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Abstract. In this paper we introduce an extension of Equilibrium Logic
(a logical characterisation of the Answer Set Semantics for logic pro-
grams) consisting in the inclusion of modal temporal operators, as those
used in Linear Temporal Logic. As a result, we obtain a very expressive
formalism that allows nonmonotonic reasoning for temporal domains. To
show an example of its utility, we present a translation of a language for
reasoning about actions into this formalism.

1 Introduction

One of the areas of Logic Programming that has attracted more research inter-
est during the last decade is Answer Set Programming (ASP). The origins of
this area come from the achievement of a suitable semantics (first called stable
models [1] and later generalized into answer sets [2]) for interpreting default
negation in normal logic programs1. The availability of this semantics allowed
considering logic programs as a general knowledge representation formalism, es-
pecially for solving default and non-monotonic reasoning problems. Under this
new focusing, a process of gradual syntactic extensions followed, most of them
eventually captured by [3], a completely logical characterisation of answer sets
into the non-monotonic formalism of Equilibrium Logic. This approach offers a
standard logical interpretation for any arbitrary theory, removing any syntactic
restriction while generalising all previous extensions of answer set semantics.

Apart from with this nice logical characterisation, the recent success of ASP
is mostly due to several existing tools (see [4]) offering a high efficiency degree
for computing answer sets of a normal logic program (an NP-complete problem).
The price to be paid for this efficiency is the impossibility of handling function
symbols, restriction that guarantees a finite domain and allows grounding the
program into a finite set of propositional rules. Planning for transition systems
constitutes one of the most popular application areas of ASP. Typically, the
logic program is used to encode the initial state, the transition rules and the
goal description. Default negation plays here a crucial role, as it allows avoiding
the frame problem [5] by representing the default rule of inertia: “if a fluent (or
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1 Those with rules containing an atom in the head and a body consisting of a con-
junction of literals.



temporal variable) is not known to have changed, it will remain unchanged by de-
fault.” The general planning problem lies in a harder class (PSPACE-complete)
than the one covered by ASP solvers. This means in practice that, in order to
solve planning problems, it is first required to fix the length l of the plan to be
obtained. Usually, the plan search consists in gradually incrementing this length
parameter l = 0, 1, 2, 3, . . . until a plan is obtained. A first obvious drawback
of this approach is that it is not possible to establish when a given planning
problem has no solution of any length at all. A second and more elaborated
problem is that it is impossible to establish when two descriptions of the same
transition system are strongly equivalent, i.e., when they will behave in the same
way regardless any additional rules we include and any path length we consider.

In the paper we consider an extension of Equilibrium Logic (and so, of logic
programming) to deal with modal operators as those handled in Linear Tem-
poral Logic (LTL) [6] [7]: � (forever), ♦ (eventually), © (next), U (until) and
W (waiting for). Equilibrium Logic is defined as a model minimisation on top
of a monotonic framework, the non-classical intermediate logic of here-and-there
(HT) [8]. The temporal extension will be defined in a similar way, introducing
first the temporal extension of HT (called THT), and then a minimisation cri-
terion. For space reasons, we omit the description of Equilibrium logic, as it can
be defined as a particular case of its temporal extension.

The paper is organised as follows. Section 2 describes the semantics of THT
and Section 3 defines a models minimisation criterion for THT models that leads
to Temporal Equilibrium Logic (TEL). In the next section, we show the utility of
TEL providing the translation of a language for reasoning about actions. Finally,
Section 5 contains the conclusions and future work.

2 Linear Temporal Here-and-There (THT)

The logic of Linear Temporal Here-and-There (THT) is defined as follows. We
start from a finite set of atoms Σ called the propositional signature. A (temporal)
formula is defined as any combination of the classical connectives ∧,∨,→,⊥
with the temporal operators �,♦,© and the atoms in Σ. Operators, �, ♦ and
© are unary, whereas U and W are binary. A formula is said to be non-modal
if it does not contain any of these temporal operators. Negation is defined as
¬ϕ def

= ϕ → ⊥. As usual, ϕ ↔ ψ stands for (ϕ → ψ) ∧ (ψ → ϕ). We also allow

the abbreviation ©i def
= ©(©i−1ϕ) for i > 0 and ©0ϕ

def
= ϕ.

A (temporal) interpretation M is a possibly infinite sequence of pairs 〈Hi, Ti〉
with i = 0, 1, 2, . . . where Hi ⊆ Ti are sets of atoms. For simplicity, given a
temporal interpretation, we write H (resp. T ) to denote the sequence of pair
components H0, H1, . . . (resp. T0, T1, . . . ). Using this notation, we will sometimes
abbreviate the interpretation as M = 〈H,T 〉. An interpretation M = 〈H,T 〉 is
said to be total when H = T . We say that an interpretation M = 〈H,T 〉
satisfies a formula ϕ at some sequence index i, written M, i |= ϕ, when any of
the following hold:



1. M, i |= p if p ∈ Hi, for any atom p.
2. M, i |= ϕ ∧ ψ if M, i |= ϕ and M, i |= ψ.
3. M, i |= ϕ ∨ ψ if M, i |= ϕ or M, i |= ψ.
4. 〈H,T 〉, i |= ϕ→ ψ if 〈X,T 〉, i¬ |= ϕ or 〈X,T 〉 |= ψ for all X ∈ {H,T}.
5. M, i |=©ϕ if i is the greatest subindex in M or M, i+1 |= ϕ otherwise.
6. M, i |= �ϕ if for all j ≥ i, M, j |= ϕ.
7. M, i |= ♦ϕ if there exists some j ≥ i, M, j |= ϕ.
8. ϕ U ψ if ∃j ≥ i, M, j |= ψ and ∀k s.t. i ≤ k < j, M,k |= ϕ
9. ϕ W ψ if either M, i |= ϕ U ψ or, for all j ≥ i, M, j |= ϕ.

Notice that the semantics for ©ϕ leaves free the possibility of using both
finite and infinite sequences. If the sequence is finite, at the last state ©ϕ will
be true regardless ϕ. To fix the final state, thus, we can define the derived formula
end

def
= ©⊥. Finite (resp. infinite) narratives can then be forced by including

the axiom ♦end (resp. ¬♦end).
The logic of THT is an orthogonal combination of the logic of HT and the

(standard) linear temporal logic (LTL) [7]. When we restrict temporal interpre-
tations to finite sequences of length 1, that is 〈H0, T0〉 and disregard temporal
operators, we obtain the logic of HT. On the other hand, if we restrict the seman-
tics to total interpretations, 〈T , T 〉, i |= ϕ corresponds to satisfaction of formulas
T , i |= ϕ in LTL.

A theory is any set of formulas. An interpretation M is a model of a theory
Γ , written M |= Γ , if M, 0 |= α, for all formula α ∈ Γ . A formula ϕ is valid if
M, 0 |= ϕ for any M . The following are valid formulas in THT (and in LTL too):

¬�ϕ↔ ♦¬ϕ (1)
¬♦ϕ↔ �¬ϕ (2)
©¬ϕ↔ ¬© ϕ (3)

©(ϕ ∧ ψ)↔©ϕ ∧©ψ (4)
©(ϕ ∨ ψ)↔©ϕ ∨©ψ (5)
©(ϕ→ ψ)↔ (©ϕ→©ψ) (6)

ϕ U ψ ↔ ϕ W ψ ∧ ♦ψ (7)
ϕ W ψ ↔ ϕ U ψ ∨�ϕ (8)

Note that (3)-(6) allow shifting © through any combination of non-modal
operators. In this way, any theory not containing �,♦,U ,W can be transformed
into a combination of non-modal connectives applied to expressions like ©ip,
where p is an atom. Notice also that, even though (1) and (2) are valid, we cannot
further define � in terms of ♦ or vice versa, as happens in LTL. For instance,
as a countermodel of �p ↔ ¬♦¬p in THT it suffices to take an interpretation
〈H,T 〉 with all Ti = {p} but some Hi = ∅.

We can alternatively represent any interpretation M = 〈H,T 〉 as a possibly
infinite sequence of mappings Vi assigning a truth value to each atom Vi : Σ →
{0, 1, 2} where 0 stands for false, 2 for true and 1 for undefined. We can define
a valuation for any formula ϕ at any sequence index i, written Mi(ϕ), by just



considering which formulas are satisfied by 〈H,T 〉 (which will be assigned 2),
not satisfied by 〈T , T 〉 (which will be assigned 0) or none of the two (which will
be 1). Thus, the definitions in the previous section allow deriving the following
conditions:

1. Mi(p)
def
= Vi(p)

2. Mi(ϕ ∧ ψ)
def
= min(Mi(ϕ),Mi(ψ))

3. Mi(ϕ ∨ ψ)
def
= max(Mi(ϕ),Mi(ψ))

4. Mi(ϕ→ ψ)
def
=
{

2 if Mi(ϕ) ≤Mi(ψ)
M(ψ) otherwise

5. Mi(©ϕ)
def
=
{

2 if i is the greatest subindex in M
Mi+1(ϕ) otherwise

6. Mi(�ϕ)
def
= min{Mj(ϕ) | j ≥ i}

7. Mi(♦ϕ)
def
= max{Mj(ϕ) | j ≥ i}

8. Mi(ϕ U ψ)
def
=


2 if exists j ≥ i,Mj(ϕ) = 2

and Mk(ψ) = 2 for all k ∈ [i, j − 1]
0 if for all j ≥ i : Mj(ϕ) = 0

or Mk(ψ) = 0 for some k ∈ [i, j − 1]
1 otherwise

9. Mi(ϕ W ψ)
def
= Mi(ϕ U ψ ∨�ϕ)

Using this alternative definition, an interpretation M satisfies a formula ϕ
when M0(ϕ) = 2.

3 Linear Temporal Equilibrium Logic (TEL)

We can now proceed to describe the models selection criterion that defines tem-
poral equilibrium models. Given two interpretations M = 〈H,T 〉 and M ′ =
〈H ′, T ′〉 we say that M is lower than M ′, written M ≤ M ′, when T = T

′
and

for all i ≥ 0, Hi ⊆ H ′i. As usual, M < M ′ stands for M ≤M ′ but M 6= M ′.

Definition 1 (Temporal Equilibrium Model). An interpretation M is a
temporal equilibrium model of a theory Γ if M is a total model of Γ and there
is no other M ′ < M , M ′, 0 |= Γ . �

Note that any temporal equilibrium model is total, that is, it has the form
〈T , T 〉 and so can be actually seen as an interpretation T in the standard LTL.

Example 1. The temporal equilibrium models of theory {♦p} correspond to LTL
interpretations like

[
∅
]∗ {p} [ ∅ ]∗.

Proof. Take any a total interpretation M = 〈T , T 〉 with some Ti = {p}. Clearly,
M, 0 |= ♦p, but its minimality will depend on whether there exists another j 6= i
with Tj = {p} in T . Assume there exists such a j: then it is easy to see that
the interpretation {H,T} with Hj = ∅ and Hk = T k for k 6= j is also a model



of ♦p (since Hi = Ti = {p}) whereas it is strictly lower, so it would not be
a temporal equilibrium model. Assume, on the contrary, that Ti is the unique
state containing p, so Tk = ∅ for all k 6= i. Then, the only possible smaller
interpretation would be {H,T} with Hk = Tk = ∅ for k 6= i and Hi = ∅, but
this is not a THT model of ♦p, as p would not occur in H. ut

Example 2. Consider the theory Γ just consisting of the formula �(¬p→©p).
Its temporal equilibrium models correspond to LTL interpretations like ∅

[
{p} ∅

]∗
or ∅

[
{p} ∅

]∗{p}.
Proof. For an informal sketch, note that any solution with p true at T0 will not
be minimal. Once ¬p is fixed at the initial state, we must get p at T1 to satisfy
the formula. Then p true at T2 would not be minimal, so it must be false, and
so on. ut

Proposition 1. Let Γ be a combination of non-modal connectives ∧,∨,¬,→,⊥
with expressions like ©ip, being p an atom, and let n be the maximum value for
i in all ©ip occurring in Γ . Then 〈T , T 〉 is a temporal equilibrium model of Γ
iff (1) Ti = ∅ for all i > n ; and (2) 〈X,X〉 with X =

⋃n
i=0{©ip | p ∈ Ti} is an

equilibrium model of Γ , reading each ‘©ip’ as a new atom in the signature. ut

That is, once �,♦,U andW are removed, we can reduce TEL to (non-temporal)
Equilibrium Logic for an extended signature with atoms like ©ip.

4 Translation of an action description language

In this section we briefly introduce an example of how TEL can be naturally used
to translate action description languages. To this aim, we consider an encoding
of language B [9], obtaining a similar translation to the one previously presented
in [10] for a different temporal nonmonotonic formalism. Language B defines a
two-sorted signature: the set A of action names and the set F of fluent names.
By fluent literal we understand any fluent name F or its explicit negation, we
denote2 as F . A state is a maximal consistent (that is, not containing both F
and F ) set of fluent literals. An action description D = Y ∪ Z consists of a set
Y of dynamic laws of the form (A causes L if ϕ) and a set Z of static laws of
the form (L if ϕ) where A is an action, L a fluent literal and ϕ a conjunction of
fluent literals. The semantics of B is defined as follows. A set s of literals is closed
under Z iff for each (L if ϕ) ∈ Z such that s satisfies ϕ, L ∈ s. Let CnZ(s) be
the smallest set of literals containing s that is closed under Z. For a given action
description D = Y ∪Z, we define a transition system as a triple 〈S, V,R〉 where:

1. S is the set of all states that are closed under Z.
2. V (P, s) = s(P ) is a valuation function that assigns a truth value (true or
false), to each fluent P at each state s ∈ S.

2 We use this notation to avoid confusion with default negation, represented as ¬ in
this paper.



3. R is the transition relation containing all the triples 〈s,A, s′〉 such that s′ =
CnZ(E(A, s) ∪ (s ∩ s′)) being

E(A, s)
def
= {L : (A causes L if ϕ) ∈ Y and s satisfies ϕ

The translation into TEL is defined as follows. For each static or dynamic
law φ ∈ D we define Π(φ) as:

Π(L if ϕ)
def
= �(ϕ→ L) Π(A causes L if ϕ)

def
= �(A ∧ ϕ→©L)

The TEL theory Π(D) is defined as {Π(φ) : φ ∈ D} plus the inertia law :

�(F ∧ ¬© F →©F ) (9)
�(F ∧ ¬© F →©F ) (10)

for any fluent F and the axiom schemata:

♦end (11)
F ∨ F (12)

�(F ∧ F → ⊥) (13)
�(A ∨ ¬A) (14)

�(Ai ∧Aj → ⊥) (15)
�(end ∧A→ ⊥) (16)

for each P ∈ F , and A,Ai, Aj ∈ A, with Ai 6= Aj . As explained before, ♦end
fixes models with finite length. Axiom (12) completes any fluent value at the
initial situation by making it either true F or explicitly false F . Axiom (13)
rejects solutions where both F and F hold at the same state3. Axiom (14) gives
freedom to choose any action occurrence at any state. This is then constrained
by axiom (15), which avoids concurrence of two different actions, and axiom (16)
that avoids action executions at the last situation in the narrative.

Given a B transition 〈s,A, s′〉 we say that a THT interpretation like 〈T , T 〉
with T = {T0, T1}, T0 = {A} ∪ s and T1 = s′ corresponds to 〈s,A, s′〉.

Theorem 1. Given an action description D in B, the set of transitions of D
corresponds to the temporal equilibrium models of Π(D) plus the axiom ¬end∧
©end, which fixes finite narratives of length 2.

Proof. When the narrative length is 2, we may instantiate Π(D) unfolding �φ
formulas as φ ∧©φ and then shifting © using (3)-(6) to eventually obtain the

3 Note that explicit negation has no logical entity in our current definition of TEL,
and F is just interpreted as one more regular atom.



theory Π ′:

Π(L if ϕ) = {ϕ→ L, (17)
©ϕ→©L} (18)

Π(A causes L if ϕ) = ϕ ∧A→©L (19)
F ∧ ¬© F →©F (20)
F ∧ ¬© F →©F (21)

F ∨ F (22)
F ∧ F → ⊥ (23)

©F ∧©F → ⊥ (24)
A ∨ ¬A (25)
©A ∨ ¬©A (26)

Ai ∧Aj → ⊥ (27)
©Ai ∧©Aj → ⊥ (28)

(end ∧A→ ⊥) ∧ (29)
©end ∧©A→ ⊥ (30)

As the only modal operator of Π ′ is ©, we can then apply Proposition 1 to
interpret this theory under Equilibrium Logic for signature Σ ∪ {‘© p’ | p ∈ Σ}
or, what is the same, consider the stable models of Π ′ under this signature.
We can apply the splitting theorem [11] to divide the program Π ′ into Π ′1 with
rules not containing ©, that is (17),(22),(23),(25),(27),(29) and Π ′2 with all the
rest. It is not difficult to see that the set of stable models of Π ′ corresponds to
{s ∪ {A} | A ∈ A and s is a complete state closed under Z,A ∈ A}, that is, all
possible pairs 〈s,A〉. Now, consider any stable model T of Π ′ so that 〈s,A〉 is
stable model of Π ′1, whereas s′ = {p | ©p ∈ T}. Once s and A are fixed, we can
simplify Π ′2 so that rules (19) will amount to facts ©L per each L ∈ E(A, s), so
E(A, s) ⊆ s′. On the other hand, if F ∈ (s ∩ s′), we get ©F ∈ T what together
with (24) implies ¬©F , and so the antecedent of (20) holds, and we can replace
this rule by the fact ©F . A similar reasoning can be done when F ∈ (s ∩ s′)
to conclude that (21) can be replaced by fact ©F . Thus, for a given 〈s,A, s′〉
we have a program containing a fact ©L for any L ∈ E(A, s) ∪ (s ∩ s′). Since
static laws Z are also translated for situation 1 by formulas (18) it follows that
s′ = CnZ(E(A, s) ∪ (s ∩ s′)). ut
Theorem 2. Given an action description D in B, any temporal answer set of
Π(D) corresponds to a history of D.

Proof. By induction on the length of the finite narrative n, taking as the base
case Theorem 1 and generalizing the program instantiation Π(D)∗ for any i > 2.

5 Conclusions

In this paper we have provided a first definition for the linear temporal extension
of Equilibrium Logic and gave some examples of its potential utility. As a result,



we are able to capture the temporal component of planning problems inside a
uniform logical formalism, being able to check properties like the non-existence
of plan or the strong equivalence of different representations for the same tran-
sition system. On the other hand, the resulting logic may also offer interesting
features for the typical application field of LTL, namely formal verification, as
its nonmonotonicity allows expressing defaults, as for instance, the previously
mentioned rule of inertia.

Much work remains to be done yet, both from a theoretical and a practical
point of view. From the former, for instance, we can mention the axiomatisation
for THT or a complexity assessment both for THT and TEL entailment. Another
important issue is decidability, which seems easy to guess but has not been proved
yet. From the practical point of view, obtaining inference methods (like semantic
tableaux or temporal extensions of logic programming algorithms) or translating
other planning and action languages for their comparison are the two main lines
for ongoing work.
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