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Abstract. In this paper we consider a logical treatment for the ordered
disjunction operator × introduced by Brewka, Niemelä and Syrjänen in
their Logic Programs with Ordered Disjunctions (LPOD). LPODs are
used to represent preferences in logic programming under the answer set
semantics. Their semantics is defined by first translating the LPOD into
a set of normal programs (called split programs) and then imposing a
preference relation among the answer sets of these split programs. We
concentrate on the first step and show how a suitable translation of the
ordered disjunction as a derived operator into the logic of Here-and-There
allows capturing the answer sets of the split programs in a direct way.
We use this characterisation not only for providing an alternative im-
plementation for LPODs, but also for checking several properties (under
strongly equivalent transformations) of the × operator, like for instance,
its distributivity with respect to conjunction or regular disjunction. We
also make a comparison to an extension proposed by Kärger, Lopes,
Olmedilla and Polleres, that combines × with regular disjunction.

1 Introduction

Based on the answer set (or stable model) semantics [10] for logic programs,
Answer Set Programming (ASP) [17, 18] has become a successful paradigm for
declarative problem solving. Typically, a logic program in ASP is used to en-
code some constraint-based problem in such a way that the answer sets of the
program correspond to the problem solutions. In many practical scenarios, how-
ever, the set of feasible solutions is considerably large and the main problem,
from the knowledge representation viewpoint, is not specifying them but select-
ing the most preferred ones under certain criteria instead. Although different
approaches for representing preferences in ASP have been proposed (see [5] for a
survey), one that has recently received much attention is the formalism of Logic
Programs with Ordered Disjunction (LPOD) [3], probably due to its simplic-
ity and expressiveness. This approach essentially consists in introducing a new
operator ‘×’ standing for ordered disjunction (with its corresponding semantics
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in terms of answer sets), plus several ordering relations for selecting preferred
models among the obtained answer sets. LPODs have been applied, for instance,
in Game Theory [9], for implementing policy languages with preferences [16, 2],
or in planning and argumentation scenarios [21], and they have been further
investigated in [6] for studying strongly equivalent transformations and in [14]
for introducing an extension called disjunctive LPOD (DLPOD) that combines
ordered and regular disjunctions. Other ASP extensions like CR-Prolog, have
also incorporated the use of ordered disjunctions [1]. The semantics of an LPOD
is defined in two steps. First, the program with ordered disjunctions is translated
into a set of normal programs, called split programs, whose answer sets become
the potential solutions. In a second step, one of three possible preference rela-
tions is imposed among the answer sets of these split programs. These answer
sets of the split programs can also be captured by reduct transformations, like
the originally introduced in [3] or the one later proposed in [6].

In this paper we concentrate on the first step, that is, in the definition of
potential answer sets for LPODs, and show that they can be directly captured
by a suitable definition of the ordered disjunction connective ‘×’ as a derived
operator in the logic of Here-and-There (HT) [11], so that LPODs can be seen
as nothing else but regular theories inside the nonmonotonic formalism of Equi-
librium Logic [19] (the nonmonotonic version of HT). Equilibrium Logic has
been extensively studied in ASP, as it yields a logical characterisation for the
answer set semantics, capturing concepts such as the strong equivalence of pro-
grams [15] and providing a means to generalise all previous extensions to the
the most general syntax of arbitrary propositional [8] and first order [7] theo-
ries. Our logical characterisation of × allows not only an alternative method for
translating LPODs into regular logic programs, but enables the study of ‘×’ as a
logical connective, so we can analyse its main properties like its behaviour with
respect to distributivity or nesting with other connectives.

The rest of the paper is organised as follows. The next section contains an
overview of the basic definitions of Equilibrium Logic, ASP and LPODs. Sec-
tion 3 introduces the characterisation of ordered disjunction and studies some
of its main properties, including the correspondence to the original definition of
answer sets for LPODs. Section 4 contains a comparison to DLPODs and finally,
Section 5 concludes the paper.

2 Preliminaries

We recall the basic definitions of the propositional1 logic of HT and Equilibrium
Logic. The syntax is the same as in classical propositional logic: a well formed
formula results from combining atoms in a finite set Σ (called the signature)
with the usual operators →,∧,∨,⊥ and parentheses. We assume the standard
precedence among binary operators, that is, ∧ ≺ ∨ ≺ →. The formulas ¬F ,
>, F ← G and F ↔ G are abbreviations that respectively stand for F → ⊥,
1 For simplicity sake, we will focus here on ordered disjunction inside programs without

variables.



⊥ → ⊥, G→ F and (F → G) ∧ (F ← G). As usual, a literal is an atom p or its
negation ¬p.

Given a set of atoms I and a formula F , we write I |= F to represent classical
satisfaction. The semantics of HT starts from defining an interpretation as a pair
〈H,T 〉 of sets of atoms (standing for “here” and “there”) where H ⊆ T . We say
that an interpretation 〈H,T 〉 satisfies a formula F , by abuse of notation written
〈H,T 〉 |= F as in classical logic, when one of the following recursive conditions
hold:

1. 〈H,T 〉 |= p if p ∈ H, for any atom p.
2. 〈H,T 〉 6|= ⊥.
3. 〈H,T 〉 |= F ∧G if 〈H,T 〉 |= F and 〈H,T 〉 |= G.
4. 〈H,T 〉 |= F ∨G if 〈H,T 〉 |= F or 〈H,T 〉 |= G.
5. 〈H,T 〉 |= F → G if both (i) T |= F → G; and (ii) 〈H,T 〉 6|= F or 〈H,T 〉 |= G.

Ambiguity in the use of |= is removed depending on the interpretation we use in
the left hand. Thus, note that in condition (i) of line 5, we are actually referring
to classical satisfaction. Some useful well-known properties relating HT and
classical satisfaction are mentioned below.

Proposition 1. For any interpretation 〈H,T 〉 and any formula F :

1. 〈H,T 〉 |= F implies T |= F .
2. 〈T, T 〉 |= F iff T |= F .
3. 〈H,T 〉 |= ¬F iff T |= ¬F . 2

By ≡c we understand equivalence in classical logic. A theory is a set of
formulas. As usual, an interpretation 〈H,T 〉 is said to be a model of a theory
H, also written 〈H,T 〉 |= H, when 〈H,T 〉 satisfies all the formulas in H.

The following are some HT valid equivalences:

¬(F ∨G)↔ ¬F ∧ ¬G (1)
¬(F ∧G)↔ ¬F ∨ ¬G (2)

F ∧ (G ∨H)↔ (F ∧G) ∨ (F ∧H) (3)
F ∨ (G ∧H)↔ (F ∨G) ∧ (F ∨H) (4)

F ∧ ¬F ↔ ⊥ (5)
(F → (G→ H))↔ (F ∧G→ H) (6)

For instance, HT satisfies De Morgan’s laws (1), (2), and distributivity (3), (4).

Definition 1 (Equilibrium model). An HT interpretation 〈T, T 〉 is an equi-
librium model of a theory H if 〈T, T 〉 |= H and there is no H ⊂ T such that
〈H,T 〉 |= H. 2

Equilibrium Logic is the (nonmonotonic) logic induced by equilibrium models. An
interesting concept for nonmonotonic reasoning is the idea of strong equivalence.
Two theories H1 and H2 are said to be strongly equivalent, written H1 ≡s H2,
if H1 ∪∆ and H2 ∪∆ have the same equilibrium models, for any theory ∆.

Theorem 1 (From [15]). Two theories H1, H2 are strongly equivalent iff they
are equivalent in HT. 2



2.1 Logic programs

We begin introducing some preliminary notation that will be useful later. Let
A be a (possibly empty) list of (possibly repeated) formulas. We write |A| to
stand for the length of A. For any k ∈ {1, . . . , |A|}, by A[k] we mean the k-th
expression in A and by A[1..k], the prefix of A of length k, that is, A[1] . . .A[k].
For a binary operator � ∈ {∨,∧,×}, by (�A) we mean the formula resulting
from the repeated application of � to all formulas in A in the same ordering.
As an example, given the sequence of atoms A = (a, b, c, d, e), the expression
(×A[1..3]) represents the formula a×b×c. We write ¬A to stand for the sequence
of formulas ¬A[1] . . .¬A[k] being k = |A|. An empty conjunction is understood
as > whereas an empty disjunction (both ordered or regular) is understood as
⊥. The concatenation of two lists of formulas, A and B, is simply written as
AB.

A logic program is a set of rules of the form:

(∨A) ∨ (∨¬A′)← (∧B) ∧ (∧¬B′) (7)

where A,A′,B and B′ are lists of atoms. We respectively call head and body to
the consequent and antecedent of the implication above. A rule with an empty
head ⊥ (that is, |A| + |A′| = 0) is called a constraint. A rule with an empty
body > (that is, |B| + |B′| = 0) is called a fact, and we usually write the head
F instead of F ← >. A rule is said to be normal when |A| = 1 and |A′| = 0. A
rule is positive when |A′| = |B′| = 0. We extend the use of these adjectives to a
program, meaning that all its rules are of the same kind.

Answer sets of a program P are defined in terms of the classical Gelfond-
Lifscthiz’s reduct [10], that is extended2 as follows for the syntactic case we
are considering (disjunctive heads with default negation [12]). The reduct of a
program P with respect to a set of atoms I, written P I , consists of a rule like
(∨A) ← (∧B) per each rule in P of the form (7) that satisfies I |= (∧A′) ∧
(∧¬B′). We say that a set of atoms I is an answer set of a program P if I is a
minimal model of P I .

Theorem 2 (From [15]). A set of atoms T is an answer set of a program P
iff 〈T, T 〉 is an equilibrium model of P . 2

2.2 Logic Programs with Ordered Disjunction

A logic program with ordered disjunction (LPOD) is a set of rules of the form:

(×A)← (∧B) ∧ (∧¬B′) (8)

where A,B and B′ are lists of atoms. We say that a set of atoms I satisfies
an LPOD rule r like (8), written I |= r, when I |= (∨A) ← (∧B) ∧ (∧¬B′) in
classical logic.
2 In fact, [8] introduced a different, more general reduct that allows defining answer

sets for arbitrary theories, which happen to coincide with equilibrium models. We
use here the more restricted, traditional version for comparison purposes.



For each LPOD rule r like (8), we define its k-th option, written rk, with
k ∈ {1, . . . , |A|}, as the normal rule:

A[k]← (∧B) ∧ (∧¬B′) ∧ (∧¬A[1..k−1])

A normal logic program P ′ is a split program of P if it is the result of replacing
each LPOD rule r ∈ P by one of its possible options rk. A set of atoms I is an
answer set of P if it is an answer set of some split program P ′ of P .

Example 1 (From [3]). Let P1 be the LPOD:

a× b← ¬c b× c← ¬d

This LPOD has four split programs:

a← ¬c
b← ¬d

a← ¬c
c← ¬d ∧ ¬b

b← ¬c ∧ ¬a
b← ¬d

b← ¬c ∧ ¬a
c← ¬d ∧ ¬b

that yield three answer sets {a, b}, {c} and {b}. 2

As explained in [3], answer sets of LPODs can also be described in terms of
a program reduct, instead of using split programs.

Definition 2 (×-reduct). The ×-reduct of an LPOD rule r like (8) with re-
spect to a set of atoms I denoted as rI× and defined as the set of rules:

A[i]← (∧B) (9)

for all i = 1, . . . , |A| such that I |= (∧¬B′) ∧ (∧¬A[1..i−1]) ∧A[i]. 2

As expected, the ×-reduct of an LPOD P with respect to I, written P I× is the
union of all rI× for all LPOD rules r ∈ P . For instance, for I = {b, c} and P :

a× b← c ∧ ¬d (10)
d× a← ¬b (11)
d× e← ¬a (12)

the reduct P I× would be the rule {b← c}. Notice that P I× defined in this way is
always a normal positive logic program and so it has a least model [20].

Theorem 3 (From [3]). A set of atoms I is an answer set of an LPOD P iff
I |= P and I is the least model of P I×. 2

It is important to note that I |= P I× does not imply I |= P , and thus, the
latter is also required in the above theorem. For instance, in the last example,
the interpretation ∅ is the least model of P I× but does not satisfy the LPOD rule
(12).

Although, as said in the introduction, we will concentrate on the answer sets
of split programs, we include here the definition of the three ordering relations
for selecting preferred answer sets among them. We say that an LPOD rule r



like (8) is satisfied to degree j ∈ {1, . . . , |A|} by a set of atoms I, written I |=j r,
when: I does not satisfy the body of r and j = 1; I satisfies the body of r and j
is the minimum index for which A[j] ∈ I. We define degI(r)

def= j when I |=j r

and define the set Ij(P ) def= {r ∈ P | I |=j r}. Given two answer sets I, J of a
given LPOD:

1. I is cardinality-preferred to J , written I >c J , when for some truth degree
k, |Ik(P )| > |Jk(P )| whereas |Ii(P )| = |J i(P )| for all i < k.

2. I is inclusion-preferred to J , written I >i J , when for some truth degree k,
Ik(P ) ⊂ Jk(P ) while Ii(P )| = J i(P ) for all i < k.

3. I is Pareto-preferred to J , written I >p J , if for some rule r ∈ P , degI(r) <
degJ(r) whereas for no rule r′ ∈ P , degI(r′) > degJ(r′).

3 The Ordered Disjunction Operator

Let us consider the introduction of × in HT as the following derived operator:

F ×G def= F ∨ (¬F ∧G) (13)

Although in classical logic, (13) ≡c F ∨ G, this equivalence does not hold in
HT, that is (13) 6≡s F ∨ G. To see why, adding G, the two disjunctions have
different equilibrium models: {F∨G,G} has one equilibrium model {G}, whereas
{F × G,G} also has a second equilibrium model {F,G}. We discuss now some
basic properties of × operator.

Proposition 2 (Negation). The negation of an ordered and a regular disjunc-
tion are strongly equivalent:

¬(F ×G) ≡s ¬F ∧ ¬G ≡s ¬(F ∨G)

Proof. Applying De Morgan laws, ¬(F ∨¬F ∧G) amounts to ¬F ∧ (¬¬F ∨¬G)
which, by distributivity, is equivalent to ¬F ∧ ¬¬F ∨ ¬F ∧ ¬G, but the first
disjunct can be removed, since ¬F ∧ ¬¬F is inconsistent in HT by (5). 2

Proposition 3 (Truth constants). These are some strongly equivalent sim-
plifications:

(F × F ) ≡s F (14)
(⊥× F ) ≡s F (15)
(F ×⊥) ≡s F (16)
(>× F ) ≡s > (17)
(F ×>) ≡s (F ∨ ¬F ) (18)

2



Note that the main difference with respect to ordinary disjunction when dealing
with truth constants is (18). Equivalences (15) and (16) show that ⊥ acts as a
neutral element for ordered disjunction. This means that we can safely consider
an empty ordered disjunction as ⊥ (as happens with ∨ too).

Distributivity with respect to conjunction is satisfied in the following cases:

F ∧ (G×H) ≡s (F ∧G)× (F ∧H)
(F ×G) ∧H ≡s (F ∧H)× (G ∧H)
F × (G ∧H) ≡s (F ×G) ∧ (F ×H)

but the following pair of formulas

(F ∧G)×H (F ×H) ∧ (G×H)

are not strongly equivalent. In fact, they have different answer sets. The first rule
has equilibrium models {F,G} and {H} whereas the second has two additional
ones {F,H} and {G,H}. Distributivity between disjunctions only holds in the
following case:

F × (G ∨H) ≡s (F ×G) ∨ (F ×H)

but the following list shows pairs of formulas that are not strongly equivalent:

F ∨ (G×H) (F ∨G)× (F ∨H) (19)
(F ×G) ∨H (F ∨H)× (G ∨H) (20)
(F ∨G)×H (F ×H) ∨ (G×H) (21)

Take line (19), for instance. Adding the atom H, the left rule yields two equilib-
rium models {G,H} and {H}, whereas the second rule allows a third equilibrium
model {F,H}. Intuitively, adding H to F ∨ (G ×H) will always make the sec-
ond disjunct to be true (both when G holds and when it does not). So, there
is no need to make F true. By a similar reason, in the case of line (20), after
adding atom G, the first rule yields two equilibrium models, {F,G} and {G}
(there is no need to make H true), while the second rule yields a third solution
{G,H}. Finally, for line (21), if we add the atom H to the first expression, we
get three equilibrium models, {F,H}, {G,H}, and {H}, whereas for the second
expression, the addition of H only yields the equilibrium model {H} itself.

Proposition 4 (Associativity). The × operator is associative, that is:

F × (G×H) ≡s (F ×G)×H

Proof.

F × (G×H) ≡s F ∨ ¬F ∧ (G ∨ ¬G ∧H) By definition of × .
≡s F ∨ ¬F ∧G ∨ ¬F ∧ ¬G ∧H Distribuitivity.
≡s (F ×G) ∨ ¬F ∧ ¬G ∧H Definition of × .
≡s (F ×G) ∨ ¬(F ×G) ∧H By Proposition 2.
≡s (F ×G)×H Definition of × .

2



The third line of the proof suggests the following translation for a sequence
of consecutive applications of ×.

Theorem 4. Let A be a sequence of |A| = n ≥ 0 formulas. Then, the formula
(×A) is strongly equivalent to:∨

i=1,...,n

(∧¬A[1..i−1]) ∧A[i] (22)

Proof. By induction on n = |A|. When n = 0, both (×A) and (22) correspond
to ⊥. Assume it is proved for any sequence of length n − 1, with n > 0. Since
× is associative, we can write (×A) as (×A[1..n−1]) ×A[n]. Let us call α to
(×A[1..n−1]). Now, by definition of ×, (×A) corresponds to α∨¬α∧A[n]. On
the other hand, by induction, α is equivalent to:∨

i=1,...,n−1

(∧¬A[1..i−1]) ∧A[i]

whereas ¬α is equivalent to (∧¬A[1..n−1]), by Proposition 2. But then, α ∨
¬α ∧A[n] corresponds to:[ ∨

i=1,...,n−1

(∧¬A[1..i−1]) ∧A[i]
]

︸ ︷︷ ︸
α

∨ (∧¬A[1..n−1])︸ ︷︷ ︸
¬α

∧A[n]

which is exactly the expansion in (22). 2

As an example, the expression a× b× c× d is strongly equivalent to:

a ∨ (¬a ∧ b) ∨ (¬a ∧ ¬b ∧ c) ∨ (¬a ∧ ¬b ∧ ¬c ∧ d).

Although we have already proved that × satisfies the idempotence property
(14), it must be noticed that since the operator is obviously non-commutative,
a repeated subformula in a sequence of ordered disjunctions cannot always be
removed. We can use Theorem 4 to prove, for instance, the following property.

Proposition 5 (Ordered Idempotence). (F ×G× F ) ≡s F ×G.

Proof. Just notice that, by Theorem 4, (F ×G× F ) is equivalent to F ∨ (¬F ∧
G) ∨ (¬F ∧ ¬G ∧ F ), but the last disjunct can be removed due to (5). 2

As F and G are arbitrary formulas, and × is associative, the equivalence above
implies that, when repeated atoms occur in an ordered disjunction, all their
occurrences can be removed, excepting the leftmost one. For instance:

a× b× c× a× d× c× a× e× b↔ a× b× c× d× e

However, in the general case, we cannot remove the leftmost occurrence of a
repeated formula. As a counterexample, the formulas a × b × a and b × a are



not strongly equivalent: the simple addition of atom a to the first formula yields
one equilibrium model {a} whereas, when added to the second formula, we also
obtain an additional equilibrium model {a, b}.

The following second translation is perhaps more interesting both for gener-
ating a logic program, and for comparison purposes with the ×-reduct. We will
introduce first a useful result.

Theorem 5. Let A be a sequence of |A| = n ≥ 0 formulas. Then, the formula
(×A) is strongly equivalent to the conjunction of:∧

i=1,...,n

(
A[i] ∨ ¬A[i]← (∧¬A[1..i−1])

)
(23)

⊥ ← (∧¬A) (24)

Proof. First, note that both formulas are classically equivalent: all conjuncts in
(23) for i = 1, . . . , n are classical tautologies whereas (24) ≡c (∨A) ≡c (×A).

We prove now that 〈H,T 〉 |= (×A) iff 〈H,T 〉 |= (23) ∧ (24). For the left to
right direction, we begin showing that (×A) implies (23)∧ (24). Assume we had
some 〈H,T 〉 |= (×A) but 〈H,T 〉 6|= A[i] ∨ ¬A[i] ← (∧¬A[1..i−1]) for some
i = 1, . . . , n. As these implications are classical tautologies, the only possibility
is 〈H,T 〉 |= (∧¬A[1..i−1]) while 〈H,T 〉 6|= A[i] ∨ ¬A[i]. We will prove that,
if so, 〈H,T 〉 6|= (22) which, by Theorem 4, means 〈H,T 〉 6|= (×A), reaching a
contradiction. Notice that we have 〈H,T 〉 |= ¬A[1], . . . , 〈H,T 〉 |= ¬A[i−1] while
〈H,T 〉 6|= A[i] and 〈H,T 〉 6|= ¬A[i]. Now, the first i−1 disjuncts in (22) will be
false because for all j = 1, . . . , i−1, 〈H,T 〉 |= ¬A[j] implies 〈H,T 〉 6|= A[j]. The
i-th disjunct is false because it contains A[i] and 〈H,T 〉 6|= A[i], and the rest of
disjuncts are also false since they contain the subformula ¬A[i] and we also had
〈H,T 〉 6|= ¬A[i].

We remain to prove that 〈H,T 〉 |= (24). By Proposition 2, (∧¬A) is equiv-
alent to ¬(×A) and thus, (24) corresponds to ¬¬(×A). But in HT (and in
fact, in intuitionistic logic), any formula implies its double negation, and we had
〈H,T 〉 |= (×A).

For the right to left direction, suppose 〈H,T 〉 |= (23) ∧ (24) but 〈H,T 〉 6|=
(×A). From the latter and Theorem 4 we conclude the following condition,
let us call it (a): for all i = 1, . . . , n, 〈H,T 〉 6|= A[i] or there exists some j,
1 ≤ j < i such that 〈H,T 〉 6|= ¬A[j]. We prove now, by induction on i in (23),
that 〈H,T 〉 |= ¬A[i] for all i = 1, . . . , n, which contradicts 〈H,T 〉 |= (24). For
i = 1 there is no j smaller and from (a) we get 〈H,T 〉 6|= A[1]. But, with i = 1, the
antecedent of (23) becomes empty (>) and we get 〈H,T 〉 |= A[1] ∨ ¬A[1] that,
as 〈H,T 〉 6|= A[1], leads to 〈H,T 〉 |= ¬A[1]. Induction hypothesis: suppose we
have proved 〈H,T 〉 |= ¬A[j] for all j, 1 ≤ j < i. From this together with (a) we
conclude 〈H,T 〉 6|= A[i]. But at the same time, this induction hypothesis means
that 〈H,T 〉 satisfies the antecedent of (23), so we conclude 〈H,T 〉 |= A[i]∨¬A[i],
but again, as 〈H,T 〉 6|= A[i] the only possibility is 〈H,T 〉 |= ¬A[i]. 2

The previous theorem can be combined with the following lemma to obtain
a translation of any LPOD into a logic program.



Lemma 1. If ϕ is strongly equivalent to a conjunction of implications (αi → βi)
with i = 1, . . . , n and n ≥ 0 then the formula F : A→ ϕ∨B is strongly equivalent
to G, the conjunction of αi ∧A→ βi ∨B.

Proof. Take ϕ strongly equivalent to the conjunction of (αi → βi). To prove that
F ≡s G we must show both that F ≡c G; and that 〈H,T 〉 |= F iff 〈H,T 〉 |= G.

For proving the classical equivalence, notice that F ≡c ¬A ∨ ϕ ∨ B. But
as strong equivalence implies classical equivalence, we can replace ϕ in the last
formula by the conjunction of implications, obtaining ¬A∨B ∨

∧
i(αi → βi) ≡c∧

¬A ∨B ∨ (αi → βi) ≡c G.
For proving 〈H,T 〉 |= F iff 〈H,T 〉 |= G, assume as a first case that 〈H,T 〉 6|=

A or 〈H,T 〉 |= B. If so, we trivially have both 〈H,T 〉 |= F and 〈H,T 〉 |=
G, and the equivalence holds. Suppose, on the contrary, that 〈H,T 〉 |= A and
〈H,T 〉 6|= B. It is easy to see that, then, 〈H,T 〉 |= F iff 〈H,T 〉 |= ϕ. Similarly
〈H,T 〉 |= G amounts to 〈H,T 〉 |=

∧
i(αi → βi) and the latter, due to our

premise, is equivalent to 〈H,T 〉 |= F . 2

In particular, we can thus translate any rule like (8) by using Lemma 1
with H = (∧B) ∧ (∧¬B′), G = ⊥ and F = (×A) and Theorem 4 to obtain a
conjunction of implications equivalent to F . In this way, for any LPOD rule r
like (8) we define the set of rules r∗ as the conjunction of implications in (23)
and (24) after adding to all their bodies the conjunction of (∧B)∧ (∧¬B′), that
is:

A[i] ∨ ¬A[i]← (∧B) ∧ (∧¬B′) ∧ (∧¬A[1..i−1]) (25)
⊥ ← (∧B) ∧ (∧¬B′) ∧ (∧¬A) (26)

for all i = 1, . . . , |A|. For any LPOD P , the program P ∗ stands for the union of
all r∗ for each r ∈ P . As an example, given the LPOD rule r : a×b×c← p∧¬q,
the set of rules r∗ consists3 of:

a ∨ ¬a← p ∧ ¬q
b ∨ ¬b← p ∧ ¬q ∧ ¬a
c ∨ ¬c← p ∧ ¬q ∧ ¬a ∧ ¬b
⊥ ← p ∧ ¬q ∧ ¬a ∧ ¬b ∧ ¬c

Theorem 6. For any LPOD P , P ≡s P ∗.

Proof. It directly follows from Theorem 5 and Lemma 1. 2

An important remark is that, although P ∗ is a disjunctive logic program
with negation in the head, it belongs to a subclass of disjunctive programs with
the same expressiveness and complexity than those of normal programs. To see
3 In fact, this translation can be further refined by removing the last constraint and

the last negative literal in the head. In the example, we would replace the last two
rules by c← p ∧ ¬q ∧ ¬a ∧ ¬b.



why, it suffices to observe that any formula of the form F ∨ ¬p← G is strongly
equivalent to F ← G ∧ ¬¬p and in its turn, a double negated atom in the body
can be replaced4 by the negation of a fresh auxiliary atom F ← G ∧ ¬aux plus
the rule aux← ¬p.

Lemma 2. Let I and J be sets of atoms and P an LPOD. Then (J |= P I× and
I |= P ) iff J |= (P ∗)I .

Proof. Take any rule r ∈ P of the form (8). If we apply the standard reduct
with respect to I on the rules like (25) in r∗, it is easy to see that we exactly
get the rules in rI×. Thus, P I× coincides with the standard reduct for all the
rules like (25) in P ∗ with respect to I. Now, let us call Q to set of remaining
rules in P ∗ of the form (26). We will prove that I |= P iff J |= QI . In fact, for
each r ∈ P like (8) we have a corresponding r′ ∈ Q like (26) and we show that
I |= r iff J |= (r′)I . We begin observing that r′ (26) and r (8) are classically
equivalent formulas. We have then two cases: if I |= (∧B) ∧ (∧¬B′) ∧ (∧¬A)
then rI is ⊥ and trivially J 6|= ⊥, but also clearly I 6|= r′ and thus I 6|= r, and
the equivalence holds. If I 6|= (∧B) ∧ (∧¬B′) ∧ (∧¬A) the reduct (r′)I is empty
and thus J |= (r′)I trivially, but we also have I |= r′ and so I |= r and again the
equivalence holds. 2

Lemma 3. I is an answer set of an LPOD P iff I is an answer set of P ∗. 2

Proof. For the left to right direction, suppose I is an answer set of P . Then,
I |= P and I is a minimal model of P I×. By Lemma 2, this implies I |= (P ∗)I .
Suppose there exists a smaller J ⊂ I such that J |= (P ∗)I . Applying Lemma 2
again, we conclude that J |= P I× and this contradicts that I is minimal model
of P I×.

For the right to left direction, the reasoning is analogous. If I is an answer set
of P ∗ we obviously have I |= (P ∗)I and, applying Lemma 2 we conclude I |= P
and I |= P I×. Assume we have some J ⊂ I, J |= P I×. Again, by Lemma 2 we
conclude J |= (P ∗)I and we get a contradiction with minimality of I as model
of (P ∗)I . 2

Theorem 7 (main theorem). T is an answer set of an LPOD P iff 〈T, T 〉 is
an equilibrium model of P .

Proof. It directly follows from Lemma 3, Theorem 6 and Theorem 2. 2

As a final comment, a third possible representation of (×A) is the strongly
equivalent formula:

(∨A) ∧
∧

i=1,...,n−1

(
(∨A[1..i]) ∨ ¬A[i]

)
For instance, a× b× c is strongly equivalent to:

(a ∨ b ∨ c) ∧ (a ∨ ¬a) ∧ (a ∨ b ∨ ¬b) ∧ (a ∨ b ∨ c ∨ ¬c).
4 Similar techniques for removing head negations were introduced in [12, 13].



4 Disjunctive LPOD

In [14] an extension of LPODs for dealing with regular disjunction ∨ is con-
sidered. An ordered disjunctive term is defined as any arbitrary combination of
atoms and ∨,× operators. A Disjunctive LPOD (DLPOD) is a set of rules of the
form F ← (∧B)∧ (∧¬B′) where F is an ordered disjunctive term and B,B′ are
lists of atoms. An ordered disjunctive term is said to be in Ordered Disjunctive
Normal Form (ODNF) if it has the form (×A1)∨ · · · ∨ (×An) where the Ai are
lists of atoms. A DLPOD rule is in ODNF if its head is in ODNF. Similarly, the
whole DLPOD is in ODNF if all its rules are in ODNF. In fact, the semantics
of an arbitrary DLPOD is defined by first translating its head into ODNF using
the following rewriting rules:

F × (G ∨H) 7−→ (F ×G) ∨ (F ×H) (27)
(F ∨G)×H 7−→ (F ×H) ∨ (G×H) (28)
(F ×G)×H 7−→ F ×G×H (29)
F × (G×H) 7−→ F ×G×H (30)

The exhaustive application of (27)-(30) allow transforming any DLPOD into
ODNF, that is, a set of rules like∨

i=1,...,n

(×Ai)← (∧B) ∧ (∧¬B′) (31)

where n ≥ 0, and B,B′ and all the Ai are lists of atoms. For any DLPOD rule
r like (31), an option for r is any rule of the form:∨

i=1,...,n

Ai[ki]← (∧B) ∧ (∧¬B′) ∧
∧

i=1,...,n

(∧¬Ai[1..ki−1]) (32)

where each ki is some value ki ∈ {1, . . . , |Ai|}. For instance, the options for the
DLPOD rule (a× b) ∨ (c× d× e) are the rules:

a ∨ c
a ∨ d← ¬c
a ∨ e← ¬c ∧ ¬d

b ∨ c← ¬a
b ∨ d← ¬a ∧ ¬c
b ∨ e← ¬a ∧ ¬c ∧ ¬d

A disjunctive logic program P ′ is a split program of a DLPOD P if it is
the result of replacing each DLPOD rule r ∈ P by some of its split rules. It is
important to notice that the split programs of a DLPOD are disjunctive logic
programs, whereas in the case of LPODs, split programs were normal logic pro-
grams. As before, a set of atoms I is an answer set of a DLPOD P if it is an
answer set of some split program P ′ of P . For comparison purposes, we concen-
trate here on the answer sets of DLPODs, leaving apart the selection of their
preferred answer sets (see [14] for further details).



4.1 Comparison

Since our characterisation of × applies for any arbitrary propositional theory,
in particular, it also provides a semantics for DLPODs, both arbitrary and in
ODNF. So the immediate question is whether our HT based characterisation
and the original DLPOD semantics coincide. Unfortunately, the answer to this
question is negative, by two reasons. First, as we explained in Section 3 with a
counterexample for (19), we saw that in fact, (28) is not an strongly equivalent
transformation. Thus, under our HT-based characterisation, an arbitrary DL-
POD is not always reducible to ODNF (although, of course, a semantics for the
DLPOD is still defined). Still, even when we restrict ourselves to the study of
ODNF programs, we can find examples where the original DLPOD semantics
provides more answer sets.

Example 2. Take the DLPOD P2 consisting of the pair of rules

a ∨ (b× c) c

The split programs of P2 are {(a∨ b), c} and {(a∨ c← ¬b), c}, the first one with
two answer sets {a, c}, {b, c} and the second one with answer set {c}. In this
case, there is one answer set that is not equilibrium model: {a, c}. 2

Answer set {a, c} looks counterintuitive in the sense that, once c is true and
we are not picking choice b, it seems clear that (b × c) holds and there is no
clear reason to make a true (in the first rule). Remember that ∨ is a regular
disjunction, and it will become satisfied when any of its disjuncts become true,
regardless the truth degree. The next example illustrates a counterintuitive effect
of DLPOD semantics when defining subformulas with auxiliary atoms.

Example 3. Let P3 be the DLPOD consisting of the pair of rules:

a× (b ∨ c) c 2

For both semantics, P3 can be converted (even under strong equivalence in HT)
into the ODNF program P ′3 consisting of rule (a× b)∨ (a× c) and fact c. Under
the HT characterisation, both P3 and P ′3 have two answer sets, {a, c} and {c}.
For DLPOD semantics, P ′3 has a third, additional answer set {b, c}. Now, notice
that a different way of computing the answer sets of the original program P3

could be defining b ∨ c with an auxiliary atom, so we obtain the LPOD P ′′3 :

a× aux aux← b b ∨ c← aux
c aux← c

It is easy to see that P ′′3 has two answer sets {aux, a, c} and {aux, c} which, after
removing the auxiliary atom, become {a, c} and {c}, respectively, which were, in
fact, the two answer sets we obtained for P3 using the HT characterisation. This
was expected, since HT satisfies the rule of substitution, that is, if aux ↔ α
we can always replace α by aux. In these counterexamples, DLPOD semantics
yielded more answer sets than the HT characterisation – this is actually a general
property stated below5.
5 We leave the proof for a future extended version of this document.



Theorem 8. If 〈T, T 〉 is an equilibrium model of a DLPOD P in ODNF, then
T an answer set of P . 2

5 Conclusions

We have presented a logical characterisation of Logic Programs with Ordered
Disjunction (LPOD) that allows a direct study of ordered disjunction × as a
derived operator in the logic of Here-and-There (HT), well-known for its ap-
plication to (strongly equivalent) logic program transformations in Answer Set
Programming. This characterisation provides an alternative implementation of
LPODs that does not resort to auxiliary predicates. It has also allowed us to
analyse the behavior of the × operator with respect to some typical properties
like associativity, distributivity, idempotence, etc. As × is handled as a regular
logical connective, our characterisation covers any arbitrary syntactic extension,
and in particular, the so-called Disjunctive LPOD (DLPOD). We have shown
that the semantics of DLPODs shows some differences with respect to the HT
characterisation and established a formal comparison.

our result can also be seen as a confirmation of Theorem 6 in [6]. In that work,
a reduct-based formalisation of LPODs was proposed in order to study strong
equivalence relations among LPODs and regular programs. Theorem 6 in that
work showed that their characterisation of strong equivalence for LPODs actually
coincided with the one for regular programs. This result becomes trivial under
our current approach, since ordered disjunction is just treated as an HT derived
operator and, as proved in [4], HT arbitrary theories are strongly equivalent to
logic programs.

We have implemented a first prototype for propositional LPODs using the
current approach that uses DLV system as a backend6. Future work includes the
extension of this prototype to deal with variables and with arbitrary combina-
tions of ordered and regular disjunction in the head.
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