
Past-present temporal programs
over finite traces

Pedro Cabalar1[0000−0001−7440−0953], Mart́ın Diéguez2[0000−0003−3440−4348],
François Laferrière3[0009−0006−8147−572X], and Torsten

Schaub3[0000−0002−7456−041X]

1 University of Corunna, Spain
2 University of Angers, France

3 University of Potsdam, Germany

Abstract. Extensions of Answer Set Programming with language con-
structs from temporal logics, such as temporal equilibrium logic over
finite traces (TELf ), provide an expressive computational framework for
modeling dynamic applications. In this paper, we study the so-called
past-present syntactic subclass, which consists of a set of logic program-
ming rules whose body references to the past and head to the present.
Such restriction ensures that the past remains independent of the future,
which is the case in most dynamic domains. We extend the definitions
of completion and loop formulas to the case of past-present formulas,
which allows for capturing the temporal stable models of past-present
temporal programs by means of an LTLf expression.

1 Introduction

Reasoning about dynamic scenarios is a central problem in the areas of Knowl-
edge Representation [6] (KR) and Artificial Intelligence (AI). Several formal
approaches and systems have emerged to introduce non-monotonic reasoning
features in scenarios where the formalisation of time is fundamental [3, 4, 13, 20,
25]. In Answer Set Programming [7] (ASP), former approaches to temporal rea-
soning use first-order encodings [21] where the time is represented by means of a
variable whose value comes from a finite domain. The main advantage of those
approaches is that the computation of answer sets can be achieved via incremen-
tal solving [18]. Their downside is that they require an explicit representation of
time points.

Temporal Equilibrium Logic [2] (TEL) was proposed as a temporal exten-
sion of Equilibrium Logic [23] with connectives from Linear Time Temporal
Logic [24] (LTL). Due to the computational complexity of its satisfiability prob-
lem (ExpSpace), finding tractable fragments of TEL with good computational
properties have also been a topic in the literature. Within this context, splittable
temporal logic programs [1] have been proved to be a syntactic fragment of TEL
that allows for a reduction to LTL via the use of Loop Formulas [16].

When considering incremental solving, logics on finite traces such as LTLf [12]
have been shown to be more suitable. Accordingly, Temporal Equilibrium Logic



on Finite traces (TELf ) [9] was created and became the foundations of the
temporal ASP solver telingo [8].

We present a new syntactic fragment of TELf , named past-present temporal
logic programs. Inspired by Gabbay’s seminal paper [17], where the declarative
character of past temporal operators is emphasized, this language consists of a
set of logic programming rules whose formulas in the head are disjunctions of
atoms that reference the present, while in its body we allow for any arbitrary
temporal formula without the use of future operators. Such restriction ensures
that the past remains independent of the future, which is the case in most dy-
namic domains, and makes this fragment advantageous for incremental solving.

As a contribution, we study the Lin-Zhao theorem [22] within the context
of past-present temporal logic programs. More precisely, we show that when
the program is tight [14], extending Clark’s completion [11, 15] to the temporal
case suffices to capture the answer sets of a finite past-present program as the
LTLf -models of a corresponding temporal formula. We also show that, when the
program is not tight, the use of loop formulas is necessary. To this purpose, we
extend the definition of loop formulas to the case of past-present programs and
we prove the Lin-Zhao theorem in our setting.

The paper is organised as follows: in Section 2, we review the formal back-
ground and we introduce the concept of past-present temporal programs. In
Section 3, we extend the completion property to the temporal case. Section 4 is
devoted to the introduction of our temporal extension of loop formulas. Finally,
in Section 5, we present the conclusions as well as some future research lines.
The full version of this paper can be found in [10].

2 Past-present temporal programs over finite traces

In this section, we introduce the so-called past-present temporal logic programs
and its semantics based on Temporal Equilibrium Logic over Finite traces (TELf
for short) as in [2]. The syntax of our language is inspired from the pure-past
fragment of Linear Time Temporal Logic (LTL) [19], since the only future oper-
ators used are always and weak next.

We start from a given set A of atoms which we call the alphabet. Then, past
temporal formulas φ are defined by the grammar:

φ ::= a | ⊥ | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | •φ | φ1 S φ2 | φ1 T φ2

where a ∈ A is an atom. The intended meaning of the (modal) temporal opera-
tors is as in LTL. •φ means that φ is true at the previous time point; φSψ can
be read as φ is true since ψ was true and φTψ means that ψ is true since both
φ and ψ became true simultaneously or ψ has been true from the beginning.

Given a ∈ N and b ∈ N, we let [a..b]
def
= {i ∈ N | a ≤ i ≤ b} and [a..b)

def
= {i ∈

N | a ≤ i < b}. A finite trace T of length λ over alphabet A is a sequence
T = (Ti)i∈[0..λ) of sets Ti ⊆ A. To represent a given trace, we write a sequence
of sets of atoms concatenated with ‘·’. For instance, the finite trace {a} ·∅ ·{a} ·∅
has length 4 and makes a true at even time points and false at odd ones.



A Here-and-There trace (for short HT-trace) of length λ over alphabet A
is a sequence of pairs (⟨Hi, Ti⟩)i∈[0..λ) with Hi ⊆ Ti for any i ∈ [0..λ). For
convenience, we usually represent the HT-trace as the pair ⟨H,T⟩ of traces
H = (Hi)i∈[0..λ) and T = (Ti)i∈[0..λ). Given M = ⟨H,T⟩, we also denote its
length as |M| def= |H| = |T| = λ. Note that the two traces H, T must satisfy a
kind of order relation, since Hi ⊆ Ti for each time point i. Formally, we define
the ordering H ≤ T between two traces of the same length λ as Hi ⊆ Ti for each
i ∈ [0..λ). Furthermore, we define H < T as both H ≤ T and H ̸= T. Thus, an
HT-trace can also be defined as any pair ⟨H,T⟩ of traces such that H ≤ T. The
particular type of HT-traces satisfying H = T are called total.

An HT-trace M = ⟨H,T⟩ of length λ over alphabet A satisfies a past tem-
poral formula φ at time point k ∈ [0..λ), written M, k |= φ, if the following
conditions hold:

1. M, k |= ⊤ and M, k ̸|= ⊥
2. M, k |= p if p ∈ Hk for any atom p ∈ A
3. M, k |= φ ∧ ψ iff M, k |= φ and M, k |= ψ

4. M, k |= φ ∨ ψ iff M, k |= φ or M, k |= ψ

5. M, k |= ¬φ iff ⟨T,T⟩, k ̸|= φ

6. M, k |= •φ iff k > 0 and M, k−1 |= φ

7. M, k |= φ S ψ iff for some j ∈ [0..k], we have M, j |= ψ and M, i |= φ for all
i ∈ (j..k]

8. M, k |= φ T ψ iff for all j ∈ [0..k], we have M, j |= ψ or M, i |= φ for some
i ∈ (j..k]

A formula φ is a tautology (or is valid), written |= φ, iffM, k |= φ for any HT-
trace M and any k ∈ [0..λ). We call the logic induced by the set of all tautologies
Temporal logic of Here-and-There over finite traces (THTf for short).

The following equivalences hold in THTf : 1.⊤ ≡ ¬⊥, 2. I ≡ ¬•⊤, 3.■φ ≡ ⊥Tφ,
4. ♦φ ≡ ⊤ S φ, 5. •̂φ ≡ •φ ∨ I.

Definition 1 (Past-present Program). Given alphabet A, the set of regular
literals is defined as {a,¬a, | a ∈ A}.

A past-present rule is either:
– an initial rule of form H ← B
– a dynamic rule of form ◦̂□(H ← B)
– a final rule of form □(F→ (⊥ ← B) )

where B is an pure past formula for dynamic rules and B = b1∧· · ·∧ bn with
n ≥ 0 for initial and final rules, the bi are regular literals, H = a1∨· · ·∨am with
m ≥ 0 and aj ∈ A. A past-present program is a set of past-present rules. ⊓⊔

We let I (P ), D(P ), and F (P ) stand for the set of all initial, dynamic, and
final rules in a past-present program P , respectively. Additionally we refer to H
as the head of a rule r and to B as the body of r. We let B(r) = B and H (r) = H
for all types of rules above. For example, let consider the following past-present



program P1:

load← (1)

◦̂□(shoot ∨ load ∨ unload← ) (2)

◦̂□(dead← shoot ∧ ¬unload S load) (3)

◦̂□(shoot← dead) (4)

□(F→ (⊥ ← ¬dead)) (5)

We get I (P1) = {(1)}, D(P1) = {(2), (3), (4)}, and F (P1) = {(3)}. Rule (1)
states that the gun is initially loaded. Rule (2) gives the choice to shoot, load, or
unload the gun. Rule (3) states that if the gun is shot while it has been loaded,
and not unloaded since, the target is dead. Rule (4) states that if the target is
dead, we shoot it again. Rule (5) ensures that the target is dead at the end of
the trace.

The satisfaction relation of a past-present rule on an HT-trace M of length
λ and at time point k ∈ [0..λ) is defined below:

– M, k |= H ← B iff M′, k ̸|= B or M′, k |= H, for all M′ ∈ {M, ⟨T,T⟩}
– M, k |= ◦̂□(H ← B) iff M′, i ̸|= B or M′, i |= H for all M′ ∈ {M, ⟨T,T⟩}

and all i ∈ [k + 1..λ)
– M, k |= □(F→ (⊥ ← B) ) iff ⟨T,T⟩, λ− 1 ̸|= B

An HT-trace M is a model of a past-present program P if M, 0 |= r for all
rule r ∈ P . Let P be past-present program. A total HT-trace ⟨T,T⟩ is a temporal
equilibrium model of P iff ⟨T,T⟩ is a model of P , and there is no other H < T
such that ⟨H,T⟩ is a model of P . The trace T is called a temporal stable model
(TS-model) of P .

For length λ = 2, P1 has a unique TS-model {load} · {shoot, dead}.

3 Temporal completion

In this section, we extend the completion property to the temporal case of past-
present programs.

An occurrence of an atom in a formula is positive if it is in the antecedent of
an even number of implications, negative otherwise. An occurrence of an atom in
a formula is present if it is not in the scope of • (previous). Given a past-present
program P over A, we define its (positive) dependency graph G(P ) as (A, E)
such that (a, b) ∈ E if there is a rule r ∈ P such that a ∈ H (r) ∩ A and b has
positive and present occurence in B(r) that is not in the scope of negation. A
nonempty set L ⊆ A of atoms is called loop of P if, for every pair a, b of atoms
in L, there exists a path of length > 0 from a to b in G(P ) such that all vertices
in the path belong to L. We let L(P ) denote the set of loops of P .

Due to the structure of past-present programs, dependencies from the future
to the past cannot happen, and therefore there can only be loops within a same



time point. To reflect this, the definitions above only consider atoms with present
occurences. For example, rule a← b∧•c generates the edge (a, b) but not (a, c).

For P1, we get for the initial rules G(I (P1)) = ({load, unload, shoot, dead}, ∅)
whose loops are L(I (P1)) = ∅. For the dynamic rules, we get G(D(P1)) = ({load,
unload, shoot, dead}, {(dead, shoot), (dead, load), (shoot, dead)}) and L(D(P1)) =
{{shoot, dead}}.

In the following, φ→ ψ
def
= ψ ← φ and φ↔ ψ

def
= φ→ ψ ∧ φ← ψ.

Definition 2 (Temporal completion). We define the temporal completion
formula of an atom a in a past-present program P over A, denoted CFP (a) as:

□
(
a↔

∨
r∈I (P ),a∈H (r)

(I ∧ S(r, a)) ∨
∨

r∈D(P ),a∈H (r)

(¬I ∧ S(r, a))
)

where S(r, a) = B(r) ∧
∧
p∈H (r)\{a} ¬p.

The temporal completion formula of P , denoted CF (P ), is

{CFP (a) | a ∈ A} ∪ {r | r ∈ I (P ) ∪D(P ),H (r) = ⊥} ∪ F (P ).

A past-present program P is said to be tight if I (P ) and D(P ) do not contain
any loop.

Theorem 1. Let P be a tight past-present program and T a trace of length λ.
Then, T is a TS-model of P iff T is a LTLf -model of CF (P ). ⊓⊔

The completion of P1 is

CF (P1) =


□(load↔ I ∨ (¬I ∧ ¬shoot ∧ ¬unload)),

□(shoot↔ (¬I ∧ ¬load ∧ ¬unload)) ∨ (¬I ∧ dead)),
□(unload↔ (¬I ∧ ¬shoot ∧ ¬load)),

□(dead↔ (¬I ∧ shoot ∧ ¬unload S load)),
□(F→ (⊥ ← ¬dead))

 .

For λ = 2, CF (P1) has a unique LTLf -model {load} · {shoot, dead}, which is
identical to the TS-model of P1. Notice that for this example, the TS-models of
the program match the LTLf -models of its completion despite the program not
being tight. This is generally not the case. Let P2 be the program made of the
rules (1), (3), (4) and (5). The completion of P2 is

CF (P2) =

{
□(load↔ I), □(shoot↔ (¬I ∧ dead)), □(unload↔ ⊥),
□(dead↔ (¬I ∧ shoot ∧ ¬unload S load)), □(F→ (⊥ ← ¬dead))

}
.

P2 does not have any TS-model, but {load} · {shoot, dead} is a LTLf -model
of CF (P2). Under ASP semantics, it is impossible to derive any element of the
loop {shoot, dead}, as deriving dead requires shoot to be true, and deriving shoot
requires dead to be true. The completion does not restrict this kind of circular
derivation and therefore is insufficient to fully capture ASP semantics.



4 Temporal loop formulas

To restrict circular derivations, Lin and Zhao introduced the concept of loop
formulas in [22]. In this section, we extend their work to past-present programs.

Definition 3. Let φ be a implication-free past-present formula and L a loop.
We define the supporting transformation of φ with respect to L as

S⊥(L)
def
= ⊥

Sp(L)
def
= ⊥ if p ∈ L ; p otherwise, for any p ∈ A

S¬φ(L)
def
= ¬φ

Sφ∧ψ(L)
def
= Sφ(L) ∧ Sψ(L)

Sφ∨ψ(L)
def
= Sφ(L) ∨ Sψ(L)

S•φ(L) def
= •φ

SφTψ(L)
def
= Sψ(L) ∧ (Sφ(L) ∨ •(φ T ψ))

SφSψ(L)
def
= Sψ(L) ∨ (Sφ(L) ∧ •(φ S ψ))

⊓⊔

Definition 4 (External support). Given a past-present program P , the ex-
ternal support formula of a set of atoms L ⊆ A wrt P , is defined as

ESP (L) =
∨

r∈P,H (r)∩L ̸=∅

(
SB(r)(L) ∧

∧
a∈H (r)\L

¬a
)

⊓⊔

For instance, for L = {shoot, dead}, ESP2
(L) and ESP1

(L) are

ESP2
(L) = Sdead(L) ∨ Sshoot∧¬unloadS load(L)

= Sdead(L) ∨ (Sshoot(L) ∧ S¬unloadS load(L))

= Sdead(L) ∨ (Sshoot(L) ∧ S¬unload(L) ∨ •(¬unload S load))
= ⊥ ∨ (⊥ ∧ ¬unload ∨ •(¬unload S load)) = ⊥.

ESP1
(L) = Sdead(L) ∨ Sshoot∧¬unloadS load(L) ∨ (¬load ∧ ¬unload)

= ¬load ∧ ¬unload.

Rule (2) provides an external support for L. The body dead of rule (4) is also
a support for L, but not external as dead belongs to L. The supporting trans-
formation only keeps external supports by removing from the body any positive
and present occurence of element of L.

Definition 5 (Loop formulas). We define the set of loop formulas of a past-
present program P over A, denoted LF (P ), as:∨

a∈L
a→ ES I (P )(L) for any loop L in I (P )

◦̂□
( ∨
a∈L

a→ ESD(P )(L)
)
for any loop L in D(P )



Theorem 2. Let P be a past-present program and T a trace of length λ. Then,
T is a TS-model of P iff T is a LTLf -model of CF (P ) ∪ LF (P ). ⊓⊔

For our examples, we have that LF (P1) = ◦̂□(shoot ∨ dead → ¬load ∧
¬unload) and LF (P2) = ◦̂□(shoot ∨ dead → ⊥). It can be also checked that
{load}·{shoot, dead} satisfies LF (P1), but not LF (P2). So, we have that CF (P1)∪
LF (P1) has a unique LTLf -model {load}·{shoot, dead}, while CF (P2)∪LF (P2)
has no LTLf -model, matching the TS-models of the respective programs.

Ferraris et al. [16] proposed an approach where the computation of the com-
pletion can be avoided by considering unitary cycles. We extended such results
for past-present programs in the extended version [10].

5 Conclusion

We have focused on temporal logic programming within the context of Temporal
Equilibrium Logic over finite traces. More precisely, we have studied a fragment
close to logic programming rules in the spirit of [17]: a past-present temporal
logic program consists of a set of rules whose body refers to the past and present
while their head refers to the present. This fragment is very interesting for im-
plementation purposes since it can be solved by means of incremental solving
techniques as implemented in telingo.

Contrary to the propositional case [16], where answer sets of an arbitrary
propositional formula can be captured by means of the classical models of an-
other formula ψ, in the temporal case, this is impossible to do the same mapping
among the temporal equilibrium models of a formula φ and the LTL models of
another formula ψ [5].

In this paper, we show that past-present temporal logic programs can be
effectively reduced to LTL formulas by means of completion and loop formulas.
More precisely, we extend the definition of completion and temporal loop for-
mulas in the spirit of Lin and Zhao [22] to the temporal case, and we show that
for tight past-present programs, the use of completion is sufficient to achieve a
reduction to an LTLf formula. Moreover, when the program is not tight, we also
show that the computation of the temporal completion and a finite number of
loop formulas suffices to reduce TELf to LTLf .
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