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Logic programming: semantics for default negation

Semantics for default negation
Stable Models

[Gelfond & Lifschitz 88]
Partial Stable Models

[Przymusinski 91]
Well-Founded semantics (WFS)
[van Gelder, Ross & Schlipf 91]
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Logic programming: semantics for default negation

LP definitions rely on:
syntax transformations (reduct) + fixpoint constructions

Stable models [Gelfond & Lifschitz 88]
M stable model iff classical minimal model of ΠM

Example:

We guess some M
say M = {q, r}
to interprete ¬α’s

p ← r ∧ ¬q
q ← r ∧ ¬p
r ← ¬p
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Example:

We guess some M
say M = {q, r}
to interprete ¬α’s

p ← r ∧ ⊥
q ← r ∧ >
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Stable models [Gelfond & Lifschitz 88]
M stable model iff classical minimal model of ΠM

Example:

We guess some M
say M = {q, r}
to interprete ¬α’s

q ← r
r

Minimal model
{q, r} = M
stable model !
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Logic programming: semantics for default negation

Partial stable models [Przymusinski 91]
M partial stable model iff 3-valued minimal-truth model of ΠM

Again similar idea: reduct + fixpoint condition

Note that interpretations are now 3-valued.
Well-founded model = partial stable model with minimal info.
(defined atoms)

Example: p ← ¬p has no stable model.
It has one partial stable model leaving p undefined.

P. Cabalar, A. Odintsov & D. Pearce ( University of Corunna (Spain), Sobolev Institute of Mathematics (Novosibirsk, Russia), Universidad Rey Juan Carlos (Spain) )Strong negation in WF and PS semantics . . . IBERAMIA 2006 6 / 35



Logic programming: semantics for default negation

Partial stable models [Przymusinski 91]
M partial stable model iff 3-valued minimal-truth model of ΠM

Again similar idea: reduct + fixpoint condition

Note that interpretations are now 3-valued.
Well-founded model = partial stable model with minimal info.
(defined atoms)

Example: p ← ¬p has no stable model.
It has one partial stable model leaving p undefined.

P. Cabalar, A. Odintsov & D. Pearce ( University of Corunna (Spain), Sobolev Institute of Mathematics (Novosibirsk, Russia), Universidad Rey Juan Carlos (Spain) )Strong negation in WF and PS semantics . . . IBERAMIA 2006 6 / 35



Logic programming: semantics for default negation

Partial stable models [Przymusinski 91]
M partial stable model iff 3-valued minimal-truth model of ΠM

Again similar idea: reduct + fixpoint condition

Note that interpretations are now 3-valued.
Well-founded model = partial stable model with minimal info.
(defined atoms)

Example: p ← ¬p has no stable model.
It has one partial stable model leaving p undefined.

P. Cabalar, A. Odintsov & D. Pearce ( University of Corunna (Spain), Sobolev Institute of Mathematics (Novosibirsk, Russia), Universidad Rey Juan Carlos (Spain) )Strong negation in WF and PS semantics . . . IBERAMIA 2006 6 / 35



Logic programming: semantics for default negation

Partial stable models [Przymusinski 91]
M partial stable model iff 3-valued minimal-truth model of ΠM

Again similar idea: reduct + fixpoint condition

Note that interpretations are now 3-valued.
Well-founded model = partial stable model with minimal info.
(defined atoms)

Example: p ← ¬p has no stable model.
It has one partial stable model leaving p undefined.

P. Cabalar, A. Odintsov & D. Pearce ( University of Corunna (Spain), Sobolev Institute of Mathematics (Novosibirsk, Russia), Universidad Rey Juan Carlos (Spain) )Strong negation in WF and PS semantics . . . IBERAMIA 2006 6 / 35



Logic programming: semantics for default negation

Partial stable models [Przymusinski 91]
M partial stable model iff 3-valued minimal-truth model of ΠM

Again similar idea: reduct + fixpoint condition

Note that interpretations are now 3-valued.
Well-founded model = partial stable model with minimal info.
(defined atoms)

Example: p ← ¬p has no stable model.
It has one partial stable model leaving p undefined.

P. Cabalar, A. Odintsov & D. Pearce ( University of Corunna (Spain), Sobolev Institute of Mathematics (Novosibirsk, Russia), Universidad Rey Juan Carlos (Spain) )Strong negation in WF and PS semantics . . . IBERAMIA 2006 6 / 35



A second negation

Default negation ¬p means no evidence on p
What if we want to represent p is false (∼p)?

Semantics for default negation Second negation
Stable Models Answer sets

[Gelfond & Lifschitz 88] [Gelfond & Lifschitz 91]
Partial Stable Models with classical negation

[Przymusinski 91] [Przymusinski 91]
with strong negation
[Alferes & Pereira 92]

with explicit negation (WFSX)
[Alferes & Pereira 92]

Well-Founded semantics (WFS) In all cases, WF model
[van Gelder, Ross & Schlipf 91] is the minimal info. part. s. model
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Fixing logical foundations of LP

Reduct: not exactly a semantic definition.
Syntax is restricted: no arbitrary formulas.

Our goal: look for a logical style definition.
Get minimal models inside some (monotonic) logic.

Advantages:
I Logically equivalent programs⇒ same minimal models.

I Full logical interpretation of connectives.

I “Import” logical stuff (inference, tableaux, model checking, . . . )
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Known logical foundations

Stable Models Partial Stable Models
Monotonic Here-and-There HT 2

(HT ) [Heyting 30] [Cabalar 01]
Nonmonotonic Equilibrium Logic Partial Equil. Logic (PEL)
(min. models) [Pearce 96] [Cabalar,Odintsov&Pearce 06]

What about the second negation?

Answer sets Partial Stable Models
Monotonic N5 = HT + strong neg. HT 3

[Nelson 45] No axioms.
[Vorob’ev 52] We study PEL+strong neg.

Nonmonotonic Equilibrium Logic WFSXp
(min. models) [Pearce 96] [Alcântara,Damásio&Pereira]
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Stable models and Equilibrium Logic

(Monotonic) intermediate logic of here-and-there (HT )

Intuitionistic ⊆ HT ⊆ Classical h //
��

t
��

Pearce’s Equilibrium Logic: minimal HT models
Intuition: t world is fixed (plays the role of “reduct”), h world is
minimized

Interesting results:
I Equilibrium models = stable models [Pearce 97]

I HT captures strong equivalence [Lifschitz, Pearce & Valverde 01]
(we’ll see later. . . )
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Logical foundation of WFS: recently solved

[Cabalar,Odintsov & Pearce KR’06] Partial Equilibrium Logic

1 takes minimal models on monotonic logic HT 2

2 HT 2 classified inside [Došen 86] framework N
combined with [Routley & Routley 72].

3 Main idea: each world

h
t

founded ⊆ non-unfounded
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Semantics: HT 2 Frames

h //

�� ��?
??

??
??

��
t

��

��

h′ //
LL t ′RR

≤ Accessibility relation like any intermediate logic
(w |= p and w ≤ w ′) implies w ′ |= p

≤ used for implication: w |= ϕ→ ψ when
∀w ′ ≥ w , w ′ |= ϕ implies w ′ |= ψ

But negation ¬φ is no longer defined as φ→ ⊥

h

��?
??

??
??

tOO

��
h′

??�������
t ′

∗ star function (from Routley semantics)
satisfies: v ≤ w iff w∗ ≤ v∗

w |= ¬ϕ when w∗ 6|= ϕ
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Partial equilibrium models

Let H,H ′,T ,T ′ denote sets of atoms verified at h,h′, t , t ′.

A model can be seen as a pair 〈H,T〉 of 3-valued interp.
where H = (H,H ′) and T = (T ,T ′).

Define an ordering among models, 〈H1,T1〉E 〈H2,T2〉 if:
(i) T1 = T2 (this is fixed)
(ii) H1 less truth than H2 (H1 ⊆ H2 and H ′

1 ⊆ H ′
2).

〈H,T〉 is said to be total if H = T.

Definition (Partial equilibrium model)
A modelM of theory Π is a partial equilibrium (PE) model of Π if it is
total and E-minimal.
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Some properties of PEL

Theorem (Corresp. to Partial Stable Models)
For a normal or disjunctive logic program Π, 〈T,T〉 is a partial
equilibrium model of Π iff T is a partial stable model of Π.

Definition (strong equivalence)
Two theories Π1,Π2 are said to be strongly equivalent if for any set of
formulas Γ, Π1 ∪ Γ and Π2 ∪ Γ have the same partial stable models.

Theorem (from KR’06 paper)

Π1,Π2 are PEL strongly equivalent iff they are equivalent in HT 2.

The same holds for Well-Founded (WF) model(s), understood as those
partial stable models with minimal information.
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N∗∼

HT 2 special case of N∗ family = intuitionistic Kripke frames with a
weaker negation [Routley & Routley 72].

We define next N∗∼, adding strong negation ∼, as follows.

Syntax: atoms, ∧, ∨,→, ¬ (weak negation) and ∼ (strong
negation)

Inference rules: modus ponens, plus

(RC)
α→ β

¬β → ¬α

P. Cabalar, A. Odintsov & D. Pearce ( University of Corunna (Spain), Sobolev Institute of Mathematics (Novosibirsk, Russia), Universidad Rey Juan Carlos (Spain) )Strong negation in WF and PS semantics . . . IBERAMIA 2006 18 / 35



N∗∼

HT 2 special case of N∗ family = intuitionistic Kripke frames with a
weaker negation [Routley & Routley 72].

We define next N∗∼, adding strong negation ∼, as follows.

Syntax: atoms, ∧, ∨,→, ¬ (weak negation) and ∼ (strong
negation)

Inference rules: modus ponens, plus

(RC)
α→ β

¬β → ¬α

P. Cabalar, A. Odintsov & D. Pearce ( University of Corunna (Spain), Sobolev Institute of Mathematics (Novosibirsk, Russia), Universidad Rey Juan Carlos (Spain) )Strong negation in WF and PS semantics . . . IBERAMIA 2006 18 / 35



N∗∼

HT 2 special case of N∗ family = intuitionistic Kripke frames with a
weaker negation [Routley & Routley 72].

We define next N∗∼, adding strong negation ∼, as follows.

Syntax: atoms, ∧, ∨,→, ¬ (weak negation) and ∼ (strong
negation)

Inference rules: modus ponens, plus

(RC)
α→ β

¬β → ¬α

P. Cabalar, A. Odintsov & D. Pearce ( University of Corunna (Spain), Sobolev Institute of Mathematics (Novosibirsk, Russia), Universidad Rey Juan Carlos (Spain) )Strong negation in WF and PS semantics . . . IBERAMIA 2006 18 / 35



N∗∼ axioms

1 the axiom schemes of positive logic,
2 weak negation axioms:

W1. ¬α ∧ ¬β → ¬(α ∨ β) W2. ¬(α ∧ β)→ ¬α ∨ ¬β
W3. ¬(α→ α)→ β

Until now, N∗

3 and for N∗∼, we add the schemata for strong negation from
[Vorob’ev 52]:

N1. ∼ (α→ β)↔ α ∧ ∼β N2. ∼(α ∧ β)↔ ∼α∨ ∼ β
N3. ∼(α ∨ β)↔ ∼α ∧ ∼β N4. ∼ ∼α↔ α
N5. ∼¬α↔ α
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N∗∼ models

Definition (N∗∼ frame)
is a triple 〈W ,≤, ∗〉, where:

1 W is a set of worlds
2 ≤ a partial order on W
3 ∗ : W −→W such that x ≤ y iff y∗ ≤ x∗.

Definition (N∗∼ model)

is an N∗∼ frame 〈W ,≤, ∗,V+,V−〉 plus
two valuations V+,V− : At ×W −→ {0,1} such that:

V+(−)(p,u) = 1 & u ≤ w ⇒ V+(−)(p,w) = 1
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N∗∼ valuation

V+,V− are extended to arbitrary formulas as follows:

V+(ϕ ∧ ψ,w) = 1 iff V+(ϕ,w) = V+(ψ,w) = 1

V+(ϕ ∨ ψ,w) = 1 iff V+(ϕ,w) = 1 or V+(ψ,w) = 1

V+(ϕ→ ψ,w) = 1 iff for every w ′ such that w ≤ w ′,
V+(ϕ,w ′) = 1⇒ V+(ψ,w ′) = 1

V+(¬ϕ,w) = 1 iff V+(ϕ,w∗) = 0

V+(∼ ϕ,w) = 1 iff V−(ϕ,w) = 1

V−(ϕ ∧ ψ,w) = 1 iff V−(ϕ,w) = 1 or V−(ψ,w) = 1

V−(ϕ ∨ ψ,w) = 1 iff V−(ϕ,w) = V−(ψ,w) = 1

V−(ϕ→ ψ,w) = 1 iff V+(ϕ,w) = 1 and V−(ψ,w) = 1

V−(¬ϕ,w) = 1 iff V+(ϕ,w) = 1

V−(∼ ϕ,w) = 1 iff V+(ϕ,w) = 1
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N∗∼ properties

Axiom (W3) allows defining an intuitionistic negation
⊥ := ¬(p0 → p0) and − α := α→ ⊥

Proposition
The 〈∨,∧,→,−〉-fragment of N∗∼ coincides with intuitionistic logic.

Proposition
N∗∼ is a conservative extension of N∗ and of Nelson’s paraconsistent
logic N−.

Proposition
For each formula φ there exists some N∗∼-equivalent formula ψ in
negation normal form (∼ only applied to atoms).

P. Cabalar, A. Odintsov & D. Pearce ( University of Corunna (Spain), Sobolev Institute of Mathematics (Novosibirsk, Russia), Universidad Rey Juan Carlos (Spain) )Strong negation in WF and PS semantics . . . IBERAMIA 2006 22 / 35



N∗∼ properties

Axiom (W3) allows defining an intuitionistic negation
⊥ := ¬(p0 → p0) and − α := α→ ⊥

Proposition
The 〈∨,∧,→,−〉-fragment of N∗∼ coincides with intuitionistic logic.

Proposition
N∗∼ is a conservative extension of N∗ and of Nelson’s paraconsistent
logic N−.

Proposition
For each formula φ there exists some N∗∼-equivalent formula ψ in
negation normal form (∼ only applied to atoms).

P. Cabalar, A. Odintsov & D. Pearce ( University of Corunna (Spain), Sobolev Institute of Mathematics (Novosibirsk, Russia), Universidad Rey Juan Carlos (Spain) )Strong negation in WF and PS semantics . . . IBERAMIA 2006 22 / 35



N∗∼ properties

Axiom (W3) allows defining an intuitionistic negation
⊥ := ¬(p0 → p0) and − α := α→ ⊥

Proposition
The 〈∨,∧,→,−〉-fragment of N∗∼ coincides with intuitionistic logic.

Proposition
N∗∼ is a conservative extension of N∗ and of Nelson’s paraconsistent
logic N−.

Proposition
For each formula φ there exists some N∗∼-equivalent formula ψ in
negation normal form (∼ only applied to atoms).

P. Cabalar, A. Odintsov & D. Pearce ( University of Corunna (Spain), Sobolev Institute of Mathematics (Novosibirsk, Russia), Universidad Rey Juan Carlos (Spain) )Strong negation in WF and PS semantics . . . IBERAMIA 2006 22 / 35



N∗∼ properties

Axiom (W3) allows defining an intuitionistic negation
⊥ := ¬(p0 → p0) and − α := α→ ⊥

Proposition
The 〈∨,∧,→,−〉-fragment of N∗∼ coincides with intuitionistic logic.

Proposition
N∗∼ is a conservative extension of N∗ and of Nelson’s paraconsistent
logic N−.

Proposition
For each formula φ there exists some N∗∼-equivalent formula ψ in
negation normal form (∼ only applied to atoms).

P. Cabalar, A. Odintsov & D. Pearce ( University of Corunna (Spain), Sobolev Institute of Mathematics (Novosibirsk, Russia), Universidad Rey Juan Carlos (Spain) )Strong negation in WF and PS semantics . . . IBERAMIA 2006 22 / 35



N∗∼ properties

Theorem (Vorob’ev reduction)

For each formula φ, let φ′ be the result of:
1 obtaining its negation normal form and
2 replacing each ∼ p by a new atom p′.

Then: N∗∼ ` φ iff N∗∼ ` φ′.
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HT 2 with strong negation

HT 2 = N∗ + Ax where Ax are more axioms for weak negation
Nothing new is required: HT 2∼ = N∗∼ + Ax

The (common) set of axioms Ax is the following:

W4. −α ∨ −− α
W5. −α ∨ (α→ (β ∨ (β → (γ ∨ −γ))))
W6.

∧2
i=0((αi →

∨
j 6=i αj)→

∨
j 6=i αj)→

∨2
i=0 αi

W7. α→ ¬¬α
W8. α ∧ ¬α→ ¬β ∨ ¬¬β
W9. ¬α ∧ ¬(α→ β)→ ¬¬α
W10. ¬¬α ∨ ¬¬β ∨ ¬(α→ β) ∨ ¬¬(α→ β)
W11. ¬¬α ∧ ¬¬β → (α→ β) ∨ (β → α)

plus the rule (EC) α∨(β∧¬β)
α
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HT 2 with strong negation

HT 2 = N∗ + Ax where Ax are more axioms for weak negation
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HT 2 with strong negation

HT 2∼ = HT 2 + {N1, . . . ,N5}.
HT 2∼ frames coincide with HT 2 ones seen before:

h //

�� ��?
??

??
??

��
t

��

��

h′ //
LL t ′RR

h

��?
??

??
??

tOO

��
h′

??�������
t ′

relation ≤ ∗ function

Note: we allow paraconsistency:
p and ∼ p can be both founded.

Proposition

Vorob’ev reduction also holds for HT 2∼.
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HT 2 with strong negation

We extend HT 2 with a new truth constant u (undefinedness).

Definition (HT 2
u )

V (u,h) = V (u, t) = 0 and V (u,h′) = V (u, t ′) = 1.
That is, always undefined.

Theorem

HT 2
u = HT 2 + {u ↔ ¬u}

The same extension can be done on HT 2∼.
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HT 2 with strong negation

Other useful logics:

Semi-consistency: HT 2
sc := HT 2∼

u + {p∧ ∼ p → u
yields the effect:

p,∼ p can be both non-unfounded, but not both founded.

Coherence: HT 2
coh := HT 2∼

u + {p → ¬ ∼ p ∨ u, ∼ p → ¬p ∨ u}
yields the effect:

p founded⇒ ∼ p unfounded
∼ p founded⇒ p unfounded

Proposition

HT 2
coh (coherence) is stronger than HT 2

sc (semi-consistency).

Vorob’ev reductions for these variants: just apply translation to
axiom schemata too.
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PEL with strong negation

H,H ′,T ,T ′ are now sets of literals (p,∼ p).

PEL definitions remain unchanged:
PE model = total and E-minimal.
Well-founded model = PE model with minimal info.

We can get PE models for any strong neg. version of HT 2:
HT 2∼

u , HT 2
sc , HT 2

coh.
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PEL with strong negation

Theorem (Strong equivalence)
Let Γ1, Γ2 be sets of N∗∼ formulas.
Γ1, Γ2 are strongly equivalent (wrt each version of PEL models)

iff
Γ1, Γ2 equivalent in the corresp. monotonic logic HT 2∼

u , HT 2
sc , HT 2

coh.

Proposition
For all PEL variants with strong neg., complexity of reasoning tasks is
the same class as that of ordinary PEL (in particular, decision problem
is ΠP

2 -hard).
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Correspondence theorems

An extended logic program Π is a set of rules r :

Hd(r)← B(r)

where Hd(r) is a literal (p,∼ p) and
B(r) a conjunction of expressions like L or ¬L (L=literal).

Theorem

〈T,T〉 is an HT 2
sc PE model of an extended program Π iff T is a

classical-negation [Przymusinski 91] part. stable model of Π.

Theorem

〈T,T〉 is an HT 2
coh PE model of an extended program Π iff T is a

strong-negation [Alferes & Pereira 92] part. stable model of Π.
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Correspondence theorems

Given an extended program Π we define Π′ by replacing each rule r by:

Hd(r) ← B(r) ∧ u ∧ ¬ ∼ Hd(r)

Hd(r) ∨ u ← B(r)

Theorem
A pair T = (T ,T ′) is a WFSX part. stable model [Alferes & Pereira 92]
of an extended logic program Π

iff
〈T,T〉 is an HT 2

sc PE model of Π′.
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Conclusions

PEL is a natural logical foundation for partial stable models.
Strong negation added preserving complexity and strong
equivalence results.

We provided a Routley-style general family N∗∼ of strong neg.
logics

We explored 3 different options:
I HT 2∼

u paraconsistency
I HT 2

sc semi-consistency
I HT 2

coh coherence ∼ L⇒ ¬L

Coherence:
I not so natural when handling paraconsistency
I for capturing WFSX, HT 2

coh is too strong
I WFSX can be encoded into HT 2

sc

Future work: detailed comparison to frame-based characterisation
of WFSX [Alcântara,Damásio&Pereira].
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Further reading

P. Cabalar, S. Odintsov & D. Pearce. Logical Foundations of
Well-Founded Semantics. In Proceedings KR 06.

P. Cabalar, S. Odintsov, D. Pearce & A. Valverde. Analysing and
Extending Well-Founded and Partial Stable Semantics using Partial
Equilibrium Logic. In Proceedings of ICLP’06, (LNCS 4079).

I Strong equivalence, complexity results, properties of PEL inference,
disjunctive WFS, . . .

P. Cabalar, S. Odintsov, D. Pearce & A. Valverde. On the logic and
computation of Partial Equilibrium Models. In Proceedings of JELIA’06,
(LNAI 4160).

I Tableaux proof system
I Splitting theorem for PEL
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