
Operating Systems

Grado en Informática. Course 2018-2019

Lab Assignment 3: Processes

CONTINUE the coding of the shell started in the previous lab assigments.
In this lab assignment we’ll add to the shell the capability to execute external
programs both in foreground and background and without creating process
(replacing the shell’s code).

The shell will keep track (using a list) of the processes created to execute
programs in background. For the implementation of this list (linked, array,
array of pointers . . .), groups must use the same type of list used the previous
lab assignment.

The shell will also keep a list of directories (the comand searchlist manages
this list) where to find executables for both the exec comand and the execu-
tion with process commands (either background or foreground) so that for
an external program to be executed either a complete pathname to it is given
or it resides in one of the directories in the searchlist. (We WILL NOT USE
THE execvp system call, but the execv system call that DOES NOT use the
system PATH; this searchlist is the equivalent in our shell to the PATH in
the system’s shell). A nearly complete and easy to use implementation of
the searchlist with a external variable is given later in this documenmt.

setpriority [pid] [value]. If both arguments (pid and value) are specified, the
priority of process pid is changed to value. If only pid is specified, the
shell will show the priority of process pid.

fork The shell creates a child process with the fork system call (this child
process executes the same code as the shell) and waits (with one of the
wait system calls) for it to end.

searchlist Displays the searchlist: List of directories where the shell searchs for
executable files.

searchlist +dir Adds directory dir to the search list

searchlist exfile Displays the complete pathname to executable file exfile (should
it exist). Equivalent to the system command which (Except that which
uses the directories in the PATH environment variable)

searchlist -path Directories in the PATH environment variable are added to the
searchlist

exec prog arg1 arg2 . . . Executes, without creating a process (REPLACING
the shell’s code) the program prog with its arguments. prog is a file-
name that represents an external program and arg1, arg2 . . . represent

1

the program’s command line arguments (they can be more than two).
The execv system call should be used: for prog to be executed
either it resides in one of the directories of the searchlist or a complete
pathname to it must be given.

exec prog arg1 arg2. . . @pri Does the same as the previous exec command,
but before executing prog it changes the priority of the proccess to pri

prog arg1 arg2. . . The shell creates a process that executes in foreground

the program prog with its arguments. ’prog’ is a file-
name that represents an external pro-
gram and arg1, arg2 . . . represent the program’s command line
arguments (they can be more than two). As in the previous exec com-
mand, The execv system call should be used: for prog to be
executed either it resides in one of the directories of the searchlist or a
complete pathname to it must be given

prog arg1 arg2. . . @pri Does the same as the previous command, but be-
fore executing prog it changes the priority of the proccess that executes
prog to pri

background prog arg1 arg2. . . The shell creates a process tha executes in back-
ground the program prog with its arguments. prog is a filename that
represents an external program and arg1, arg2 . . . represent the pro-
gram’s command line arguments (they can be more than two). The pro-
cess that executes prog is added to the list the shell keeps of the back-
ground processes. The command jobs shows this list. PROGRAMS
THAT READ FROM THE STANDARD INPUT SHOULD
NO BE EXECUTED IN BACKGROUND.

background prog arg1 arg2. . . @pri Does the same as the previous command,
but before executing prog it changes the priority of the proccess that
executes prog to pri. The process that executes prog is added to the list
the shell keps of the backgroud processes. The command jobs shows this
list. PROGRAMS THAT READ FROM THE STANDARD
INPUT SHOULD NO BE EXECUTED IN BACKGROUND.
Examples:

#) xterm

cannot execute: xterm not found

#) searchlist

#) searchlist +/bin

#) searchlist +/usr/bin

#) searchlist +.

#) searchlist

/bin

2

/usr/bin

.

#) searchlist xterm

/usr/bin/xterm

#) xterm

#) background xterm -fg green @12

#) background xterm @10

#) searchlist ls

/bin/ls

#) exec ls -l

total 112

-rw-r--r-- 1 antonio antonio 4334 Nov 10 13:34 Lists.c

-rw-r--r-- 1 antonio antonio 1304 Nov 10 13:32 Lists.h

-rw-r--r-- 1 antonio antonio 14128 Nov 10 13:34 Lists.o

-rw-r--r-- 1 antonio antonio 121 Nov 2 21:30 Makefile

-rwxr-xr-x 1 antonio antonio 45672 Nov 16 13:28 Shell

-rwx------ 1 antonio antonio 16590 Nov 16 13:28 Shell.c

antonio@abyecto:~/Desktop/OS-LAB$

jobs Shows the list of background processes of the shell. For each process it
must show (IN A SINGLE LINE):

– The process pid

– The process priority

– The command line the process is executing (executable and argu-
ments)

– The time it started

– The process state (Running, Stopped, Terminated Normally or
Terminated By Signal).

– For processes that have terminated normally the value returned,
for processes stopped or terminated by a signal, the name of the
signal.

This command USES THE LIST OF BACKGROUND PRO-
CESSES of the shell, it DOES NOT HAVE TO GO THROUGH
THE /proc FILESYSTEM

#) jobs

4793 SIGNALED (SIGKILL) p=-1 Fri Oct 19 2018 12:35 xterm -e bash

4801 ACTIVE p=0 Fri Oct 19 2018 12:37 xclock -update 1

4802 STOPPED (SIGSTOP) p=-1 Fri Oct 19 2018 12:39 xterm -fg green

4840 TERMINATED (255) p=-1 Fri Oct 19 2018 12:40 xterm

->

proc pid Shows information on process pid (provided pid represents a back-

3

ground process from the shell). If pid is not given or if pid is not a
background process from the shell, this comand does exactly the same
as the comand jobs.

clearjobs Empties the list of background processes. Process continue to execute,
they simply are not shown in the shell’s list anymore.

pipe prog arg1 arg2 ... % progB argB1 argB2 . . . The shell creates
two processes, one of the executing prog with arguments arg1, arg2
. . . and othe executing progB with arguments argB1, So that the
standard output of the first process is redirected to the standard input
of the second process.

-> searchlist -path

-> pipe -ls -l /usr/local % wc -l -c

13 676

->

Information on the system calls and library functions needed to
code this program is available through man: (setpriority, getpriority,
fork, exec, waitpid, pipe, dup . . .).

• Work must be done in pairs.

• The source code will be submitted to the subversion repository under
a directory named P3

• The name of the main program will be shell.c. Tha list of the previous
assigment will use files list.h and list.c, the list for processes in back-
ground should use files listproc.h and listproc.c. An adecuate Makefile

should be provided.

• Only one of the members of the workgroup will submit the source code.
The names, logins and D.N.I. of all the members of the group should
be in the source code of the main program (at the top of the file)

DEADLINE: December Friday 14, 2018, 23:00

Assessment: For each pair, it will be done in its corresponding
group, during the lab classes

CLUES

The difference between executing in foreground and background is that in
foreground the parent process waits for the child process to end using one of
the wait system calls, whereas in background the parent process continues to
execute concurrently with the child process.

Executing in background should not be tried with programas that read from

4

the standard input in the same session. xterm and xclock are good candi-
dates to try background execution.

To create processes we use the fork() system call. fork() creates a processes
that is a clone of the calling process, the only difference is the value returned
by fork (0 to the child process and the child’s pid to the parent process).

The waitpid system call allows a process to wait for a child process to end.

The following code creates a child process that executes funcion2 while the
parent executes funcion1. When the child has ended, the parent process
executes funcion3

.......

if ((pid=fork())==0) {

funcion2();

exit(0);

}

else {

funcion1();

waitpid(pid,NULL,0);

funcion3();

}

As exit() ends a program, we could rewrite it like this

.......

if ((pid=fork())==0) {

funcion2();

exit(0);

}

funcion1();

waitpid(pid,NULL,0);

funcion3();

In this code both the parent process and the child process execute funcion3()

.......

if ((pid=fork())==0)

funcion2();

else

funcion1();

funcion3();

For a process to execute a program we use the execv() system call. execv

5

does not search in the PATH for the executable, we must supply execv with
a complete pathname to the executable file.

An easy implementation of the searchlist using an external (global) variable

#define MAXNOMBRE 1024

#define MAXSEARCHLIST 128

char *searchlist[MAXSEARCHLIST]={NULL};

int SearchListAddDir(char * dir)

{

int i=0;

char * p;

while (i<MAXSEARCHLIST-2 && searchlist[i]!=NULL)

i++;

if (i==MAXSEARCHLIST-2)

{errno=ENOSPC; return -1;} /*no cabe*/

if ((p=strdup(dir))==NULL)

return -1;

searchlist[i]=p;

searchlist[i+1]=NULL;

return 0;

}

void SearchListNew()

{

int i;

for (i=0; searchlist[i]!=NULL; i++) {

free(searchlist[i]);

searchlist[i]=NULL;

}

}

void SearchListShow()

{

int i;

for (i=0; searchlist[i]!=NULL; i++)

6

printf ("%s\n",searchlist[i]);

}

void SearchListAddPath()

{

char *aux;

char *p;

if ((p=getenv("PATH"))==NULL){

printf ("Imposible obtener PATH del sistema\n");

return;

}

aux=strdup(p);

if ((p=strtok (aux,":"))!=NULL && SearchListAddDir(p)==-1)

printf ("Imposible anadir %s: %s\n", p, strerror(errno));

while ((p=strtok(NULL,":"))!=NULL)

if (SearchListAddDir(p)==-1){

printf ("Imposible anadir %s: %s\n", p, strerror(errno));

break;

}

free(aux);

}

char * BuscarEjecutable(char * ejec)

{

static char aux[MAXNOMBRE];

int i;

struct stat s;

if (ejec==NULL)

return NULL;

if (ejec[0]==’/’ || !strncmp (ejec,"./",2) || !strncmp (ejec,"../",2)){

if (stat(ejec,&s)!=-1)

return ejec;

else

return NULL;

}

for (i=0;searchlist[i]!=NULL; i++){

sprintf(aux,"%s/%s",searchlist[i],ejec);

if (stat(aux,&s)!=-1)

return aux;

}

return NULL;

7

}

To check a process state we can use waitpid() with the following flags.

waitpid(pid, &estado, WNOHANG |WUNTRACED |WCONTINUED) will give us
information about the state of process pid in the variable estado ONLY
WHEN THE RETURNED VALUE IS pid. Such information can be
evaluated with the macros descibed in man waitpid (WIFEXITED, WIFSIG-
NALED . . .)

The following functions allow us to obtain the signal name from the signal
number and viceversa. (in systems where we do not have sig2str or str2sig)

#include <signal.h>

/******************************SENALES **/

struct SEN{

char *nombre;

int senal;

};

static struct SEN sigstrnum[]={

"HUP", SIGHUP,

"INT", SIGINT,

"QUIT", SIGQUIT,

"ILL", SIGILL,

"TRAP", SIGTRAP,

"ABRT", SIGABRT,

"IOT", SIGIOT,

"BUS", SIGBUS,

"FPE", SIGFPE,

"KILL", SIGKILL,

"USR1", SIGUSR1,

"SEGV", SIGSEGV,

"USR2", SIGUSR2,

"PIPE", SIGPIPE,

"ALRM", SIGALRM,

"TERM", SIGTERM,

"CHLD", SIGCHLD,

"CONT", SIGCONT,

"STOP", SIGSTOP,

"TSTP", SIGTSTP,

"TTIN", SIGTTIN,

"TTOU", SIGTTOU,

"URG", SIGURG,

"XCPU", SIGXCPU,

8

"XFSZ", SIGXFSZ,

"VTALRM", SIGVTALRM,

"PROF", SIGPROF,

"WINCH", SIGWINCH,

"IO", SIGIO,

"SYS", SIGSYS,

/*senales que no hay en todas partes*/

#ifdef SIGPOLL

"POLL", SIGPOLL,

#endif

#ifdef SIGPWR

"PWR", SIGPWR,

#endif

#ifdef SIGEMT

"EMT", SIGEMT,

#endif

#ifdef SIGINFO

"INFO", SIGINFO,

#endif

#ifdef SIGSTKFLT

"STKFLT", SIGSTKFLT,

#endif

#ifdef SIGCLD

"CLD", SIGCLD,

#endif

#ifdef SIGLOST

"LOST", SIGLOST,

#endif

#ifdef SIGCANCEL

"CANCEL", SIGCANCEL,

#endif

#ifdef SIGTHAW

"THAW", SIGTHAW,

#endif

#ifdef SIGFREEZE

"FREEZE", SIGFREEZE,

#endif

#ifdef SIGLWP

"LWP", SIGLWP,

#endif

#ifdef SIGWAITING

"WAITING", SIGWAITING,

#endif

9

NULL,-1,

}; /*fin array sigstrnum */

int Senal(char * sen) /*devuel el numero de senial a partir del nombre*/

{

int i;

for (i=0; sigstrnum[i].nombre!=NULL; i++)

if (!strcmp(sen, sigstrnum[i].nombre))

return sigstrnum[i].senal;

return -1;

}

char *NombreSenal(int sen) /*devuelve el nombre senal a partir de la senal*/

{ /* para sitios donde no hay sig2str*/

int i;

for (i=0; sigstrnum[i].nombre!=NULL; i++)

if (sen==sigstrnum[i].senal)

return sigstrnum[i].nombre;

return ("SIGUNKNOWN");

}

10

