...

cylinder 1

side 0

91

92

93 94

95

96

side 7...

49

50

51 52

53

54

...

Logical blocks 1,2,3..N (assume size of logical block = size of sector = 512bytes)

1

2

3 4

5

6

cylinder 0

cylinder 1

cylinder 2
...

sector

sector

 Track 0 in
the 8 sides

(OS - i/o)
Disk scheduling

Disks
• Large disks can be split in one or more areas (i.e. partitions) that can be

used as independent file systems
• Traditionally, the first sector** (side 0, cylinder 0, sector 1) contains a

table that indicates de different areas of the disk
• The name and format of that table differs from one O.S. to another:

– Partition table (MBR type), with 4 entries in windows and linux O.S’s
** GUID Partition Table type (GPT) allows up to 128 entries (but uses more than 512 bytes for the partition table).

– Disklabel, with either 8 or 16 entries in BSD systems…

(OS - i/o)
Disk scheduling

Disk scheduling
• In a system where multiple i/o requests to disks are generated, such i/o

requests can be planned/scheduled. Note that the O.S. is responsible of
using hardware efficiently, and for disk drives, that means basically having
a fast access time.

• Access time has two main components
– Seek-time: time required to move the heads to the cylinder containing the desired block
– Rotational-latency: time waiting for the disk to rotate the desired sector to the disk head
– Other times such as block-transfer time can be assumed to be constant.

• We try to minimize seek-time ≈ seek distance
– We could also try to reduce latencies (rotational scheduling), yet in modern systems, it is

usual that the controller reads complete tracks and only the required sectors are
transferred

• There are several algorithms to schedule the servicing of disk i/o requests.
– FCFS / FIFO (First Come First Served). The requests are served in the same order they

arrive.
– SSTF (Shortest Seek Time First). The requests with shortest seek time from the current

head position are served first. SSTF reduces the average seek-time, but it does not offer
neither homogeneous nor predictible times. It may cause starvation (inanición) of some
requests.

(OS - i/o)
Disk scheduling

Disk scheduling
– SCAN (Elevator algorithm). The disk head starts at one end of the disk and moves

toward the other end. It serves requests until it gets to the other end of the disk, where
the head movement is reversed and servicing continues.

• The closest request is served but only in one direction
• The central part of the disk gets more attention than the external part of the disk

– C-SCAN. Works similarly to SCAN, but when the head reaches the end of the disk it
immediately returns to the beginning of the disk, without servicing any requests on the
return trip (as if it were an elevator that stops only when going up).

• The average wait time for each cylinder is more uniform than in SCAN

– SCAN / C-SCAN with N steps. Works as the regular counterparts, but in each trip it
services at most N requests.

– C-LOOK. Variant of C-SCAN. The head only goes as far as the last request in each
direction, then reverses direction immediately without first going all the way to the end
of the disk.

• It does not go up to the last cylinder when going up (it stops at the last cylinder requested)
• It does not necessarily start going up from cylinder “0” (it starts from the first pending cylinder requested)

– …

(OS - i/o)
Disk scheduling

Disk scheduling
• Example: Serving requests for cylinders in the following request queue:

<98, 183, 37, 122, 14, 124, 65, 67>
• Assume that:

– There are only 200 cylinders [0..199]
– The head is currently located over cylinder 53

(OS - i/o)
Disk scheduling

FCFS (FIFO)

movement: 640 cylinders

Operating System Concepts: Silberschatz et al, 2002

(http://www.wiley.com//college/silberschatz6e/0471417432/slides/slides.html, chap 14)

http://www.wiley.com/college/silberschatz6e/0471417432/slides/slides.html

(OS - i/o)
Disk scheduling

SSTF

movement: 236 cylinders, but it could cause starvation

Operating System Concepts: Silberschatz et al, 2002

(http://www.wiley.com//college/silberschatz6e/0471417432/slides/slides.html)

http://www.wiley.com/college/silberschatz6e/0471417432/slides/slides.html

(OS - i/o)
Disk scheduling

SCAN

Initially going down (530)
movement: 208 cylinders

Operating System Concepts: Silberschatz et al, 2002

(http://www.wiley.com//college/silberschatz6e/0471417432/slides/slides.html)

http://www.wiley.com/college/silberschatz6e/0471417432/slides/slides.html

(OS - i/o)
Disk scheduling

C-SCAN

Initially going up(53+)
movement: 199-53 + 199 + 37 cylinders

Operating System Concepts: Silberschatz et al, 2002

(http://www.wiley.com//college/silberschatz6e/0471417432/slides/slides.html)

http://www.wiley.com/college/silberschatz6e/0471417432/slides/slides.html

(OS - i/o)
Disk scheduling

C-LOOK (C-SCAN variant)

Initially going up(53+)
movement: 183-53 + (183-14) + (37-14) cylinders

Operating System Concepts: Silberschatz et al, 2002

Recall it does not reach the end when going up (only up to the last request) . It starts going
up, not from cylinder 0, but from the first pending request

(http://www.wiley.com//college/silberschatz6e/0471417432/slides/slides.html)

http://www.wiley.com/college/silberschatz6e/0471417432/slides/slides.html

(OS - i/o)
Disk scheduling

Disk scheduling
– CFQ (Complete Fair Queuing). CFQ algorithm assigns different queues to the disk i/o

requests from the different processes, and each queue is given time quanta. The length
of the quantum and the number of requests that can be processed in a queue depend
on the i/o priority of the process.

• In Linux, ionice command allow us to modify the i/o priority of a process.

– Other schedulers in Linux; noop, deadline, anticipatory scheduling,...

(OS - i/o)
Disk scheduling

IONICE(1) User Commands IONICE(1)

NAME
ionice - set or get process I/O scheduling class and priority

SYNOPSIS
ionice [-c class] [-n level] [-t] -p PID...
ionice [-c class] [-n level] [-t] command [argument...]

DESCRIPTION
This program sets or gets the I/O scheduling class and priority for a program. If no arguments or just -p
is given, ionice will query the current I/O scheduling class and priority for that process.

When command is given, ionice will run this command with the given arguments. If no class is specified,
then command will be executed with the "best-effort" scheduling class (-c 2). The default priority level
is 4 (-n 4).

As of this writing, a process can be in one of three scheduling classes:
• Idle (-c 3): A program running with idle I/O priority will only get disk time when no other
program has asked for disk I/O for a defined grace period. The impact of an idle I/O process on
normal system activity should be zero. This scheduling class does not take a priority argument.
Presently, this scheduling class is permitted for an ordinary user (since kernel 2.6.25).

• Best-effort (-c 2): This is the effective scheduling class for any process that has not asked for a
specific I/O priority. This class takes a priority argument from 0-7, with a lower number being
higher priority. Programs running at the same best-effort priority are served in a round-robin
fashion.

• Note that before kernel 2.6.26 a process that has not asked for an I/O priority formally
uses "none" as scheduling class, but the I/O scheduler will treat such processes as if it were
in the best-effort class. The priority within the best-effort class will be dynamically derived
from the CPU nice level of the process: io_priority = (cpu_nice + 20) / 5. [-c 2 :nice=0 –n 4]

• For kernels after 2.6.26 with the CFQ I/O scheduler, a process that has not asked for an I/O
priority inherits its CPU scheduling class. The I/O priority is derived from the CPU nice level
of the process (same as before kernel 2.6.26).

• Realtime (-c 1): The RT scheduling class is given first access to the disk, regardless of what
else is going on in the system. Thus the RT class needs to be used with some care, as it can starve
other processes. As with the best-effort class, 8 priority levels are defined denoting how big a time
slice a given process will receive on each scheduling window. This scheduling class is not permitted
for an ordinary (i.e., non-root) user.

(OS - i/o)
Disk scheduling

IONICE(1) User Commands IONICE(1)

OPTIONS
-c, --class class: Specify the name or number of the scheduling class to use:

0 for none, 1 for realtime, 2 for best-effort, 3 for idle.

-n, --classdata level: Specify the scheduling class data. This only has an effect if the class
accepts an argument. For realtime and best-effort, 0-7 are valid data (priority levels).

-p, --pid PID... : Specify the process IDs of running processes for which to get or set the
scheduling parameters.

-t, --ignore: Ignore failure to set the requested priority. If command was specified, run it even in
case it was not possible to set the desired scheduling priority, which can happen due to
insufficient privileges or an old kernel version.

EXAMPLES
ionice -c 3 -p 89
Sets process with PID 89 as an idle I/O process.

ionice -c 2 -n 0 bash
Runs 'bash' as a best-effort program with highest priority.
ionice -p 89 91
Prints the class & priority of the processes with PID 89 and 91.

NOTES
Linux supports I/O scheduling priorities and classes since 2.6.13 with the CFQ I/O scheduler.

user@pc:~$ ls –lsR / > /dev/null
user@pc:~$ ps -l
~~ PID PPID NI ~~ CMD
~~ 8301 8200 0 ~~ ls

user@pc:~$ ionice -c 3 –p 8301
user@pc:~$ ionice -p 8301
Idle

user@pc:~$ ionice -c 2 -n 0 -p 8301
user@pc:~$ ionice -p 8301
best-effort: prio 0

user@pc:~$ ionice -c 2 -n 1 -p 8301
user@pc:~$ ionice -p 8301
best-effort: prio 1

user@pc:~$ ionice -c 2 -p 8301
user@pc:~$ ionice -p 8301
best-effort: prio 4 [def prio]

user@pc:~$ sudo ionice -c 1 -p 8301
user@pc:~$ ionice -p 8301
realtime: prio 4

(OS - i/o)

INPUT/OUTPUT

Input/output
Structure of an i/o system
Structure of the i/o software
Types of input/output
Methods for input/output
Disk scheduling
Input/output in UNIX

(OS - i/o)
I/O in Unix

I/o devices in Unix
• In UNIX devices appear as a file (typically in directory /dev). In some

systems (i.e. solaris) this file is a symbolic link to the place where the
actual device file is located.

• Devices are given an inode. Apart from indicating if such device is either a
block or character device, this inode keeps two numbers (major number
and minor number). This numbers indicate respectively the device handler
that is used to access the device, and which unit (among those managed
by such device handler) is used.

• To access devices we can use the same calls used for accessing files (open,
read, write) provided the caller process has the appropriate privileges.

• We can also access to the features (and additional functionalities) of the
devices with the ioctl call.

user@pc:~$ ls -li /dev/sda /dev/sda1 /dev/sda2 /dev/snd/seq /dev/snd/pcmC0D2c

1209 brw-rw---- 1 root disk 8, 0 nov 22 19:45 /dev/sda
1216 brw-rw---- 1 root disk 8, 1 nov 22 19:45 /dev/sda1
1217 brw-rw---- 1 root disk 8, 2 nov 22 19:45 /dev/sda2
10353 crw-rw---T+ 1 root audio 116, 1 nov 22 19:45 /dev/snd/seq
12340 crw-rw---T+ 1 root audio 116, 2 nov 22 19:45 /dev/snd/pcmC0D2c

(OS - i/o)
I/O in Unix

I/o devices in Unix (Example: major/minor numbers)
Example: $ls –li /dev/…

– … shows the permissions (brw-rw----), the owner (root) ,the group (disk,
cdrom, tty,…), the major device number (8), the minor device number (0), the
date and hour, and the device name (/dev/xxx)

– When we access a device file,…
• … the major number is used to select which device driver is called to perform the i/o operation. The minor

number is passed as a parameter to this call. How the minor number is interpreted depends only on the driver.
This behavior can be found in the driver documentation, which usually describes how minor numbers are used.

user@pc:~$ ls -li /dev/sd* /dev/sr0 /dev/tty1

7588 brw-rw---- 1 root disk 8, 0 sep 15 11:39 /dev/sda
9329 brw-rw---- 1 root disk 8, 1 sep 15 11:39 /dev/sda1
9330 brw-rw---- 1 root disk 8, 2 sep 15 11:39 /dev/sda2
9331 brw-rw---- 1 root disk 8, 3 oct 26 14:51 /dev/sda3
9332 brw-rw---- 1 root disk 8, 4 sep 15 11:47 /dev/sda4
~
10332 brw-rw---- 1 root disk 8, 16 sep 15 11:39 /dev/sdb
10335 brw-rw---- 1 root disk 8, 32 sep 15 11:39 /dev/sdc
11347 brw-rw---- 1 root disk 8, 48 sep 15 11:39 /dev/sdd
11348 brw-rw---- 1 root disk 8, 64 sep 15 11:39 /dev/sde
11366 brw-rw---- 1 root disk 8, 80 sep 15 11:39 /dev/sdf
~
1248 brw-rw---- 1 root disk 8, 96 sep 15 11:39 /dev/sdg
1249 brw-rw---- 1 root disk 8, 97 sep 15 11:39 /dev/sdg1
1250 brw-rw---- 1 root disk 8, 98 sep 15 11:39 /dev/sdg2
1251 brw-rw---- 1 root disk 8, 101 sep 15 11:39 /dev/sdg5
~
9302 brw-rw----+ 1 root cdrom 11, 0 nov 7 11:03 /dev/sr0
1043 crw-rw---- 1 root tty 4, 1 sep 15 11:47 /dev/tty1

Minor numbers sdg*:
96+0  sdg
96+1  sdg1
96+2  sdg2
96+5  sdg5

Minor numbers sda*:
0+0  sda
0+1  sda1
0+2  sda2
0+3  sda3
0+4  sda4

(OS - i/o)
I/O in Unix

I/o devices in Unix (ioctl call)
• We can also access to the features (and additional functionalities) of the

devices with the ioctl call.

IOCTL(2) Linux Programmer's Manual IOCTL(2)

NAME
ioctl - control device

SYNOPSIS
#include <sys/ioctl.h>

int ioctl(int d, int request, ...);

DESCRIPTION
The ioctl() function manipulates the underlying device parameters of special files. In particular, many

operating characteristics of character special files (e.g., terminals) may be controlled with ioctl() requests. The
argument d must be an open file descriptor.

The second argument is a device-dependent request code. The third argument is an untyped pointer to memory. It's
traditionally char *argp (from the days before void* was valid C), and will be so named for this discussion.

An ioctl() request has encoded in it whether the argument is an in parameter or out parameter, and the size of
the argument argp in bytes. Macros and defines used in specifying an ioctl() request are located in the file
<sys/ioctl.h>.

RETURN VALUE
ERRORS
CONFORMING TO

No single standard. Arguments, returns, and semantics of ioctl() vary according to the device driver in
question (the call is used as a catch-all for operations that don't cleanly fit the UNIX stream I/O model). See
ioctl_list(2) for a list of many of the known ioctl() calls. The ioctl() function call appeared in Version 7 AT&T UNIX.

NOTES
In order to use this call, one needs an open file descriptor. Often the open(2) call has unwanted side effects,

that can be avoided under Linux by giving it the O_NONBLOCK flag.

SEE ALSO
execve(2), fcntl(2), ioctl_list(2), open(2), sd(4), tty(4)

Including control functions that are not usually
available via library-functions. For example,
eject a cd-rom, change the connection speed of a
modem (baud), etc.

(OS - i/o)
I/O in Unix

I/o devices in Unix Example: using ioctl to deal with a cd-rom device
$ man ioctl_list  see all available io_calls

 /usr/include/linux/cdrom.h
use open("/dev/cdrom",

O_RDONLY | O_NONBLOCK);

$./ioctl_cd
Abriré dispositivo de CDR = /dev/sr0
ioctl set, CDROMEJECT OK!!
ioctl set, CDROMCLOSETRAY OK!!

(OS - i/o)
I/O in Unix

I/o calls in Unix
• In UNIX, we use unformated i/o: we either read or write bytes. i/o calls

receive a file descriptor, a memory address, and the number of bytes that
must be transferred (as we will see below)

• open:
int open(const char *path, int flags, mode_t mode)

– Receives a filename (path), an opening mode (flags, that can take values: O_RDONLY,
O_WRONLY, O_RDWR, … O_APPEND, O_TRUNC, O_CREAT, O_EXCL), and permissions
(mode, in case the file is being created: i.e. 0777... S_IRUSR, S_IWUSR,...)

– Returns an integer that corresponds to the file descriptor (-1 on error). Such file
descriptor will be used in subsequent calls to read and write.

• close:
int close (int fd)

– Closes a file descriptor (fd) previously obtained with open.

• read and write:

(OS - i/o)
I/O in Unix

I/o calls in Unix
• read and write:

ssize_t read (int fd, void *buf, size_t count)

ssize_t write (int fd, const void *buf, size_t count)

– Receive a file descriptor (fd), a source/target memory address (buff), and the number of
bytes that must be transferred (count).

– Return the number of bytes actually transferred (either read or written).
– The reading/writing is done in the current position within the file (off_t cur_pos). Such

cur_pos is updated after those calls.
– The current position in the file (cur_pos) can be modified with a call to lseek.

• lseek:
off_t lseek (int fd, off_t offset, int whence)

– Receives a file descriptor (fd), the amount of bytes to move (offset) with respect to the
third parameter (whence). This third parameter can take the values:

• SEEK_SET: offset is related to the beginning (position=0) of the file sets cur_pos = offset
• SEEK_CUR: offset is related to the current position in the file sets cur_pos = cur_pos + offset
• SEEK_END: offset is related to the end of the file (size=N)  sets cur_pos = N-offset

(OS - i/o)
I/O in Unix

I/o calls in Unix Example: open, close, read, write, lseek

Per-process
open-file table

0
1
2
3

...

System-wide
open-file table

inode pointer
o_rdonly
curr_pos

active-inode
table

in-memory copy
of the inode

Disk

in-disk
inode

user kernel

int fd;
fd = open(file_name,);

read(fd,);
write(fd,);
lseek(fd, offset, SEEK_SET);
read(fd,);

close(fd);

data blocks

(OS - i/o)
I/O in Unix

I/o calls in Unix
• pread and pwrite:

ssize_t read (int fd, void *buf, size_t count, off_t offset)
ssize_t write (int fd, const void *buf, size_t count, off_t offset)

– Similar to read and write but they also receive the offset (bytes from the beginning of
the file) where the read or writting is done.

– These calls do not update the cur_pos in the file.

• [p]readv, [p]writev: Calls for i/o in non-contiguous memory addresses:
ssize_t readv (int fd, const struct iovec *iov, int iovcnt)
ssize_t writev (int fd, const struct iovec *iov, int iovcnt)
ssize_t preadv (int fd, const struct iovec *iov, int iovcnt, off_t offset)
ssize_t pwritev(int fd, const struct iovec *iov, int iovcnt, off_t offset)

– These calls are similar to read, write, pread, pwrite. However, instead of performing an
i/o operation to a unique memory buffer, they perform i/o to several iovcnt different
buffers that are described through iov array.

– Each struct iovec describes a i/o buffer: its memory address (iov_base), and the
number of bytes to transfer (iov_len).

struct iovec {
void *iov_base; /*starting address*/
size_t iov_len; /*number of bytes to transfer*/

}

Related to the
beginning of the file

(OS - i/o)
I/O in Unix

I/o calls in Unix

– readv example

(OS - i/o)
I/O in Unix

Asynchronous input/output
• In UNIX processes have the chance to make an asynchronous i/o

– They initiate the i/o and are notified when such i/o is completed

• The functions correspond to the real time POSIX standard (they must be
linked with –lrt)

• aio_read, aio_write, aio_return, aio_error, and aio_cancel:
int aio_read (struct aiocb *aiocbp)

int aio_write(struct aiocb *aiocbp)

ssize_t aio_return(struct aiocb *aiocbp)

int aio_error(const struct aiocb *aiocbp)

int aio_cancel(int fd, struct aiocb *aiocbp)

returned value of aio_error:(permits to know if the operation was actually completed && how it did)

• EINPROGRESS, the operation is not completed yet
 We can check that while it returns EINPROGRESS  it is still in progress

• ECANCELED, the request was canceled.

• 0, the async i/o operation completed successfully.

• >0, the async i/o operation failed. This returned value is the same value that would have
been stored in the errno variable in the case of a synchronous read(2), write(2)

//Queues request: returns 0 on success, -1 on error

//Queues request: returns 0 on success, -1 on error

//gets return status of asynchronous I/O operation
// (i.e. the same as the synchronous read,write)

//shows the error status of a previous async
//operation

//Tries to cancel a queued async i/o request

(OS - i/o)
I/O in Unix

Asynchronous input/output
• struct aiocb contains the following fields (and maybe others

depending on the implementation, see man aio)
struct aiocb {

int aio_fildes; /* File descriptor */

off_t aio_offset; /* File offset */

volatile void *aio_buf; /* Location of buffer */

size_t aio_nbytes; /* Length of transfer */

int aio_reqprio; /* Request priority */

struct sigevent aio_sigevent; /* Notification method */

int aio_lio_opcode; /* Operation to be performed; lio_listio() only */

...

};

– aio_sigevent: This field is a structure that specifies how the caller is to be notified when
the asynchronous I/O operation completes. Possible values for
aio_sigevent.sigev_notify are SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_THREAD. See
sigevent(7) for further details.

• FIELDS: aio_sigevent.sigev_notify = SIGEV_SIGNAL; aio_sigevent.sigev_signo=IO_SIGNAL;
aio_sigevent.sigev_value = (value to pass to to the handler); aio_sigevent.sigev_notify_function;
aio_sigevent.sigev_notify_attributes; aio_sigevent.sigev_notify_thread_id

(OS - i/o)
I/O in Unix

Asynchronous input/output
• Async read example

XXXXX;

(OS - i/o)
I/O in Unix

Redirection of input, output, or error
• File descriptors 0, 1, and 2 (STDIN_FILENO, STDOUT_FILENO,

STDERR_FILENO) correspond respectively to the standard input, standard
output, and standard error for a given process.

• The standard input and the standard ouput/error can be redirected to a
given file.

– For example, in bash this is done with symbols: ‘<’ (input), ‘>’(output), ‘&>’ (error)

• Examples:
1. Redirect the list of all the files in directory /usr to file “listing.txt”

$ ls –l /usr > listing.txt

2. Redirect the errors that arise when compiling program p1.c to file “errs.txt”
$ gcc p1.c &> errs.txt

3. Run grep to search for word “undefined” within file errs.txt
$ grep undefined errs.txt ## grep reads lines from file (argv[2]=‘errs.txt’)

$ grep undefined <errs.txt ## grep reads lines from std input (argv[2]=NULL)

(OS - i/o)
I/O in Unix

Redirection of input, output, or error
• System calls dup, dup2, and fcntl with command F_DUPFD allow us to do

the redirection
• dup duplicates the file descriptor, and uses the smallest available number

(entry in the open-file table).
– The following code shows how to redirect the standard output to a file ‘out.txt’ (no

errors-control is included)

int fd= open (“out.txt”, O_WRONLY);

close (STDOUT_FILENO);

dup (fd);

... // from here on, standard output is redirected

Per-process
open-file table

0
1
2
3
4
5

...

System-wide
open-file table

inode pointer
O_wronly
curr_pos

Per-process
open-file table

0
1
2
3
4
5

...

System-wide
open-file table

inode pointer
o_wronly
curr_pos

Per-process
open-file table

0
1
2
3
4
5

...

System-wide
open-file table

inode pointer
o_wronly
curr_pos

1 2 3

1
2
3

file descriptor
numbers (fd)

(OS - i/o)
I/O in Unix

Redirection of input, output, or error
• int dup(int fd)

– int newfd= dup(fd): both the newfd and the old fd refer to the same open-file, and
consequently they share status flags such as the curr_pos (offset within the file) if we
call lseek over fd the curr_pos is also modified for newfd (and vice versa).

Per-process
open-file table

0
1
2
3
4
5

...

System-wide
open-file table

inode pointer
O_wronly
curr_pos

fd

newfd

(OS - i/o)
I/O in Unix

Redirection of input, output, or error
• If we want to undo the redirection, we have to keep a duplicate of the

original file descriptor and then redirect back to that duplicate
int backup, df;

backup = dup(STDOUT_FILENO);

fd = open(“out.txt”, O_WRONLY,...);

close (STDOUT_FILENO);

dup (fd);

// from here on, standard output is redirected
...

// now we undo redirection

close(STDOUT_FILENO);

dup(backup);

close(fd); /* if they are no longer used */

close(backup);

• It can also be done with dup2() or with fcntl()

Per-process
open-file table

0
1
2
3
4
5

...

stdin
stdout
stderr
stdout
out.txt

1

3

Per-process
open-file table

0
1
2
3
4
5

...

stdin

stderr
stdout
out.txt

1

backup = dup(STDOUT_FILENO);
fd = open(“out.txt”,O_WRONLY);

2

close(STDOUT_FILENO);

2

Per-process
open-file table

0
1
2
3
4
5

...

stdin
out.txt
stderr
stdout
out.txt

3

dup(fd)

Per-process
open-file table

0
1
2
3
4
5

...

stdin

stderr
stdout
out.txt

4

close(STDOUT_FILENO);

Per-process
open-file table

0
1
2
3
4
5

...

stdin
stdout
stderr
stdout
out.txt

5

dup(backup)

Per-process
open-file table

0
1
2
3
4
5

...

stdin
stdout
stderr

6

close(fd);
close(backup);

4
5

6

(OS - i/o)
I/O in Unix

Redirection of input, output, or error
• The following code executes a program (with arguments) with its standard output redirected

to a file. The file, the program, and args are received as command-line parameters
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdio.h>
void main (int arcc, char *argv[])
{
int fd, backup, status;
pid_t pid;
if (argv[1]==NULL || argv[2]==NULL){

printf ("use %s filename prog arg...\n",argv[0]);
printf ("\t executes prog with its args. Output is redirected to filename\n");
exit(0);

}
if ((fd=open(argv[1], O_CREAT|O_EXCL|O_WRONLY ,0777))==-1){

perror("Unable to open target file for redirection");
exit(0);

}

backup=dup(STDOUT_FILENO);
close(STDOUT_FILENO); /*redirection*/
dup(fd);
if ((pid=fork())==0){

execvp(argv[2],argv+2);
perror ("Unable to execute program");
exit(255);

}
waitpid(pid,&status);
close(STDOUT_FILENO); /*undo redirection*/
dup(backup);
if (WIFEXITED(status) && WEXITSTATUS(status)!=255)

printf("program %s redirected to %s ended successfully(%d)\n",
argv[2],argv[1],WEXITSTATUS(status));

else unlink(argv[1]); //deletes output file
}

//creates output file

//copy of stdout

//file descriptor “1” now points to the output file “argv[1]”

//child process receives a copy of the file descriptors where
//the output is already redirected.

	Lesson 5: Input / Output
	Input/output
	Structure of an i/o system
	Structure of the i/o software
	Types of i/o
	Memory-mapped & Explicit i/o
	Synch vs Asynch i/o

	Methods for i/o
	Polling
	Interrupt-driven i/o
	DMA

	Disk scheduling
	Disk structure
	Disk scheduling options

	I/O in Unix
	minor/major numbers
	ioctl
	I/O calls
	Asynchronous i/o
	I/O in Unix
	Redirection-dup

