Strong Negation in Well-Founded and Partial Stable Semantics for Logic Programs

Pedro Cabalar¹ Sergei Odintsov² David Pearce³

¹University of Corunna (Spain)

²Sobolev Institute of Mathematics (Novosibirsk, Russia)

³Universidad Rey Juan Carlos (Spain)

IBERAMIA 2006, Ribeirão Preto

Outline

Introduction

- Overview of Logic Programming semantics
- Logical foundations
- Partial Equilibrium Logic

Contributions

- Routley semantics and strong negation
- *HT*² with strong negation
- Partial Equilibrium Logic with strong negation

Conclusions

Outline

Introduction

Overview of Logic Programming semantics

- Routley semantics and strong negation
- HT² with strong negation
- Partial Equilibrium Logic with strong negation

P. Cabalar, A. Odintsov & D. Pearce

Strong negation in WF and PS semantics ...

IBERAMIA 2006 4 / 35

P. Cabalar, A. Odintsov & D. Pearce

Strong negation in WF and PS semantics ...

IBERAMIA 2006 4 / 35

P. Cabalar, A. Odintsov & D. Pearce

Strong negation in WF and PS semantics ...

IBERAMIA 2006 4 / 35

- LP definitions rely on: syntax transformations (*reduct*) + fixpoint constructions
- Stable models [Gelfond & Lifschitz 88]
 M stable model iff classical minimal model of Π^M

Example:

We guess some M $p \leftarrow r \land \neg q$ say $M = \{q, r\}$ $q \leftarrow r \land \neg p$ to interprete $\neg \alpha$'s $r \leftarrow \neg p$

- LP definitions rely on: syntax transformations (*reduct*) + fixpoint constructions
- Stable models [Gelfond & Lifschitz 88]
 M stable model iff classical minimal model of Π^M

Example:

We guess some M $p \leftarrow r \land \neg q$ say $M = \{q, r\}$ $q \leftarrow r \land \neg p$ to interprete $\neg \alpha$'s $r \leftarrow \neg p$

- LP definitions rely on: syntax transformations (*reduct*) + fixpoint constructions
- Stable models [Gelfond & Lifschitz 88]
 M stable model iff classical minimal model of Π^M

Example:

We guess some M $p \leftarrow r \land \neg q$ say $M = \{q, r\}$ $q \leftarrow r \land \neg p$ to interprete $\neg \alpha$'s $r \leftarrow \neg p$

- LP definitions rely on: syntax transformations (*reduct*) + fixpoint constructions
- Stable models [Gelfond & Lifschitz 88]
 M stable model iff classical minimal model of Π^M

Example:

We guess some M $p \leftarrow r \land \bot$ say $M = \{q, r\}$ $q \leftarrow r \land \top$ to interprete $\neg \alpha$'s $r \leftarrow \top$

- LP definitions rely on: syntax transformations (*reduct*) + fixpoint constructions
- Stable models [Gelfond & Lifschitz 88]
 M stable model iff classical minimal model of Π^M

Example:

We guess some *M* say $M = \{q, r\}$ $q \leftarrow r$ to interprete $\neg \alpha$'s r

- LP definitions rely on: syntax transformations (*reduct*) + fixpoint constructions
- Stable models [Gelfond & Lifschitz 88]
 M stable model iff classical minimal model of Π^M

Example:

We guess some MMinimal modelsay $M = \{q, r\}$ $q \leftarrow r$ $\{q, r\} = M$ to interprete $\neg \alpha$ 'srstable model !

- Partial stable models [Przymusinski 91]
 M partial stable model iff 3-valued minimal-truth model of Π^M
 Again similar idea: reduct + fixpoint condition
- Note that interpretations are now 3-valued.
 Well-founded model = partial stable model with minimal info. (defined atoms)
- Example: p ← ¬p has no stable model.
 It has one partial stable model leaving p undefined.

A (1) > A (2) > A (2)

- Partial stable models [Przymusinski 91]
 M partial stable model iff 3-valued minimal-truth model of Π^M Again similar idea: reduct + fixpoint condition
- Note that interpretations are now 3-valued.
 Well-founded model = partial stable model with minimal info. (defined atoms)
- Example: p ← ¬p has no stable model.
 It has one partial stable model leaving p undefined.

イベト イラト イラト

- Partial stable models [Przymusinski 91]
 M partial stable model iff 3-valued minimal-truth model of Π^M Again similar idea: reduct + fixpoint condition
- Note that interpretations are now 3-valued. Well-founded model = partial stable model with minimal info. (defined atoms)
- Example: p ← ¬p has no stable model.
 It has one partial stable model leaving p undefined.

イベト イモト イモト

- Partial stable models [Przymusinski 91]
 M partial stable model iff 3-valued minimal-truth model of Π^M
 Again similar idea: reduct + fixpoint condition
- Note that interpretations are now 3-valued.
 Well-founded model = partial stable model with minimal info. (defined atoms)
- Example: p ← ¬p has no stable model.
 It has one partial stable model leaving p undefined.

イベト イモト イモト

- Partial stable models [Przymusinski 91]
 M partial stable model iff 3-valued minimal-truth model of Π^M Again similar idea: reduct + fixpoint condition
- Note that interpretations are now 3-valued.
 Well-founded model = partial stable model with minimal info. (defined atoms)
- Example: p ← ¬p has no stable model.
 It has one partial stable model leaving p undefined.

• Default negation $\neg p$ means no evidence on p What if we want to represent p is false $(\neg p)^2$

Semantics for default negation	
Stable Models	
Partial Stable Models	
Well-Founded semantics (WFS)	

- A - TH

4 6 1 1 4

 Default negation ¬p means no evidence on p What if we want to represent p is false (~p)?

Semantics for default negation	
Stable Models	
Partial Stable Models	
Well-Founded semantics (WFS)	

The Sec. 74

 Default negation ¬p means no evidence on p What if we want to represent p is false (~p)?

Semantics for default negation	Second negation
Stable Models	Answer sets
[Gelfond & Lifschitz 88]	[Gelfond & Lifschitz 91]
Partial Stable Models	with classical negation
[Przymusinski 91]	[Przymusinski 91]
	with strong negation
	[Alferes & Pereira 92]
	with explicit negation (WFSX)
	[Alferes & Pereira 92]
Well-Founded semantics (WFS)	In all cases, WF model
[van Gelder, Ross & Schlipf 91]	is the minimal info. part. s. model

The Sec. 74

 Default negation ¬p means no evidence on p What if we want to represent p is false (~p)?

Semantics for default negation	Second negation
Stable Models	Answer sets
[Gelfond & Lifschitz 88]	[Gelfond & Lifschitz 91]
Partial Stable Models	with classical negation
[Przymusinski 91]	[Przymusinski 91]
	with strong negation
	[Alferes & Pereira 92]
	with explicit negation (WFSX)
	[Alferes & Pereira 92]
Well-Founded semantics (WFS)	In all cases, WF model
[van Gelder, Ross & Schlipf 91]	is the minimal info. part. s. model

The Sec. 74

 Default negation ¬p means no evidence on p What if we want to represent p is false (~p)?

Semantics for default negation	Second negation
Stable Models	Answer sets
[Gelfond & Lifschitz 88]	[Gelfond & Lifschitz 91]
Partial Stable Models	with classical negation
[Przymusinski 91]	[Przymusinski 91]
	with strong negation
	[Alferes & Pereira 92]
	with explicit negation (WFSX)
	[Alferes & Pereira 92]
Well-Founded semantics (WFS)	In all cases, WF model
[van Gelder, Ross & Schlipf 91]	is the minimal info. part. s. model

The Sec. 74

Outline

Introduction

- Overview of Logic Programming semantics
- Logical foundations
- Partial Equilibrium Logic

- Routley semantics and strong negation
- HT² with strong negation
- Partial Equilibrium Logic with strong negation

Fixing logical foundations of LP

- Reduct: not exactly a semantic definition. Syntax is restricted: no arbitrary formulas.
- Our goal: look for a logical style definition.
 Get minimal models inside some (monotonic) logic.
- Advantages:
 - Logically equivalent programs \Rightarrow same minimal models.
 - Full logical interpretation of connectives.
 - "Import" logical stuff (inference, tableaux, model checking, ...)

A (1) > A (2) > A (2)

Fixing logical foundations of LP

- Reduct: not exactly a semantic definition. Syntax is restricted: no arbitrary formulas.
- Our goal: look for a logical style definition.
 Get minimal models inside some (monotonic) logic.
- Advantages:
 - Logically equivalent programs \Rightarrow same minimal models.
 - Full logical interpretation of connectives.
 - "Import" logical stuff (inference, tableaux, model checking, ...)

Fixing logical foundations of LP

- Reduct: not exactly a semantic definition. Syntax is restricted: no arbitrary formulas.
- Our goal: look for a logical style definition.
 Get minimal models inside some (monotonic) logic.
- Advantages:
 - Logically equivalent programs \Rightarrow same minimal models.
 - Full logical interpretation of connectives.
 - "Import" logical stuff (inference, tableaux, model checking, ...)

	Stable Models	Partial Stable Models
Monotonic	Here-and-There	HT^2
	(<i>HT</i>) [Heyting 30]	[Cabalar 01]
Nonmonotonic	Equilibrium Logic	Partial Equil. Logic (PEL)
(min. models)	[Pearce 96]	

What about the second negation?

	Answer sets	
Monotonic	$N_5 = HT + strong neg.$	
Nonmonotonic	Equilibrium Logic	
(min. models)		

э

	Stable Models	Partial Stable Models
Monotonic	Here-and-There	HT ²
	(<i>HT</i>) [Heyting 30]	[Cabalar 01]
Nonmonotonic	Equilibrium Logic	Partial Equil. Logic (PEL)
(min. models)	[Pearce 96]	[Cabalar,Odintsov&Pearce 06]

What about the second negation?

	Answer sets	
Monotonic	$N_5 = HT + strong neg.$	
Nonmonotonic	Equilibrium Logic	
(min. models)		

э

	Stable Models	Partial Stable Models
Monotonic	Here-and-There	HT ²
	(<i>HT</i>) [Heyting 30]	[Cabalar 01]
Nonmonotonic	Equilibrium Logic	Partial Equil. Logic (PEL)
(min. models)	[Pearce 96]	[Cabalar,Odintsov&Pearce 06]

What about the second negation?

	Answer sets	
Monotonic	$N_5 = HT + strong neg.$	
Nonmonotonic	Equilibrium Logic	
(min. models)		

	Stable Models	Partial Stable Models
Monotonic	Here-and-There	HT ²
	(<i>HT</i>) [Heyting 30]	[Cabalar 01]
Nonmonotonic	Equilibrium Logic	Partial Equil. Logic (PEL)
(min. models)	[Pearce 96]	[Cabalar,Odintsov&Pearce 06]

What about the second negation?

	Answer sets	Partial Stable Models
Monotonic	$N_5 = HT + strong neg.$	HT ³
	[Nelson 45]	No axioms.
	[Vorob'ev 52]	We study PEL+strong neg.
Nonmonotonic	Equilibrium Logic	WFSXp
(min. models)	[Pearce 96]	[Alcântara,Damásio&Pereira]

	Stable Models	Partial Stable Models
Monotonic	Here-and-There	HT ²
	(<i>HT</i>) [Heyting 30]	[Cabalar 01]
Nonmonotonic	Equilibrium Logic	Partial Equil. Logic (PEL)
(min. models)	[Pearce 96]	[Cabalar,Odintsov&Pearce 06]

What about the second negation?

	Answer sets	Partial Stable Models
Monotonic	$N_5 = HT + strong neg.$	HT ³
	[Nelson 45]	No axioms.
	[Vorob'ev 52]	We study PEL+strong neg.
Nonmonotonic	Equilibrium Logic	WFSXp
(min. models)	[Pearce 96]	[Alcântara,Damásio&Pereira]

	Stable Models	Partial Stable Models
Monotonic	Here-and-There	HT ²
	(<i>HT</i>) [Heyting 30]	[Cabalar 01]
Nonmonotonic	Equilibrium Logic	Partial Equil. Logic (PEL)
(min. models)	[Pearce 96]	[Cabalar,Odintsov&Pearce 06]

What about the second negation?

	Answer sets	Partial Stable Models
Monotonic	$N_5 = HT + strong neg.$	HT ³
	[Nelson 45]	No axioms.
	[Vorob'ev 52]	We study PEL+strong neg.
Nonmonotonic	Equilibrium Logic	WFSXp
(min. models)	[Pearce 96]	[Alcântara,Damásio&Pereira]

	Stable Models	Partial Stable Models
Monotonic	Here-and-There	HT ²
	(<i>HT</i>) [Heyting 30]	[Cabalar 01]
Nonmonotonic	Equilibrium Logic	Partial Equil. Logic (PEL)
(min. models)	[Pearce 96]	[Cabalar,Odintsov&Pearce 06]

What about the second negation?

	Answer sets	Partial Stable Models
Monotonic	$N_5 = HT + strong neg.$	HT ³
	[Nelson 45]	No axioms.
	[Vorob'ev 52]	We study PEL+strong neg.
Nonmonotonic	Equilibrium Logic	WFSXp
(min. models)	[Pearce 96]	[Alcântara,Damásio&Pereira]

Stable models and Equilibrium Logic

- (Monotonic) intermediate logic of *here-and-there* (*HT*) Intuitionistic \subseteq *HT* \subseteq Classical
- Pearce's *Equilibrium Logic*: minimal *HT* models
 Intuition: *t* world is fixed (plays the role of "reduct"), *h* world is minimized
- Interesting results:
 - Equilibrium models = stable models [Pearce 97]
 - HT captures strong equivalence [Lifschitz, Pearce & Valverde 01] (we'll see later...)

イベト イラト イラト

Stable models and Equilibrium Logic

- (Monotonic) intermediate logic of *here-and-there* (*HT*) Intuitionistic \subseteq *HT* \subseteq Classical
- Pearce's *Equilibrium Logic*: minimal *HT* models
 Intuition: *t* world is fixed (plays the role of "reduct"), *h* world is minimized
- Interesting results:
 - Equilibrium models = stable models [Pearce 97]
 - HT captures strong equivalence [Lifschitz, Pearce & Valverde 01] (we'll see later...)

イベト イラト イラト

Stable models and Equilibrium Logic

- (Monotonic) intermediate logic of *here-and-there* (*HT*) Intuitionistic \subseteq *HT* \subseteq Classical
- Pearce's *Equilibrium Logic*: minimal *HT* models
 Intuition: *t* world is fixed (plays the role of "reduct"), *h* world is minimized
- Interesting results:
 - Equilibrium models = stable models [Pearce 97]
 - HT captures strong equivalence [Lifschitz, Pearce & Valverde 01] (we'll see later...)
Outline

Introduction

- Partial Equilibrium Logic

- Routley semantics and strong negation
- HT² with strong negation
- Partial Equilibrium Logic with strong negation

[Cabalar,Odintsov & Pearce KR'06] Partial Equilibrium Logic

- takes minimal models on monotonic logic HT²
- HT² classified inside [Došen 86] framework N combined with [Routley & Routley 72].
- Main idea: each world

h t founded ⊆ non-unfounded

[Cabalar,Odintsov & Pearce KR'06] Partial Equilibrium Logic

- takes minimal models on monotonic logic HT²
- 2 HT² classified inside [Došen 86] framework N combined with [Routley & Routley 72].

```
Main idea: each world
h
t
founded ⊆ non-unfounded
```

[Cabalar,Odintsov & Pearce KR'06] Partial Equilibrium Logic

- takes minimal models on monotonic logic HT²
- HT² classified inside [Došen 86] framework N combined with [Routley & Routley 72].

```
Main idea: each world
h
t
founded ⊆ non-unfounded
```

[Cabalar,Odintsov & Pearce KR'06] Partial Equilibrium Logic

- takes minimal models on monotonic logic HT²
- HT² classified inside [Došen 86] framework N combined with [Routley & Routley 72].
- Main idea: each world h t founded ⊆ non-unfounded

[Cabalar,Odintsov & Pearce KR'06] Partial Equilibrium Logic

- takes minimal models on monotonic logic HT²
- HT² classified inside [Došen 86] framework N combined with [Routley & Routley 72].
- Main idea: each world

 $\begin{array}{ccc} h & h' & has now a primed version \\ t & t' \\ founded & \subseteq non-unfounded \end{array}$

[Cabalar,Odintsov & Pearce KR'06] Partial Equilibrium Logic

- takes minimal models on monotonic logic HT²
- HT² classified inside [Došen 86] framework N combined with [Routley & Routley 72].
- Main idea: each world

 $\begin{array}{ccc} h & h' \\ t & t' \\ founded \subseteq non-unfounded \end{array}$

has now a primed version with the intended meaning

[Cabalar,Odintsov & Pearce KR'06] Partial Equilibrium Logic

- takes minimal models on monotonic logic HT²
- HT² classified inside [Došen 86] framework N combined with [Routley & Routley 72].
- Main idea: each world

 $\begin{array}{ccc} h & h' \\ t & t' \\ \text{founded} & \subseteq & \text{non-unfounded} \end{array}$

has now a primed version with the intended meaning

 \leq Accessibility relation like any intermediate logic ($w \models p$ and $w \leq w'$) implies $w' \models p$

 $\leq \text{used for implication: } w \models \varphi \rightarrow \psi \text{ when} \\ \forall w' \geq w, \ w' \models \varphi \text{ implies } w' \models \psi \end{cases}$

But negation $\neg \phi$ is no longer defined as $\phi \rightarrow \bot$

* *star* function (from Routley semantics) satisfies: $v \le w$ iff $w^* \le v^*$

$$w \models \neg \varphi$$
 when $w^* \not\models \varphi$

 \leq Accessibility relation like any intermediate logic ($w \models p$ and $w \leq w'$) implies $w' \models p$

 $\begin{array}{c} \begin{pmatrix} h \\ h \\ \end{pmatrix} \\ \begin{pmatrix} h' \\ \end{pmatrix} \\ \begin{pmatrix} h' \\ \end{pmatrix} \\ \end{pmatrix}$

 \leq used for implication: $w \models \varphi \rightarrow \psi$ when $\forall w' \geq w, w' \models \varphi$ implies $w' \models \psi$

But negation $\neg \phi$ is no longer defined as $\phi
ightarrow \bot$

* *star* function (from Routley semantics) satisfies: $v \le w$ iff $w^* \le v^*$

$$w \models \neg \varphi$$
 when $w^* \not\models \varphi$

 \leq Accessibility relation like any intermediate logic ($w \models p$ and $w \leq w'$) implies $w' \models p$

 \leq used for implication: $w \models \varphi \rightarrow \psi$ when $\forall w' \geq w, w' \models \varphi$ implies $w' \models \psi$

But negation $\neg \phi$ is no longer defined as $\phi \rightarrow \bot$

* *star* function (from Routley semantics satisfies: $v \le w$ iff $w^* \le v^*$

$$w \models \neg \varphi$$
 when $w^* \not\models \varphi$

 \leq Accessibility relation like any intermediate logic ($w \models p$ and $w \leq w'$) implies $w' \models p$

 \leq used for implication: $w \models \varphi \rightarrow \psi$ when $\forall w' \geq w, w' \models \varphi$ implies $w' \models \psi$

But negation $\neg \phi$ is no longer defined as $\phi \rightarrow \bot$

* *star* function (from Routley semantics) satisfies: $v \le w$ iff $w^* \le v^*$

$$\mathbf{v} \models \neg \varphi$$
 when $\mathbf{w}^* \not\models \varphi$

 \leq Accessibility relation like any intermediate logic ($w \models p$ and $w \leq w'$) implies $w' \models p$

 \leq used for implication: $w \models \varphi \rightarrow \psi$ when $\forall w' \geq w, w' \models \varphi$ implies $w' \models \psi$

But negation $\neg \phi$ is no longer defined as $\phi \rightarrow \bot$

* *star* function (from Routley semantics) satisfies: $v \le w$ iff $w^* \le v^*$

$$\mathbf{w} \models \neg \varphi$$
 when $\mathbf{w}^* \not\models \varphi$

• Let H, H', T, T' denote sets of atoms verified at h, h', t, t'.

- A model can be seen as a pair (H, T) of 3-valued interp. where H = (H, H') and T = (T, T').
- Define an ordering among models, $\langle \textbf{H}_1,\textbf{T}_1\rangle \trianglelefteq \langle \textbf{H}_2,\textbf{T}_2\rangle$ if:
 - (i) $\mathbf{T}_1 = \mathbf{T}_2$ (this is fixed)
 - (ii) H_1 less truth than H_2 ($H_1 \subseteq H_2$ and $H'_1 \subseteq H'_2$).
- $\langle \mathbf{H}, \mathbf{T} \rangle$ is said to be *total* if $\mathbf{H} = \mathbf{T}$.

Definition (Partial equilibrium model)

A model *M* of theory Π is a *partial equilibrium (PE) model* of Π if it is <mark>total</mark> and ⊴-<mark>minimal</mark>.

- Let H, H', T, T' denote sets of atoms verified at h, h', t, t'.
- A model can be seen as a pair (H, T) of 3-valued interp. where H = (H, H') and T = (T, T').
- Define an ordering among models, ⟨H₁, T₁⟩ ≤ ⟨H₂, T₂⟩ if:
 (i) T₁ = T₂ (this is fixed)
 (ii) H₁ less truth than H₂ (H₁ ⊆ H₂ and H'₁ ⊆ H'₂).
- $\langle \mathbf{H}, \mathbf{T} \rangle$ is said to be *total* if $\mathbf{H} = \mathbf{T}$.

Definition (Partial equilibrium model)

A model *M* of theory Π is a *partial equilibrium (PE) model* of Π if it is <mark>total</mark> and ⊴-<mark>minimal</mark>.

- Let H, H', T, T' denote sets of atoms verified at h, h', t, t'.
- A model can be seen as a pair (H, T) of 3-valued interp. where H = (H, H') and T = (T, T').
- Define an ordering among models, ⟨H₁, T₁⟩ ⊴ ⟨H₂, T₂⟩ if:
 (i) T₁ = T₂ (this is fixed)
 (ii) H₁ less truth than H₂ (H₁ ⊆ H₂ and H'₁ ⊆ H'₂).
- $\langle \mathbf{H}, \mathbf{T} \rangle$ is said to be *total* if $\mathbf{H} = \mathbf{T}$.

Definition (Partial equilibrium model)

A model *M* of theory Π is a *partial equilibrium (PE) model* of Π if it is <mark>total</mark> and ⊴-<mark>minimal</mark>.

- Let H, H', T, T' denote sets of atoms verified at h, h', t, t'.
- A model can be seen as a pair (H, T) of 3-valued interp. where H = (H, H') and T = (T, T').
- Define an ordering among models, ⟨H₁, T₁⟩ ⊴ ⟨H₂, T₂⟩ if:
 (i) T₁ = T₂ (this is fixed)
 (ii) H₁ less truth than H₂ (H₁ ⊆ H₂ and H'₁ ⊆ H'₂).
- $\langle \mathbf{H}, \mathbf{T} \rangle$ is said to be *total* if $\mathbf{H} = \mathbf{T}$.

Definition (Partial equilibrium model)

A model *M* of theory Π is a *partial equilibrium (PE) model* of Π if it is <mark>total</mark> and ⊴-<mark>minimal</mark>.

- Let H, H', T, T' denote sets of atoms verified at h, h', t, t'.
- A model can be seen as a pair (H, T) of 3-valued interp. where H = (H, H') and T = (T, T').
- Define an ordering among models, ⟨H₁, T₁⟩ ≤ ⟨H₂, T₂⟩ if:
 (i) T₁ = T₂ (this is fixed)
 (ii) H₁ less truth than H₂ (H₁ ⊆ H₂ and H'₁ ⊆ H'₂).
- $\langle \mathbf{H}, \mathbf{T} \rangle$ is said to be *total* if $\mathbf{H} = \mathbf{T}$.

Definition (Partial equilibrium model)

A model *M* of theory Π is a *partial equilibrium (PE) model* of Π if it is <mark>total</mark> and ⊴-minimal.

- Let H, H', T, T' denote sets of atoms verified at h, h', t, t'.
- A model can be seen as a pair (H, T) of 3-valued interp. where H = (H, H') and T = (T, T').
- Define an ordering among models, ⟨H₁, T₁⟩ ≤ ⟨H₂, T₂⟩ if:
 (i) T₁ = T₂ (this is fixed)
 (ii) H₁ less truth than H₂ (H₁ ⊆ H₂ and H'₁ ⊆ H'₂).
- $\langle \mathbf{H}, \mathbf{T} \rangle$ is said to be *total* if $\mathbf{H} = \mathbf{T}$.

Definition (Partial equilibrium model)

A model \mathcal{M} of theory Π is a *partial equilibrium (PE) model* of Π if it is total and \leq -minimal.

Theorem (Corresp. to Partial Stable Models)

For a normal or disjunctive logic program Π , $\langle \mathbf{T}, \mathbf{T} \rangle$ is a partial equilibrium model of Π iff \mathbf{T} is a partial stable model of Π .

Definition (strong equivalence)

Two theories Π_1, Π_2 are said to be *strongly equivalent* if for any set of formulas Γ , $\Pi_1 \cup \Gamma$ and $\Pi_2 \cup \Gamma$ have the same partial stable models.

Theorem (from KR'06 paper)

 Π_1, Π_2 are PEL strongly equivalent iff they are equivalent in HT².

The same holds for *Well-Founded (WF) model(s)*, understood as those partial stable models with minimal information.

Theorem (Corresp. to Partial Stable Models)

For a normal or disjunctive logic program Π , $\langle \mathbf{T}, \mathbf{T} \rangle$ is a partial equilibrium model of Π iff \mathbf{T} is a partial stable model of Π .

Definition (strong equivalence)

Two theories Π_1, Π_2 are said to be *strongly equivalent* if for any set of formulas Γ , $\Pi_1 \cup \Gamma$ and $\Pi_2 \cup \Gamma$ have the same partial stable models.

Theorem (from KR'06 paper)

 Π_1, Π_2 are PEL strongly equivalent iff they are equivalent in HT^2 .

The same holds for *Well-Founded (WF) model(s)*, understood as those partial stable models with minimal information.

Theorem (Corresp. to Partial Stable Models)

For a normal or disjunctive logic program Π , $\langle \mathbf{T}, \mathbf{T} \rangle$ is a partial equilibrium model of Π iff \mathbf{T} is a partial stable model of Π .

Definition (strong equivalence)

Two theories Π_1, Π_2 are said to be *strongly equivalent* if for any set of formulas Γ , $\Pi_1 \cup \Gamma$ and $\Pi_2 \cup \Gamma$ have the same partial stable models.

Theorem (from KR'06 paper)

 Π_1, Π_2 are PEL strongly equivalent iff they are equivalent in HT^2 .

The same holds for *Well-Founded (WF) model(s)*, understood as those partial stable models with minimal information.

Theorem (Corresp. to Partial Stable Models)

For a normal or disjunctive logic program Π , $\langle \mathbf{T}, \mathbf{T} \rangle$ is a partial equilibrium model of Π iff \mathbf{T} is a partial stable model of Π .

Definition (strong equivalence)

Two theories Π_1, Π_2 are said to be *strongly equivalent* if for any set of formulas Γ , $\Pi_1 \cup \Gamma$ and $\Pi_2 \cup \Gamma$ have the same partial stable models.

Theorem (from KR'06 paper)

 Π_1, Π_2 are PEL strongly equivalent iff they are equivalent in HT^2 .

The same holds for *Well-Founded (WF) model(s)*, understood as those partial stable models with minimal information.

イロト 不得 トイヨト イヨト 三日

Outline

- Overview of Logic Programming semantics
- Logical foundations
- Partial Equilibrium Logic

2 Contributions

Routley semantics and strong negation

- HT² with strong negation
- Partial Equilibrium Logic with strong negation

Conclusions

$N^{*\sim}$

- HT² special case of N* family = intuitionistic Kripke frames with a weaker negation [Routley & Routley 72].
- We define next $N^{*\sim}$, adding strong negation \sim , as follows.
- Syntax: atoms, ∧, ∨, →, ¬ (weak negation) and ~ (strong negation)
- Inference rules: modus ponens, plus

(RC)
$$\frac{\alpha \to \beta}{\neg \beta \to \neg \alpha}$$

P. Cabalar, A. Odintsov & D. Pearce

Strong negation in WF and PS semantics ...

$N^{*\sim}$

- *HT*² special case of *N** family = intuitionistic Kripke frames with a weaker negation [Routley & Routley 72].
- We define next $N^{*\sim}$, adding strong negation \sim , as follows.
- Syntax: atoms, ∧, ∨, →, ¬ (weak negation) and ~ (strong negation)
- Inference rules: modus ponens, plus

(RC)
$$\frac{\alpha \to \beta}{\neg \beta \to \neg \alpha}$$

P. Cabalar, A. Odintsov & D. Pearce

Strong negation in WF and PS semantics ...

$N^{*\sim}$

- HT² special case of N* family = intuitionistic Kripke frames with a weaker negation [Routley & Routley 72].
- We define next $N^{*\sim}$, adding strong negation \sim , as follows.
- Syntax: atoms, ∧, ∨, →, ¬ (weak negation) and ~ (strong negation)
- Inference rules: modus ponens, plus

(RC)
$$\frac{\alpha \to \beta}{\neg \beta \to \neg \alpha}$$

P. Cabalar, A. Odintsov & D. Pearce

Strong negation in WF and PS semantics ...

$N^{*\sim}$ axioms

- the axiom schemes of positive logic,
- 2 weak negation axioms:

W1. $\neg \alpha \land \neg \beta \rightarrow \neg (\alpha \lor \beta)$ W2. $\neg (\alpha \land \beta) \rightarrow \neg \alpha \lor \neg \beta$ W3. $\neg (\alpha \rightarrow \alpha) \rightarrow \beta$ Until now, N^*

and for N*~, we add the schemata for strong negation from [Vorob'ev 52]:

N1. $\sim (\alpha \rightarrow \beta) \leftrightarrow \alpha \wedge \sim \beta$ **N3.** $\sim (\alpha \lor \beta) \leftrightarrow \sim \alpha \land \sim \beta$ **N5.** $\sim \neg \alpha \leftrightarrow \alpha$ N2. $\sim (\alpha \land \beta) \leftrightarrow \sim \alpha \lor \sim \beta$ N4. $\sim \sim \alpha \leftrightarrow \alpha$

4 E N 4 E N

N^{∗∼} models

Definition ($N^{*\sim}$ frame)

is a triple $\langle W, \leq, * \rangle$, where:

- W is a set of worlds
- $2 \leq a partial order on W$
- $*: W \longrightarrow W$ such that $x \le y$ iff $y^* \le x^*$.

Definition ($N^{*\sim}$ model)

is an $N^{*\sim}$ frame $\langle W, \leq, *, V^+, V^- \rangle$ plus two valuations $V^+, V^- : At \times W \longrightarrow \{0, 1\}$ such that:

 $V^{+(-)}(p,u) = 1 \& u \le w \Rightarrow V^{+(-)}(p,w) = 1$

N^{∗∼} models

Definition ($N^{*\sim}$ frame)

is a triple $\langle W, \leq, * \rangle$, where:

- W is a set of worlds
- $2 \leq a partial order on W$

Definition ($N^{*\sim}$ model)

is an $N^{*\sim}$ frame $\langle W, \leq, *, V^+, V^- \rangle$ plus two valuations $V^+, V^- : At \times W \longrightarrow \{0, 1\}$ such that:

$$V^{+(-)}(p, u) = 1 \& u \le w \Rightarrow V^{+(-)}(p, w) = 1$$

P. Cabalar, A. Odintsov & D. Pearce

Strong negation in WF and PS semantics

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

N^{∗∼} models

Definition (N*~ frame)

is a triple $\langle W, \leq, * \rangle$, where:

- W is a set of worlds
- $2 \leq a$ partial order on W

Definition ($N^{*\sim}$ model)

is an $N^{*\sim}$ frame $\langle W, \leq, *, V^+, V^- \rangle$ plus two valuations $V^+, V^- : At \times W \longrightarrow \{0, 1\}$ such that:

$$V^{+(-)}(p, u) = 1 \& u \le w \Rightarrow V^{+(-)}(p, w) = 1$$

P. Cabalar, A. Odintsov & D. Pearce

イロト 不得 トイヨト イヨト 三日

N^{*~} valuation

 V^+ , V^- are extended to arbitrary formulas as follows:

•
$$V^+(\varphi \wedge \psi, w) = 1$$
 iff $V^+(\varphi, w) = V^+(\psi, w) = 1$

•
$$V^+(\varphi \lor \psi, w) = 1$$
 iff $V^+(\varphi, w) = 1$ or $V^+(\psi, w) = 1$

• $V^+(\varphi \rightarrow \psi, w) = 1$ iff for every w' such that $w \le w'$, $V^+(\varphi, w') = 1 \Rightarrow V^+(\psi, w') = 1$

•
$$V^+(\neg \varphi, w) = 1$$
 iff $V^+(\varphi, w^*) = 0$

•
$$V^+(\sim \varphi, w) = 1$$
 iff $V^-(\varphi, w) = 1$

•
$$V^-(\varphi \wedge \psi, w) = 1$$
 iff $V^-(\varphi, w) = 1$ or $V^-(\psi, w) = 1$

•
$$V^-(\varphi \lor \psi, w) = 1$$
 iff $V^-(\varphi, w) = V^-(\psi, w) = 1$

•
$$V^-(\varphi \rightarrow \psi, w) = 1$$
 iff $V^+(\varphi, w) = 1$ and $V^-(\psi, w) = 1$

•
$$V^-(\neg \varphi, w) = 1$$
 iff $V^+(\varphi, w) = 1$

• $V^-(\sim \varphi, w) = 1$ iff $V^+(\varphi, w) = 1$

Axiom (W3) allows defining an intuitionistic negation ⊥ := ¬(p₀ → p₀) and −α := α → ⊥

Proposition

The $\langle \lor, \land, \rightarrow, - \rangle$ -fragment of N^{*~} coincides with intuitionistic logic.

Proposition

 $N^{*\sim}$ is a conservative extension of N^* and of Nelson's paraconsistent logic N^- .

Proposition

For each formula ϕ there exists some N^{*~}-equivalent formula ψ in negation normal form (~ only applied to atoms).

Axiom (W3) allows defining an intuitionistic negation ⊥ := ¬(p₀ → p₀) and −α := α → ⊥

Proposition

The $\langle \lor, \land, \rightarrow, - \rangle$ -fragment of N^{*~} coincides with intuitionistic logic.

Proposition

 $N^{*\sim}$ is a conservative extension of N^* and of Nelson's paraconsistent logic N^- .

Proposition

For each formula ϕ there exists some N^{*~}-equivalent formula ψ in negation normal form (~ only applied to atoms).

Axiom (W3) allows defining an intuitionistic negation ⊥ := ¬(p₀ → p₀) and −α := α → ⊥

Proposition

The $\langle \lor, \land, \rightarrow, - \rangle$ -fragment of $N^{*\sim}$ coincides with intuitionistic logic.

Proposition

 $N^{*\sim}$ is a conservative extension of N^* and of Nelson's paraconsistent logic N^- .

Proposition

For each formula ϕ there exists some N^{*~}-equivalent formula ψ in negation normal form (~ only applied to atoms).

Axiom (W3) allows defining an intuitionistic negation ⊥ := ¬(p₀ → p₀) and − α := α → ⊥

Proposition

The $\langle \lor, \land, \rightarrow, - \rangle$ -fragment of $N^{*\sim}$ coincides with intuitionistic logic.

Proposition

 $N^{*\sim}$ is a conservative extension of N^* and of Nelson's paraconsistent logic N^- .

Proposition

For each formula ϕ there exists some $N^{*\sim}$ -equivalent formula ψ in negation normal form (\sim only applied to atoms).
N^{*~} properties

Theorem (Vorob'ev reduction)

For each formula ϕ , let ϕ' be the result of:

- obtaining its negation normal form and
- 2 replacing each \sim p by a new atom p'.

Then: $N^{*\sim} \vdash \phi$ *iff* $N^{*\sim} \vdash \phi'$.

4 3 5 4 3 5 5

Outline

- Overview of Logic Programming semantics
- Logical foundations
- Partial Equilibrium Logic

Contributions

- Routley semantics and strong negation
- *HT*² with strong negation
- Partial Equilibrium Logic with strong negation

Conclusions

 HT² = N* + Ax where Ax are more axioms for weak negation Nothing new is required: HT^{2~} = N*~ + Ax

The (common) set of axioms Ax is the following:

W4.
$$-\alpha \lor - -\alpha$$

W5. $-\alpha \lor (\alpha \to (\beta \lor (\beta \to (\gamma \lor -\gamma))))$
W6. $\bigwedge_{i=0}^{2}((\alpha_{i} \to \bigvee_{j \neq i} \alpha_{j}) \to \bigvee_{j \neq i} \alpha_{j}) \to \bigvee_{i=0}^{2} \alpha_{i}$
W7. $\alpha \to \neg \neg \alpha$
W8. $\alpha \land \neg \alpha \to \neg \beta \lor \neg \neg \beta$
W9. $\neg \alpha \land \neg (\alpha \to \beta) \to \neg \neg \alpha$
W10. $\neg \neg \alpha \lor \neg \neg \beta \lor \neg (\alpha \to \beta) \lor \neg \neg (\alpha \to \beta)$
W11. $\neg \neg \alpha \land \neg \neg \beta \to (\alpha \to \beta) \lor (\beta \to \alpha)$

plus the rule (*EC*) $\frac{\alpha \vee (\beta \wedge \neg \beta)}{\alpha}$

 HT² = N* + Ax where Ax are more axioms for weak negation Nothing new is required: HT^{2~} = N*~ + Ax

The (common) set of axioms Ax is the following:

W4.
$$-\alpha \lor - -\alpha$$

W5. $-\alpha \lor (\alpha \to (\beta \lor (\beta \to (\gamma \lor -\gamma))))$
W6. $\bigwedge_{i=0}^{2}((\alpha_{i} \to \bigvee_{j \neq i} \alpha_{j}) \to \bigvee_{j \neq i} \alpha_{j}) \to \bigvee_{i=0}^{2} \alpha_{i}$
W7. $\alpha \to \neg \neg \alpha$
W8. $\alpha \land \neg \alpha \to \neg \beta \lor \neg \neg \beta$
W9. $\neg \alpha \land \neg (\alpha \to \beta) \to \neg \neg \alpha$
W10. $\neg \neg \alpha \lor \neg \neg \beta \lor \neg (\alpha \to \beta) \lor \neg \neg (\alpha \to \beta)$
W11. $\neg \neg \alpha \land \neg \neg \beta \to (\alpha \to \beta) \lor (\beta \to \alpha)$

plus the rule (*EC*) $\frac{\alpha \lor (\beta \land \neg \beta)}{\alpha}$

 HT² = N* + Ax where Ax are more axioms for weak negation Nothing new is required: HT^{2~} = N*~ + Ax

The (common) set of axioms Ax is the following:

W4.
$$-\alpha \lor --\alpha$$

W5. $-\alpha \lor (\alpha \to (\beta \lor (\beta \to (\gamma \lor -\gamma))))$
W6. $\bigwedge_{i=0}^{2}((\alpha_{i} \to \bigvee_{j \neq i} \alpha_{j}) \to \bigvee_{j \neq i} \alpha_{j}) \to \bigvee_{i=0}^{2} \alpha_{i}$
W7. $\alpha \to \neg \neg \alpha$
W8. $\alpha \land \neg \alpha \to \neg \beta \lor \neg \neg \beta$
W9. $\neg \alpha \land \neg (\alpha \to \beta) \to \neg \neg \alpha$
W10. $\neg \neg \alpha \lor \neg \neg \beta \lor \neg (\alpha \to \beta) \lor \neg \neg (\alpha \to \beta)$
W11. $\neg \neg \alpha \land \neg \neg \beta \to (\alpha \to \beta) \lor (\beta \to \alpha)$

plus the rule (*EC*) $\frac{\alpha \lor (\beta \land \neg \beta)}{\alpha}$

• $HT^{2\sim} = HT^2 + {\mathbf{N1}, \dots, \mathbf{N5}}.$

• $HT^{2\sim}$ frames coincide with HT^2 ones seen before:

relation ≤ * function
Note: we allow paraconsistency: *p* and ~ *p* can be both founded.

Proposition

Vorob'ev reduction also holds for HT $^{2\sim}$.

P. Cabalar, A. Odintsov & D. Pearce

Strong negation in WF and PS semantics ...

• $HT^{2\sim} = HT^2 + {\mathbf{N1}, \dots, \mathbf{N5}}.$

• $HT^{2\sim}$ frames coincide with HT^2 ones seen before:

relation $\leq *$ function

 Note: we allow paraconsistency: *p* and ~ *p* can be both founded.

Proposition

Vorob'ev reduction also holds for HT $^{2\sim}$.

P. Cabalar, A. Odintsov & D. Pearce

Strong negation in WF and PS semantics ...

• $HT^{2\sim} = HT^2 + {\mathbf{N1}, \dots, \mathbf{N5}}.$

• $HT^{2\sim}$ frames coincide with HT^2 ones seen before:

relation $\leq *$ function

 Note: we allow paraconsistency: *p* and ~ *p* can be both founded.

Proposition

Vorob'ev reduction also holds for HT $^{2\sim}$.

• $HT^{2\sim} = HT^2 + {N1, ..., N5}.$

• $HT^{2\sim}$ frames coincide with HT^2 ones seen before:

 $relation \leq \qquad * \ function$

 Note: we allow paraconsistency: *p* and ~ *p* can be both founded.

Proposition

Vorob'ev reduction also holds for $HT^{2\sim}$.

P. Cabalar, A. Odintsov & D. Pearce

We extend HT^2 with a new truth constant u (undefinedness).

Definition (HT_u^2) V(u, h) = V(u, t) = 0 and V(u, h') = V(u, t') = 1. That is, always undefined.

Theorem

$$HT_u^2 = HT^2 + \{u \leftrightarrow \neg u\}$$

The same extension can be done on $HT^{2\sim}$.

不得 トイ ヨト イヨト

We extend HT^2 with a new truth constant *u* (undefinedness).

Definition (HT_u^2) V(u, h) = V(u, t) = 0 and V(u, h') = V(u, t') = 1. That is, always undefined.

Theorem

$$HT_u^2 = HT^2 + \{u \leftrightarrow \neg u\}$$

The same extension can be done on $HT^{2\sim}$.

A (10) A (10)

We extend HT^2 with a new truth constant *u* (undefinedness).

Definition (HT_u^2) V(u, h) = V(u, t) = 0 and V(u, h') = V(u, t') = 1. That is, always undefined.

Theorem

$$HT_u^2 = HT^2 + \{u \leftrightarrow \neg u\}$$

The same extension can be done on $HT^{2\sim}$.

・ 回 ト イヨ ト イヨ ト 三 三

Other useful logics:

• Semi-consistency: $HT_{sc}^2 := HT_u^{2\sim} + \{p \land \sim p \rightarrow u \text{ yields the effect:} \}$

 $p, \sim p$ can be both non-unfounded, but not both founded.

Coherence: HT²_{coh} := HT^{2∼}_u + {p → ¬ ~ p ∨ u, ~ p → ¬p ∨ u} yields the effect:

 $p \text{ founded} \Rightarrow \sim p \text{ unfounded}$ $\sim p \text{ founded} \Rightarrow p \text{ unfounded}$

Proposition

 $\mathsf{HT}^2_{\mathsf{coh}}$ (coherence) is stronger than $\mathsf{HT}^2_{\mathsf{sc}}$ (semi-consistency).

• Vorob'ev reductions for these variants: just apply translation to axiom schemata too.

Other useful logics:

• Semi-consistency: $HT_{sc}^2 := HT_u^{2\sim} + \{p \land \sim p \rightarrow u \text{ yields the effect:} \}$

 $p, \sim p$ can be both non-unfounded, but not both founded.

• Coherence: $HT_{coh}^2 := HT_u^{2\sim} + \{p \to \neg \sim p \lor u, \ \sim p \to \neg p \lor u\}$ yields the effect:

 $p \text{ founded} \Rightarrow \sim p \text{ unfounded}$ $\sim p \text{ founded} \Rightarrow p \text{ unfounded}$

Proposition

 $\mathsf{HT}^2_{\mathsf{coh}}$ (coherence) is stronger than $\mathsf{HT}^2_{\mathsf{sc}}$ (semi-consistency).

• Vorob'ev reductions for these variants: just apply translation to axiom schemata too.

イロト 不得 トイヨト イヨト 三日

Other useful logics:

• Semi-consistency: $HT_{sc}^2 := HT_u^{2\sim} + \{p \land \sim p \rightarrow u \text{ yields the effect:} \}$

 $p, \sim p$ can be both non-unfounded, but not both founded.

• Coherence: $HT_{coh}^2 := HT_u^{2\sim} + \{p \to \neg \sim p \lor u, \ \sim p \to \neg p \lor u\}$ yields the effect:

 $p \text{ founded} \Rightarrow \sim p \text{ unfounded}$ $\sim p \text{ founded} \Rightarrow p \text{ unfounded}$

Proposition

 HT_{coh}^2 (coherence) is stronger than HT_{sc}^2 (semi-consistency).

 Vorob'ev reductions for these variants: just apply translation to axiom schemata too.

Other useful logics:

• Semi-consistency: $HT_{sc}^2 := HT_u^{2\sim} + \{p \land \sim p \rightarrow u \text{ yields the effect:} \}$

 $p, \sim p$ can be both non-unfounded, but not both founded.

• Coherence: $HT_{coh}^2 := HT_u^{2\sim} + \{p \to \neg \sim p \lor u, \ \sim p \to \neg p \lor u\}$ yields the effect:

 $p ext{ founded} \Rightarrow \sim p ext{ unfounded}$ $\sim p ext{ founded} \Rightarrow p ext{ unfounded}$

Proposition

 HT_{coh}^2 (coherence) is stronger than HT_{sc}^2 (semi-consistency).

 Vorob'ev reductions for these variants: just apply translation to axiom schemata too.

イロン 不良 とくほう イロン しゅ

Outline

- Overview of Logic Programming semantics
- Logical foundations
- Partial Equilibrium Logic

Contributions

- Routley semantics and strong negation
- HT² with strong negation
- Partial Equilibrium Logic with strong negation

Conclusions

- H, H', T, T' are now sets of literals ($p, \sim p$).
- PEL definitions remain unchanged: PE model = total and ⊴-minimal. Well-founded model = PE model with minimal info.
- We can get PE models for any strong neg. version of HT^2 : $HT_u^{2\sim}$, HT_{sc}^2 , HT_{coh}^2 .

- H, H', T, T' are now sets of literals ($p, \sim p$).
- PEL definitions remain unchanged: PE model = total and ⊴-minimal. Well-founded model = PE model with minimal info.
- We can get PE models for any strong neg. version of *HT*²: $HT_u^{2\sim}$, HT_{sc}^2 , HT_{coh}^2 .

Theorem (Strong equivalence)

Let Γ_1, Γ_2 be sets of $N^{*\sim}$ formulas.

 Γ_1, Γ_2 are strongly equivalent (wrt each version of PEL models) iff

 Γ_1, Γ_2 equivalent in the corresp. monotonic logic $HT_u^{2\sim}$, HT_{sc}^2 , HT_{coh}^2 .

Proposition

For all PEL variants with strong neg., complexity of reasoning tasks is the same class as that of ordinary PEL (in particular, decision problem is Π_2^P -hard).

A (10) A (10)

Theorem (Strong equivalence)

Let Γ_1, Γ_2 be sets of $N^{*\sim}$ formulas.

 Γ_1, Γ_2 are strongly equivalent (wrt each version of PEL models) iff

 Γ_1, Γ_2 equivalent in the corresp. monotonic logic $HT_u^{2\sim}$, HT_{sc}^2, HT_{coh}^2 .

Proposition

For all PEL variants with strong neg., complexity of reasoning tasks is the same class as that of ordinary PEL (in particular, decision problem is Π_2^P -hard).

4 3 5 4 3 5 5

An extended logic program Π is a set of rules *r*:

 $Hd(r) \leftarrow B(r)$

where Hd(r) is a literal $(p, \sim p)$ and B(r) a conjunction of expressions like *L* or $\neg L$ (*L*=literal).

Theorem

 $\langle \mathbf{T}, \mathbf{T} \rangle$ is an HT_{sc}^2 PE model of an extended program Π iff \mathbf{T} is a classical-negation [Przymusinski 91] part. stable model of Π .

Theorem

 $\langle \mathbf{T}, \mathbf{T} \rangle$ is an HT^2_{coh} PE model of an extended program Π iff \mathbf{T} is a strong-negation [Alferes & Pereira 92] part. stable model of Π .

An extended logic program Π is a set of rules *r*:

```
Hd(r) \leftarrow B(r)
```

where Hd(r) is a literal $(p, \sim p)$ and B(r) a conjunction of expressions like *L* or $\neg L$ (*L*=literal).

Theorem

 $\langle \mathbf{T}, \mathbf{T} \rangle$ is an HT^2_{sc} PE model of an extended program Π iff \mathbf{T} is a classical-negation [Przymusinski 91] part. stable model of Π .

Theorem

 $\langle \mathbf{T}, \mathbf{T} \rangle$ is an HT^2_{coh} PE model of an extended program Π iff \mathbf{T} is a strong-negation [Alferes & Pereira 92] part. stable model of Π .

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

An extended logic program Π is a set of rules *r*:

```
Hd(r) \leftarrow B(r)
```

where Hd(r) is a literal $(p, \sim p)$ and B(r) a conjunction of expressions like *L* or $\neg L$ (*L*=literal).

Theorem

 $\langle \mathbf{T}, \mathbf{T} \rangle$ is an HT^2_{sc} PE model of an extended program Π iff \mathbf{T} is a classical-negation [Przymusinski 91] part. stable model of Π .

Theorem

 $\langle \mathbf{T}, \mathbf{T} \rangle$ is an HT^2_{coh} PE model of an extended program Π iff \mathbf{T} is a strong-negation [Alferes & Pereira 92] part. stable model of Π .

・ ロ ト ・ 同 ト ・ 国 ト ・ 国 ト

Given an extended program Π we define Π' by replacing each rule *r* by:

$$egin{array}{rcl} {\it Hd}(r) &\leftarrow {\it B}(r) \wedge u \wedge \neg \sim {\it Hd}(r) \ {\it Hd}(r) \lor u &\leftarrow {\it B}(r) \end{array}$$

Theorem

A pair $\mathbf{T} = (T, T')$ is a WFSX part. stable model [Alferes & Pereira 92] of an extended logic program Π iff $\langle \mathbf{T}, \mathbf{T} \rangle$ is an HT_{sc}^2 PE model of Π' .

Given an extended program Π we define Π' by replacing each rule *r* by:

$$egin{array}{rcl} {\it Hd}(r) &\leftarrow {\it B}(r) \wedge u \wedge \neg \sim {\it Hd}(r) \ {\it Hd}(r) \lor u &\leftarrow {\it B}(r) \end{array}$$

Theorem

A pair $\mathbf{T} = (T, T')$ is a WFSX part. stable model [Alferes & Pereira 92] of an extended logic program Π iff $\langle \mathbf{T}, \mathbf{T} \rangle$ is an HT_{sc}^2 PE model of Π' .

Conclusions

- PEL is a natural logical foundation for partial stable models. Strong negation added preserving complexity and strong equivalence results.
- We provided a Routley-style general family N^{*~} of strong neg. logics
- We explored 3 different options:
 - $HT_u^{2\sim}$ paraconsistency
 - ► HT²_{sc} semi-consistency
 - HT_{coh}^2 coherence $\sim L \Rightarrow \neg L$
- Coherence:
 - not so natural when handling paraconsistency
 - ▶ for capturing WFSX, HT²_{coh} is too strong
 - WFSX can be encoded into HT²_{sc}

• Future work: detailed comparison to frame-based characterisation of WFSX [Alcântara,Damásio&Pereira].

Conclusions

- PEL is a natural logical foundation for partial stable models. Strong negation added preserving complexity and strong equivalence results.
- We provided a Routley-style general family N^{*~} of strong neg. logics
- We explored 3 different options:
 - $HT_u^{2\sim}$ paraconsistency
 - ► HT²_{sc} semi-consistency
 - HT_{coh}^2 coherence $\sim L \Rightarrow \neg L$
- Coherence:
 - not so natural when handling paraconsistency
 - ▶ for capturing WFSX, HT²_{coh} is too strong
 - WFSX can be encoded into HT_{sc}^2
- Future work: detailed comparison to frame-based characterisation of WFSX [Alcântara,Damásio&Pereira].

Further reading

- P. Cabalar, S. Odintsov & D. Pearce. Logical Foundations of Well-Founded Semantics. In *Proceedings KR 06*.
- P. Cabalar, S. Odintsov, D. Pearce & A. Valverde. Analysing and Extending Well-Founded and Partial Stable Semantics using Partial Equilibrium Logic. In *Proceedings of ICLP'06*, (LNCS 4079).
 - Strong equivalence, complexity results, properties of PEL inference, disjunctive WFS, ...
- P. Cabalar, S. Odintsov, D. Pearce & A. Valverde. On the logic and computation of Partial Equilibrium Models. In *Proceedings of JELIA'06*, (LNAI 4160).
 - Tableaux proof system
 - Splitting theorem for PEL