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Abstract. In this work we propose a multi-valued extension of logic programs
under the stable models semantics where each true atom in a model is associ-
ated with a set of justifications, in a similar spirit than a set of proof trees. The
main contribution of this paper is that we capture justifications into an algebra
of truth values with three internal operations: an addition ‘+’ representing alter-
native justifications for a formula, a commutative product ‘∗’ representing joint
interaction of causes and a non-commutative product ‘·’ acting as a concatenation
or proof constructor. Using this multi-valued semantics, we obtain a one-to-one
correspondence between the syntactic proof tree of a standard (non-causal) logic
program and the interpretation of each true atom in a model. Furthermore, thanks
to this algebraic characterization we can detect semantic properties like redun-
dancy and relevance of the obtained justifications. We also identify a lattice-based
characterization of this algebra, defining a direct consequences operator, proving
its continuity and that its least fix point can be computed after a finite number of
iterations. Finally, we define the concept of causal stable model by introducing
an analogous transformation to Gelfond and Lifschitz’s program reduct.

1 Introduction

A frequent informal way of explaining the effect of default negation in an introductory
class on semantics in logic programming (LP) is that a literal of the form ‘not p’ should
be read as “there is no way to derive p.” Although this idea seems quite intuitive, it
is actually using a concept outside the discourse of any of the existing LP semantics:
the ways to derive p. To explore this idea, [1] introduced the so-called causal logic
programs. The semantics was an extension of stable models [2] relying on the idea of
“justification” or “proof”. Any true atom, in a standard (non-causal) stable model needs
to be justified. In a causal stable model, the truth value of each true atom captures these
possible justifications, called causes. Let us see an example to illustrate this.

Example 1. Suppose we have a row boat with two rowers, one at each side of the boat,
port and starboard. The boat moves forward fwd if both rowers strike at a time. On the
other hand, if we have a following wind, the boat moves forward anyway. �
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Suppose now that we have indeed that both rowers stroke at a time when we addi-
tionally had a following wind. A possible encoding for this example could be the set of
rules Π1:

p : port s : starb w : fwind

fwd← port ∧ starb fwd← fwind

In the only causal stable model of this program, atom fwd was justified by two al-
ternative and independent causes. On the one hand, cause {p, s} representing the joint
interaction of port and starb. On the other hand, cause {w} inherited from fwind. We
label rules (in the above program only atoms) that we want to be reflected in causes.
Unlabelled fwd rules are just ignored when reflecting causal information. For instance,
if we decide to keep track of the application of these rules, we would handle instead a
program Π2 obtained just by labelling these two rules in Π1 as follows:

a : fwd← port ∧ starb (1)
b : fwd← fwind (2)

The two alternative justifications for atom fwd become the pair of causes {p, s} · a
and {w} · b. The informal reading of {p, s} · a is that “the joint interaction of {p} and
{s}, the cause {p, s}, is used to apply rule a.” From a graphical point of view, we can
represent causes as proof trees.

p : port

**

s : starb

tt

a : fwd← port ∧ starb

w : fwind

��

b : fwd← fwind

Fig. 1. Proof trees justifying atom fwd in the program Π2

In this paper, we show that causes can be embedded in an algebra with three internal
operations: an addition ‘+’ representing alternative justifications for a formula, a com-
mutative product ‘∗’ representing joint interaction of causes (in a similar spirit to the
‘+’ in [3]) and a non-commutative product ‘·’ acting as a concatenation or rule appli-
cation. Using these operations, we can see that justification for fwd would correspond
now to the value ((p ∗ s) · a) + (w · b). Addition ‘+’ represents alternative justification,
and each addend, (p∗ s) ·a and (w · b), corresponds to a cause (alternative justification)
for fwd. Product ‘∗’ and application ‘·’ work together to construct a cause. Right hand
operator of application ‘·’ corresponds to the applied rule, for instance rule a, while the
left hand operator corresponds to a product ‘∗’ of causes used to apply it, p ∗ s. From
a graphical point of view, each cause corresponds to one of proof trees in the Figure 1,
the right hand operator of application corresponds to the head of a proof three, and the
left hand operator corresponds to the product of its children.

The rest of the paper is organised as follows. Section 2 describes the algebra with
these three operations and a quite natural ordering relation on causes. The next sec-
tion studies the semantics for positive logic programs and shows the correspondence



between the syntactic proof tree of a standard (non-causal) logic program and the in-
terpretation of each atom in a causal model. Section 4 introduces default negation and
stable models. Finally, Section 5 concludes the paper.

2 Algebra of causal values

As we have introduced, our set of causal values will constitute an algebra with three
internal operations: addition ‘+’ representing alternative causes, product ‘∗’ represent-
ing joint interaction between causes and rule application ‘·’. We define now “causal
terms” the syntactic counterpart of “causal values” just as combination of these three
operations over labels (events).

Definition 1 (Causal term). A causal term, t, over a set of labels Lb is recursively
defined as one of the following expressions:

t ::= l |
∏
ti∈S

ti |
∑
ti∈S

ti | t1 · t2

where l is a label l ∈ Lb, t1, t2 are in their turn causal terms and S is a (possibly empty
or possibly infinite) set of causal terms. The set of causal terms over Lb is denoted by
TLb. �

As we can see, infinite products and sums are allowed whereas a term may only con-
tain a finite number of concatenation applications. Constants 0 and 1 will be shorthands
for the empty sum

∑
t∈∅ t and the empty product

∏
t∈∅ t, respectively.

We adopt the following notation. To avoid an excessive use of parentheses, we as-
sume that ‘·’ has the highest priority, followed by ‘∗’ and ‘+’ as usual, and we further
note that the three operations will be associative. When clear from the context, we will
sometimes remove ‘·’ so that, for instance, the term l1l2 stands for l1 · l2. As we will
see, two (syntactically) different causal terms may correspond to the same causal value.
However, we will impose Unique Names Assumption (UNA) for labels, that is, l 6= l′

for any two (syntactically) different labels l, l′ ∈ Lb, and similarly l 6= 0 and l 6= 1 for
any label l.

To fix properties of our algebra we notice that addition ‘+’ represents a set of al-
ternative causes and product ‘∗’ a set of causes that are jointly used. Thus, since both
represent sets, they are associative, commutative and idempotent. Contrary, although
associative, application ‘·’ is not commutative. Note that, right hand operator represents
the applied rule while left hand one represents the cause used to apply it, and then they
are clearly not interchangeable. We can note another interesting property: application
‘·’ distributes over both addition ‘+’ and product ‘∗’. To illustrate this idea, consider the
following variation of our example. Suppose now that the boat also leaves a wake behind
when it moves forward. Let Π3 be the set of rules Π1 plus the rule k : wake ← fwd
reflecting this new assumption. As we saw, fwd is justified by p ∗ s+w and thus wake
will be justified by applying rule k : wake ← fwd to it, i.e.the value (p ∗ s + w) · k.
We can also see that there are two alternative causes justifying wake, graphically rep-
resented in the Figure 2. The term that corresponds which this graphical representation



p : port

**

s : starb

tt

fwd← port ∧ starb
��

k : wake← fwd

w : fwind

��

fwd← fwind

��

k : wake← fwd

Fig. 2. Proof trees pontificating atom fwd in the program Π3

is (p ∗ s) · k + w · k = (p ∗ s + w) · k. Moreover, application ‘·’ also distributes over
product ‘∗’ and (p ∗ s) · k + w · k is equivalent to (p · k) ∗ (s · k) + (w · k). Note that
each chain of applications , (p · k), (s · k) and (w · k) corresponds to a path in one of
the trees in the Figure 2. Causes can be seen as sets (products) of paths (causal chains).

Definition 2 (Causal Chain). A causal chain x over a set of labels Lb is a sequence
x = l1 · l2 · . . . · ln, or simply l1l2 . . . ln, with length |x| = n > 0 and li ∈ Lb. �

We denote XLb to stand for the set of causal chains over Lb and will use letters
x, y, z to denote elements from that set. It suffices with having a non-empty set of
labels, say Lb = {a}, to get an infinite set of chains XLb = {a, aa, aaa, . . . }, although
all of them have a finite length. It is easy to see that, by an exhaustive application of
distributivity, we can “shift” inside all occurrences of the application operator so that it
only occurs in the scope of other application operators. A causal term obtained in this
way is a normal causal term.

Definition 3 (Normal causal term). A causal term, t, over a set of labels Lb is recur-
sively defined as one of the following expressions:

t ::= x |
∏
ti∈S

ti |
∑
ti∈S

ti

where x ∈ XLb is a causal chain over Lb and S is a (possibly empty or possibly infinite)
set of normal causal terms. The set of causal terms over Lb is denoted by ULb. �

Proposition 1. Every causal term t can be normalized, i.e. written as an equivalent
normal causal term u. �

In the same way as application ‘·’ distributes over addition ‘+’ and product ‘∗’, the
latter, in their turn, also distributes over addition ‘+’. Consider a new variation of our
example to illustrate this fact. Suppose that we have now two port rowers that can strike,
encoded as the set of rules Π4:

p1 : port1 p2 : port2 s : starb

port← port1 port← port2 fwd← port ∧ starb

We can see that, in the only causal stable model of this program, atom portwas justified
by two alternative, and independent causes, p1 and p2, and after applying unlabelled
rules to them, the resulting value assigned to fwd is (p1 + p2) ∗ s. It is also clear, that



there are two alternative causes justifying fwd: the result from combining the starboard
rower strike with each of the port rowers strikes, p1 ∗ s and p2 ∗ s. That is, causal terms
(p1 + p2) ∗ s and p1 ∗ s+ p2 ∗ s are equivalent.

Furthermore, as we introduce above, causes can be ordered by a notion of “strength”
of justification. For instance, in our example, fwd is justified by two independent
causes, p ∗ s + w while fwind is only justified by w. If we consider the program
Π5 obtained by removing the fact w : fwind from Π1 then fwd continue being justi-
fied by p ∗ s but fwind becomes false. That is, fwd is “more strongly justified” than
fwind in Π1, written w ≤ p ∗ s + w. Similarly, p ∗ s ≤ p ∗ s + w. Note also that, in
this program Π5, fwd needs the joint interaction of p and s to be justified but port and
starb only needs p and s, respectively. That is, p is “more strongly justified” than p ∗ s,
written p∗s ≤ p. Similarly, p∗s ≤ s. We can also see that, in programΠ2 which labels
rules for fwd, one of the alternative causes for fwd is w · b and this is “less strongly
justified” than w, i.e. w · b ≤ w since, from a similar reasoning, w · b needs the appli-
cation of b to w when w only requires itself. In general, a · b ≤ a ∗ b ≤ (a, b) ≤ a+ b.
We formalize this order relation starting for causal chains. Notice that a causal chain
x = l1l2 . . . ln can be alternatively characterized as a partial function from naturals to
labels x : N −→ Lb where x(i) = li for all i ≤ n and undefined for i > n. Using this
characterisation, we can define the following partial order among causal chains:

Definition 4 (Chain subsumption). Given two causal chains x and y ∈ XLb, we say
that y subsumes x, written x ≤ y, iff there exists a strictly increasing function δ : N −→
N such that for each i ∈ N with y(i) defined, x

(
δ(i)

)
= y(i). �

Proposition 2. Given two finite causal chains x, y ∈ XLb, they are equivalent (i.e. both
x ≤ y and y ≤ x) iff they are syntactically identical. �

Informally speaking, y subsumes x, when we can embed y into x, or alternatively when
we can form y by removing (or skipping) some labels from x. For instance, take x =
abcde and y = ac. Clearly we can form y = ac = a·�b·c·�d·�e by removing b, d and e from
x. Formally, x ≤ y because we can take some strictly increasing function with δ(1) = 1
and δ(2) = 3 so that y(1) = x(δ(1)) = x(1) = a and y(2) = x(δ(2)) = x(3) = c.

Although, at a first sight, it may seem counterintuitive the fact that x ≤ y implies
|x| ≥ |y|, as we mentioned, a fact or formula is “more strongly justified” when we need
to apply less rules to derive it (and so, causal chains contain less labels) respecting their
ordering. In this way, chain ac is a “more stronger justification” than abcde.

As we saw above, a cause can be seen as a product of causal chains, that from a
graphical point of view correspond to the set of paths in a proof tree. We notice now
an interesting property relating causes and the “more strongly justified” order relation:
a joint interaction of comparable causal chains should collapse to the weakest among
them. Take, for instance, a set of rules Π6:

a : p b : q ← p r ← p ∧ q

where, in the unique causal stable model, r corresponds to the value a∗a · b. Informally
we can read this as “we need a and apply rule b to rule a to prove r”. Clearly, we are
repeating that we need a. Term a is redundant and then a ∗ a · b is simply equivalent



to a · b. This idea is quite related to the definition of order filter in order theory. An
order filter F of a poset P is a special subset F ⊆ P satisfying1 that for any x ∈ F
and y ∈ P , x ≤ y implies y ∈ F . An order filter F is furthermore generated by an
element x ∈ P iff x ≤ y for all element y ∈ F , the order filter generated by x is written
||x||. Considering causes as the union of filters generated by their causal chains, the join
interaction of causes just correspond to their union. For instance, ||a · b|| is the set of all
terms grater than a · b, that is {a · b, a ∗ b, a, b, a + b} while ||a|| = {a, a + b}. Term
a ∗ a · b corresponds just to the union of both sets ||a|| ∪ ||a · b|| = ||a · b||. Thus, we
define a cause as follows:

Definition 5 (Cause). A cause for a set of labels Lb is any order filter for the poset of
chains 〈XLb,≤〉. We will write CLb (or simply C when there is no ambiguity) to denote
the set of all causes for Lb. �

This definition captures the notion of cause, or syntactically a product of causal
chains. To capture possible alternative causes, that is, additions of products of causal
chains, we notice that addition obey a similar behaviour with respect to redundant
causes. Take, for instance, a set of rules Π7:

a : p b : p← p

It is clear, that the cause a is sufficient to justify p, but there are also infinitely many
other alternative and redundant causes a · b, a · b · b, . . . that justify p, that is a+ a · b+
a · b · b+ . . . . To capture a set of alternative causes we define the idea of causal value,
in its turn, as a filter of causes.

Definition 6 (Causal Value). Given a set of labels Lb, a causal value is any order filter
for the poset 〈CLb,⊆〉. �

The causal value |||a|||, the filter generated by the cause ||a||, is the set containing
||a|| = {a, a + b} and all its super sets. That is, |||a||| = {||a||, ||a ∗ b||, ||a · b||, . . . }.
Thus, a+a ·b+a ·b ·b+ . . . just corresponds to the union of the causal values generated
by their addend causes, |||a||| ∪ |||a · b||| ∪ |||a · b · b|||+ . . . = |||a|||.

The set of possible causal values formed with labels Lb is denoted as VLb. An ele-
ment from VLb has the form of a set of sets of causal chains that, intuitively, corresponds
to a set of alternative causes (sum of products of chains). From a graphical point of view,
it corresponds to a set of alternative proof trees represented as their respective sets of
paths. We define now the correspondence between syntactical causal terms and their
semantic counterpart, causal values.

Definition 7 (Valuation of normal terms). The valuation of a normal term is a map-
ping ε : ULb −→ VLb defined as:

ε(x)
def
= |||x||| with x ∈ XLb, ε

(∑
t∈S

t
)

def
=

⋃
t∈S

ε(t), ε
(∏
t∈S

t
)

def
=

⋂
t∈S

ε(t) �

1 Order filter is a weaker notion than filter which further satisfies that any pair x, y ∈ F has a
lower bound in F too.



Note that, any causal term can be normalized and then this definition trivially extend
for any causal term. Furthermore, a causal chain x is mapped just to the causal value
generated by the cause, in their turn, generated by x, i.e. the set containing all causes
which contain x. The aggregate union of an empty set of sets (causal values) corre-
sponds to ∅. Therefore ε(0) =

⋃
t∈∅ ε(t) = ∅, i.e. 0 just corresponds to the absence of

justification. Similarly, as causal values range over parts of C, the aggregate intersection
of an empty set of causal values corresponds to C, and thus ε(1) =

⋂
t∈∅ ε(t) = C, i.e.

1 just corresponds to the “maximal” justification.

Theorem 1 (From [4]). 〈VLb,∪,∩〉 is the free completely distributive lattice gener-
ated by 〈XLb,≤〉, and the restriction of ε to XLb is an injective homomorphism (or
embedding). �

The above theorem means that causal terms form a complete lattice. The order rela-
tion≤ between causal terms just corresponds to set inclusion between their correspond-
ing causal values, i.e. x ≤ y iff ε(x) ⊆ ε(y). Furthermore, addition ‘+’ and product ‘∗’
just respectively correspond to the least upper bound and the greater lower bound of the
associated lattice 〈TLb,≤〉 or 〈TLb,+, ∗〉 where:

t ≤ u def
= ε(t) ⊆ ε(u) (⇔ t ∗ u = t ⇔ t+ u = u )

for any normal term t and u. For instance, in our example Π2, fwd was associated with
the causal term p · a ∗ s · a+w · b. Thus, the causal value associated with it corresponds
to

ε(p · a ∗ s · a+ w · b) = |||p · a||| ∩ |||s · a||| ∪ |||w · b|||

Causal values are, in general, infinite sets. For instance, as we saw before, simply
with Lb = {a} we have the chains XLb = {a, aa, aaa, . . . } and ε(a) contains all possi-
ble causes in C that are supersets of {a}, that is, ε(a) = {{a}, {aa, a}, {aaa, aa, a}, . . . }.
Obviously, writing causal values in this way is unfeasible – it is more convenient to use
a representative causal term instead. For this purpose, we define a function γ that acts as
a right inverse morphism for ε selecting minimal causes, i.e., given a causal value V , it
defines a normal term γ(V ) = t such that ε(t) = V and γ(V ) does not have redundant
subterms. The function γ is defined as a mapping γ : VLb −→ ULb such that for any

causal value V ∈ VLb, γ(V )
def
=
∑
C∈V

∏
x∈C x where V = {C ∈ V |6 ∃D ∈ V,D ⊂

C} and C = {x ∈ C |6 ∃y ∈ C, y < x} respectively stand for ⊆-minimal causes of V
and ≤-minimal chains of C. We will use γ(V ) to represent V .

Proposition 3. The mapping γ is a right inverse morphism of ε. �

Given a term t we define its canonical form as γ(ε(t)). Canonical terms are in
the form of sums of products of causal chains. As it can be imagined, not any term
in that form is a canonical term. For instance, going back, we easily can check that
terms a ∗ ab = ab and a + ab + abb + · · · = a respectively corresponds γ(ε(ab ∗
a)) = γ(ε(ab)) = ab and γ(ε(a+ ab+ abb+ . . . )) = γ(ε(a)) = a in canonical form.
Figure 3 summarizes addition and product properties while Figure 4 is analogous for
application properties.



Associativity
t + (u+w) = (t+u) + w
t ∗ (u∗w) = (t∗u) ∗ w

Commutativity
t + u = u + t
t ∗ u = u ∗ t

Absorption
t = t + (t∗u)
t = t ∗ (t+u)

Distributive
t + (u∗w) = (t+u) ∗ (t+w)
t ∗ (u+w) = (t∗u) + (t∗w)

Identity

t = t + 0
t = t ∗ 1

Idempotence
t = t + t
t = t ∗ t

Annihilator
1 = 1 + t
0 = 0 ∗ t

Fig. 3. Sum and product satisfy the properties of a completely distributive lattice.

Associativity
t · (u·w) = (t·u) · w

Absorption
t = t + u · t · w

u · t · w = t ∗ u · t · w

Identity
t = 1 · t
t = t · 1

Addition distributivity
t · (u+w) = (t·u) + (t·w)
(t + u) · w = (t·w) + (u·w)

Product distributivity
c · (d ∗ e) = (c · d) ∗ (c · e)
(c ∗ d) · e = (c · e) ∗ (c · e)

Annihilator
0 = t · 0
0 = 0 · t

Fig. 4. Properties of the application ‘·’ operator. Note: c, d and e denote a causes instead of
arbitrary causal terms.

For practical purposes, simplification of causal terms can be done by applying the
algebraic properties showed in Figures 3 and 4. For instance, the examples fromΠ6 and
Π7 containing redundant information can now be derived as follows:

a ∗ a · b = (a ∗ 1 · a · b) identity for ‘·’
= 1 · a · b absorption for ‘·’
= a · b identity for ‘·’

a+ a · b+ a · b · b+ . . . = a+ 1 · a · b+ a · b · b+ . . . identity for ‘·’
= a+ a · b · b+ . . . absorption for ‘·’
= a+ 1 · a · b · b+ . . . identity for ‘·’
. . . . . .
= a absorption for ‘·’

Let us see another example involving distributivity. The term ab ∗ c+ a can be derived
as follows:

a · b ∗ c+ a = (a · b+ a) ∗ (c+ a) distributivity
= (1 · a · b+ a) ∗ (c+ a) identity for ‘·’
= (a+ 1 · a · b) ∗ (c+ a) commutativity for ‘+’
= a ∗ (c+ a) absorption for ‘·’
= a absorption for ‘∗’



3 Positive programs and minimal models

Let us describe now how to use the causal algebra to evaluate causal logic programs.
A signature is a pair 〈At, Lb〉 of sets that respectively represent the set of atoms (or
propositions) and the set of labels. As usual, a literal is defined as an atom p (positive
literal) or its negation ¬p (negative literal). In this paper, we will concentrate on pro-
grams without disjunction in the head, leaving the treatment of disjunction for a future
study.

Definition 8 (Causal logic program). Given a signature 〈At, Lb〉 a (causal) logic pro-
gram Π is a set of rules of the form:

t : L0 ← L1 ∧ . . . ∧ Lm ∧ not Lm+1 ∧ . . . ∧ not Ln

where t is a causal term over Lb, L0 is an literal or ⊥ (the head of the rule) and
L1 ∧ . . . ∧ Lm ∧ not Lm+1 ∧ . . . not Ln is a conjunction of literals (the body of the
rule). An empty body is represented as >. �

For any rule φ of the form t : L0 ← L1∧. . .∧Lm∧not Lm+1∧. . . not Ln we define
label(φ) = t. Most of the following definitions are standard in logic programming. We
denote head(φ) = L0, B+ (resp. B−) to represent the conjunction of all positive (resp.
negative) literals L1 ∧ . . . ∧ Ln (resp. not Lm+1 ∧ . . . ∧ not Ln) that occur in B. A
logic program is positive if B− is empty for all rules (n = m), that is, if it contains
no negations. Unlabelled rules are assumed to be labelled with the element 1 which, as
we saw, is the identity for application ‘·’. > (resp. ⊥) represent truth (resp. falsity). If
n = m = 0 then← can be dropped.

Given a signature 〈At, Lb〉 a causal interpretation is a mapping I : At −→ VLb
assigning a causal value to each atom. Partial order ≤ is extended over interpretations
so that given two interpretations I, J we define I ≤ J

def
= I(p) ≤ J(p) for each atom

p ∈ At. There is a≤-bottom interpretation 0 (resp. a≤-top interpretation 1) that stands
for the interpretation mapping each atom p to 0 (resp. 1). The set of interpretations I
with the partial order ≤ forms a poset 〈I,≤〉 with supremum ‘+’ and infimum ‘∗’ that
are respectively the sum and product of atom interpretations. As a result, 〈I,+, ∗〉 also
forms a complete lattice.

Observation 1 When Lb = ∅ the set of causal values becomes VLb = {0, 1} and
interpretations collapse to classical propositional logic interpretations. �

Definition 9 (Causal model). Given a positive causal logic program Π and a causal
interpretation I over the signature 〈At, Lb〉, I is a causal model, written I |= Π , if and
only if (

I(L1) ∗ . . . ∗ I(Lm)
)
· t ≤ I(L0)

for each rule ϕ ∈ Π in the form ϕ = L0 ← L1, . . . , Lm.

For instance, take rule (1) from Example 1 and let I be an interpretation such that
I(port) = p and I(starb) = s. Then I will be a model of (1) when (p∗s)·a ≤ I(fwd).



In particular, this holds when I(fwd) = (p ∗ s) · a+ w · b which was the value we ex-
pected for program Π2. But it would also hold when, for instance, I(fwd) = a + b
or I(fwd) = 1. Note that this important if we had to accommodate other possible ad-
ditional facts (a : fwd) or even (1 : fwd) in the program. The fact that any I(fwd)
greater than (p∗s)·a+w ·b is also a model clearly points out the need for selecting min-
imal models. In fact, as happens in the case of non-causal programs, positive programs
have a least model (this time, with respect to ≤ relation among causal interpretations)
that can be computed by iterating an extension of the well-known direct consequences
operator defined by [5].

Definition 10 (Direct consequences). Given a positive logic program Π for signature
〈At, Lb〉 and a causal interpretation I , the operator of direct consequences is a function
TΠ : I −→ I such that, for any atom p ∈ At:

TΠ(I)(L0)
def
=
∑{ (

I(L1) ∗ . . . ∗ I(Lm)
)
· t | (t : L0 ← L1 ∧ . . . ∧ Lm) ∈ Π

}
In order to prove some properties of this operator, an important observation should

be made: since the set of causal values forms now a lattice, causal logic programs can be
translated to Generalized Annotated Logic Programming (GAP) [6]. GAP is a general
a framework for multivalued logic programming where the set of truth values must to
form an upper semilattice and rules (annotated clauses) have the following form:

L0 : ρ← L1 : µi & . . . & Lm : µm (3)

where L0, . . . , Lm are literals, ρ is an annotation (may be just a truth value, an an-
notation variable or a complex annotation) and µ1, . . . , µm are values or annotation
variables. A complex annotation is the result to apply a total continuous function to a
tuple of annotations. For instance ρ can be a complex annotation f(µ1, . . . , µm) that
applies the function f to a m-tuple (µ1, . . . , µm) of annotation variables in the body of
(3). Given a positive program Π , each rule ϕ ∈ Π in the form

t : L0 ← L1 ∧ . . . ∧ Lm (4)

is translated to an annotated clause GAP (ϕ) in the form of (3) where the annotation
variables µ1, . . . , µm in this case capture the causal values of the body literals and the
complex annotation is defined as ρ def

= (µ1 ∗ . . . ∗ µm) · t. The translation of a program
Π is simply defined as:

GAP (Π)
def
= {GAP (ϕ) | ϕ ∈ Π}

A complete description of GAP semantics, denoted as |=r, is out of the scope of this
paper (the reader is referred to [6]). For our purposes, it suffices to observe that the
following important property is satisfied.

Theorem 2. A positive causal logic program Π can be translated to a general an-
notated logic program GAP (Π) s.t. a causal interpretation I |= Π if and only if
I |=r GAP (Π). Furthermore, TΠ(I) = RGAP (Π(I) for any interpretation I .



Corollary 1. Given a positive logic program Π the following properties hold:

1. Operator TΠ is monotonic.
2. Operator TΠ is continuous.
3. TΠ ↑ ω (0) = lfp(TΠ) is the least model of Π .
4. The iterative computation TΠ ↑ k (0) reaches the least fixpoint in n steps for some

positive integer n.

Proof. Directly follows from Theorem 2 and Theorems 1, 2 and 3 in [6].

The existence of a least model for a positive program and its computation using TΠ
is an interesting result, but it does not provide any information on the relation between
the causal value it assigns to each atom with respect to its role in the program. As we
will see, we can establish a direct relation between this causal value and the idea of
proof in the positive program. Let us formalise next the idea of proof tree.

Definition 11 (Proof tree).
Given a causal logic program Π , a proof tree is a directed acyclic graph T =

〈V,E〉, where vertices V ⊆ Π are rules from the program, and E ⊆ V × V satisfying:

(i) There is at most one vertex without outgoing edges denoted as sink(T ) when de-
fined.

(ii) For each rule ϕ = (t : L0 ← B) ∈ V and for each atom Li ∈ B+ there is exactly
one ϕ′ with (ϕ′, ϕ) ∈ E and this rule satisfies head(ϕ′) = Li. �

Notice that condition (ii) forces us to include an incoming edge for each atom in the
positive body of a vertex rule. As a result, source vertices must be rules with empty
positive body, or just facts in the case of positive programs. Another interesting obser-
vation is that, although we talk about proof tree, we do not require an unique parent
for each vertex, so we actually have a rooted, directed acyclic graph. For instance, in
Example 1, if both port and starb were obtained as a consequence of some command
made by the captain, we could get instead a proof “tree,” call it T1, of the form:

c : command

rr ,,

p : port← command

++

s : starb← command

ss

a : fwd← port ∧ starb

Definition 12 (Proof path). Given a proof tree T = 〈V,E〉 we define a proof path for
T as a concatenation of terms t1 . . . tn satisfying:

1. There exists a rule ϕ ∈ V with label(r) = t1 such that ϕ is a source, that is, there
is no φ′ s.t. (ϕ′, ϕ) ∈ E.

2. For each pair of consecutive terms ti, ti+1 in the sequence, there is some edge
(ϕi, ϕi+1) ∈ E s.t. label(ϕi) = ti and label(ϕi+1) = ti+1.

3. label(sink(T )) = tn. �



Let us write Paths(T ) to stand for the set of all proof paths for a given proof
tree T . We define the cause associated to any tree T = 〈V,E〉 as the causal term
cause(T )

def
=
∏
t∈Paths(T ) t. As an example, cause(T1) = (c · p · a) ∗ (c · s · a). Also

(p · a) ∗ (s · a) and w · b correspond to each tree in Figure 1.

Theorem 3. Let Π be a positive program and I be the least model of Π , then for each
atom p:

I(p) =
∑

T∈PTp

cause(T )

where PTp = {T = 〈V,E〉 | head(sink(T )) = p} is a set of proof trees with nodes
V ⊆ Π .

From this result, it may seem that our semantics is a direct translation of the syntactic
idea of proof trees. However, the semantics is actually a more powerful notion that
allows detecting redundancies, tautologies and inconsistencies. In fact, the expression∑
T∈PTp

cause(T ) may contain redundancies and is not, in the general case, in normal
form. As an example, remember the program Π6:

a : p b : q ← p r ← p ∧ q

that has only one proof tree for p whose cause would correspond to I(r) = a ∗ a · b.
But, by absorption, this is equivalent to I(r) = a · b pointing out that the presence of p
in rule r ← p ∧ q is redundant.

A corollary of Theorem 3 is that we can replace a rule label by a different one, or
by 1 (the identity for application ‘·’) and we get the same least model, modulo the same
replacement in the causal values for all atoms.

Corollary 2. Let Π be a positive program, I the least model of Π , l ∈ Lb be a label,
m ∈ Lb ∪ {1} and Π l

m (resp. I lm) be the program (resp. interpretation) obtained after
replacing each occurrence of l by m in Π (resp. in the interpretation of each atom in
I). Then I lm is the least model of Π l

m. �

In particular, replacing a label bym = 1 has the effect of removing it from the signature.
Suppose we make this replacement for all atoms in Lb and call the resulting program
and least model ΠLb

1 and ILb1 respectively. Then ΠLb
1 is just the non-causal program

resulting from Π after removing all labels and it is easy to see (Observation 1) that ILb1

coincides with the least classical model of this program2. Moreover, this means that for
any positive program Π , if I is its least model, then the classical interpretation:

I ′(p)
def
=

{
1 if I(p) 6= 0

0 otherwise

is the least classical model of Π ignoring its labels.

2 Note that ILb is Boolean: if assigns either 0 or 1 to any atom in the signature.



4 Default negation and stable models

Consider now the addition of negation, so that we deal with arbitrary programs. In order
to achieve a similar behaviour for default negation to that provided by stable models
in the non-causal case, we introduce the following straightforward rephrasing of the
traditional program reduct [2].

Definition 13 (Program reduct). The reduct of a program Π with respect to an inter-
pretation I , written ΠI is the result of the following transformations on Π:

1. Removing all rules s.t. I(B−) = 0
2. Removing all negative literals from the rest of rules. �

A causal interpretation I is a causal stable model of a causal program Π if I is the
least model of ΠI . This definition allows us to extend Theorems 3 to normal programs
in a direct way:

Theorem 4 (Main theorem). LetΠ be a causal program and I be causal stable model
of Π , then for each atom p:

I(p) =
∑

T∈PTp

cause(T ) where

PTp = {T = 〈V,E〉 | head(sink(T )) = p and V ⊆ {(t : q ← B) ∈ Π | I(B−) 6=
0}}. �

That is, the only difference now is that the set of proof trees PTp is formed with rules
whose negative body is not false I(B−) 6= 0 (that is, they would generate rules in
the reduct). To illustrate the effect of default negation, suppose that, in Example 1,
the actions for moving the boat forward can be disqualified if an exceptional situation
occurs (for instance, that the boat is anchored). This can be easily represented using
default negation as shown in the set of rules Π8:

p : port s : starb w : fwind

a : fwd← port ∧ starb ∧ not ab b : fwd← fwind ∧ not ab

c : ab← anchored

As expected, in the only stable model of the program Π8 atom fwd is justified by
(p ·a ∗ s ·a)+ (w · b) as in the program Π2. That is, default negation does not affect the
causes justifying an atom when the default holds. Of course, when the default does not
hold, for instance adding the fact anchored to the above program, fwd becomes false.

5 Conclusions

In this paper we have provided a multi-valued semantics for normal logic programs
whose truth values form a lattice of causal chains. A causal chain is nothing else but a
concatenation of rule labels that reflects some sequence of rule applications. In this way,



a model assigns to each true atom a value that contains justifications for its derivation
from the existing rules. We have further provided three basic operations on the lattice: an
addition, that stands for alternative, independent justifications; a product, that represents
joint interaction of causes; and a concatenation that acts as a chain constructor. We have
shown that this lattice is completely distributive and provided a detailed description of
the algebraic properties of its three operations.

A first important result is that, for positive programs, there exists a least model that
coincides with the least fixpoint of a direct consequences operator, analogous to [5].
With this, we are able to prove a direct correspondence between the semantic values we
obtain and the syntactic idea of proof tree. The main result of the paper, generalises this
correspondence for the case of stable models for normal programs.

Many open topics remain for future study. For instance, ongoing work is currently
focused on implementation, complexity assessment, extension to disjunctive programs
or introduction of strong negation. Regarding expressivity, an interesting topic is the
introduction of new syntactic operators for inspecting causal information like check-
ing the influence of a particular event or label in a conclusion, expressing necessary or
sufficient causes, or even dealing with counterfactuals. Another interesting topic is re-
moving the syntactic reduct definition in favour of some full logical treatment of default
negation, as happens for (non-causal) stable models and their characterisation in terms
of Equilibrium Logic [7]. This would surely simplify the quest for a necessary and
sufficient condition for strong equivalence, following similar steps to [8]. It may also
allow extending the definition of causal stable models to an arbitrary syntax and to the
first order case, where the use of variables in labels may also introduce new interesting
features.

There are also other areas whose relations deserve to be formally studied. For in-
stance, the introduction of a strong negation operator will immediate lead to a connec-
tion to Paraconsistency approaches. In particular, one of the main problems in the area
of Paraconsistency is deciding which parts of the theory do not propagate or depend on
an inconsistency. This decision, we hope, will be easier in the presence of causal justifi-
cations for each derived conclusion. A related area for which similar connections can be
exploited is Belief Revision. In this case, causal information can help to decide which
relevant part of a revised theory must be withdrawn in the presence of new information
that would lead to an inconsistency if no changes are made. A third obvious related
area is Debugging in Answer Set Programming, where we try to explain discrepancies
between an expected result and the obtained stable models. In this field, there exists
a pair of relevant approaches [9, 10] to whom we plan to compare. Finally, as poten-
tial applications, our main concern is designing a high level action language on top of
causal logic programs with the purpose of modelling some typical scenarios from the
literature on causality in Artificial Intelligence.
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A. Proofs

Proof of Proposition 1. We proceed by induction on the number of operators:

– If t = l ∈ Lb then it is a normal term.
– For t =

∑
u∈S u (dually for t =

∏
u∈S u) suppose by induction hypothesis that

each causal subterm can be normalized. Thus let U ′ = {u′ = normal(u) | u ∈
U}, then t′ =

∑
u′∈U ′ u

′ is the desired normal term.
– For t ·

(∑
u∈U u

)
(resp. t ·

(∏
u∈U u

)
), applying left distributivity of ‘·’ with re-

spect to ‘+’ it follows that t ·
(∑

u∈U u
)
=
∑
u∈U t · u and by induction hy-

pothesis each sum argument t · u has less operators and can be normalized. Thus∑
u∈U normal(t · u) is the desired normal term.

– For
(∑

u∈U u
)
· l (resp.

(∏
u∈U u

)
· l), applying right distributivity of ‘·’ with

respect to ‘+’ it follows that
(∑

u∈U u
)
· l =

∑
u∈U u · l and by induction hypoth-

esis each addend u · l is a term with less operators and can be normalized. Thus∑
u∈U normal(t · l) is the desired normal term.

�

Proof of Proposition 3. γ(V ) =
∑
C∈V

∏
x∈C x, thus ε

(
γ(V )

)
=
⋃
C∈V

⋂
x∈C ε(x).

Since each x ∈ XLb it follows that ε
(
γ(V )

)
=
⋃
C∈V

⋂
x∈C{C ′ ∈ C | x ∈ C ′} =⋃

C∈V {C ′ ∈ C | C ⊆ C ′}. Furthermore C ′′ ∈ V iff there is some C ∈ V s.t. C ⊆ C ′′

(possible C ′) iff C ′′ ∈
⋃
C∈V {C ′ ∈ C | C ⊆ C ′}, and thus V = ε

(
γ(V )

)
. �

Proof of Theorem 2. For a rule φ ∈ Π in the form of (4) and an interpretation I ,
I |= φ if and only if

(
I(L1) ∗ . . . ∗ I(Lm)

)
· t ≤ I(L0) while I |=r GAP (φ) if

for all µi ≤ I(Li) implies that ρ ≤ I(L0). Clearly, when each µi = I(Li) follows
ρ ≤ I(L0) becomes (µ1 ∗ . . . ∗ µn) · t =

(
I(L1) ∗ . . . ∗ I(Ln)

)
· t ≤ I(L0). That

is, I |=r GAP (φ) implies I |= φ. Furthermore, if we take any µ′i < I(Li) follows
(µ′1 ∗ . . . ∗ µ′n) · t < (µ1 ∗ . . . ∗ µn) · t ≤ I(L0), since it is a monotonic mapping. That
is, I |= φ also implies I |=r GAP (φ). To show that above translation gives acceptable
programs, it is only necessary to note that the body of each translated rule GAP (φ) is
only variable annotated. The correspondence between TΠ and RGAP (Π) can be done
following the same above reasoning about satisfaction. �

Lemma 1. Let Π be a positive logic program. For each atom p

TΠ ↑ n (0)(p) =
∑

T∈PTn
p

cause(T )

where PTnp = {T = 〈V,E〉 | V ⊆ Π, source(T ) = (π : B → p) and height(T ) ≤
n} and height(T ) = max{|x| | cause(T ) =

∏
x∈X x}.

Proof. We proceed by induction on n. For n = 0 there are no proof trees, and so,
TΠ ↑ 0 (0)(L0) = 0 for each literal L0. When n > 0, by definition of TΠ

TΠ ↑ n (0)(L0) =
∑

(t:L0←B)∈Π

∏
Li∈B

TΠ ↑ n−1 (0)(Li) · t



By induction hypothesis

TΠ ↑ n−1 (0)(Li) ≤
∑

T∈PTn−1
Li

cause(T )

∏
Li∈B

TΠ ↑ n−1 (0)(Li) ≤
∏
Li∈B

∑
T∈PTn−1

q

cause(Tq)

and applying distributivity∏
Li∈B

TΠ ↑ n−1 (0)(Li) ≤
∑
ϕ∈Φ

∏
Li∈B

cause
(
ϕ(Li)

)
where Φ = {ϕ | ϕ(q) ∈ PTn−1q }. Therefore∏

Li∈B
TΠ ↑ n−1 (0)(Li) · t ≤

∑
ϕ∈Φ

∏
Li∈B

cause
(
ϕ(Li)

)
· t

Let ϕ(Li) = 〈Vϕ(Li), Eϕ(Li)〉 and Tϕ = 〈Vϕ, Eϕ〉 s.t.

Vϕ = {t : L0 ← B} ∪
⋃
Li∈B

Vϕ(Li)

Eϕ =
{(
sink

(
ϕ(Li)

)
, (t : L0 ← B)

)
| Li ∈ B

}
∪
⋃
Eϕ(Li)

clearly cause(Tϕ) =
∏
Li∈B cause

(
ϕ(Li)

)
· t and height(Tϕ) ≤ n, i.e. Tϕ ∈ PTnL0

.
Applying the above steps to each rule in the form t : L0 ← B we can see that

TΠ ↑ n (0)(L0) =
∑

(t:L0←B)∈Π

∏
Li∈B

TΠ ↑ n−1 (0)(Li) · t ≤
∑

T∈PTn
L0

cause(T )

Now, let T ∈ PTnL0
i.e. source(T ) = (t : L0 ← B) and height(T ) ≤ n. For each

Li ∈ B there is a subtree TLi ∈ PTn−1Li
and by induction hypothesis, cause(TLi) ≤

TΠ ↑ n−1 (0)(Li) for each Li ∈ B. Clearly∏
Li∈B

cause(TLi) ≤
∏
Li∈B

TΠ ↑ n−1 (0)(Li)

following

cause(T ) =
∏
Li∈B

cause(TLi) · t
∏
Li∈B

TΠ ↑ n−1 (0)(Li) · t ≤ TΠ ↑ n (0)(L0)

i.e.
TΠ ↑ n (0)(L0) ≥

∑
T∈PTn

p

cause(T )



Finally the case n = ω can be proved as follows:

TΠ ↑ ω (0)(L0) =
∑
k<ω

TΠ ↑ k (0)(L0) =
∑
k≤ω

∑
T∈PTk

L0

T =

=
∑

T∈
⋃

k≤w PT
k
L0

T =
∑

T∈PTω
L0

T

Proof of Theorem 3. Since I is the least model of Π we conclude TΠ ↑ ω (0) = I
(Corollary 1) and the result then directly follows from Lemma 1. �

Proof of Corollary 2. From Theorem 3, I(p) =
∑
T∈PTp

cause(T ) where PTp =

{T | source(T ) = t : p← B}. Thus I lm(p) =
∑
T∈PTp

cause(T lm) is the least model

of Π l
m where T lm is the tree obtained by replacing l by m in each tree node. �

Proof of Theorem 4. Since V ⊆ {(t : q ← B) ∈ Π | I(B−) > 0} for each
tree T = 〈V,E〉 we conclude that V ⊆ ΠI . Therefore, I(p) =

∑
T∈PTp,I

cause(T )

(Theorem 3) is the least model of ΠI i.e. I is a causal stable model of Π . �


