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Abstract. Partial equilibrium logic (PEL) is a new nonmonotonic regisg for-
malism closely aligned with logic programming under welishided and partial
stable model semantics. In particular it provides a logiwahdation for these se-
mantics as well as an extension of the basic syntax of logignams. In this paper
we describe PEL, study some of its logical properties andhexa its behaviour
on disjunctive and nested logic programs. In addition wesier computational
features of PEL and study different approaches to its coatiout
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1 Introduction

Of the various proposals for dealing with default negatioroigic programming the
well-founded semantid®VFS) of Van Gelder, Ross and Schlipf [35] has proved to be
one of the most attractive and resilient. Particularly &sofurable computational prop-
erties have made it popular among system developers andeifinvown implemen-
tation XSB-Prolog is now extensively used in Al problem solving and applicasiin
knowledge representation and reasoning.

Closely related to WFS is the semanticgaftial stable modelslue to Przymusin-
ski [29]. Partial stable (henceforth p-stable) models mewa natural generalisation of
stable models to a multi-valued setting and on normal logigmms capture the well-
founded model as a special (minimal model) case. Althougméwly developing area
of answer set programminfASP) has focused mainly on (2-valued) stable models,
there has also been a steady stream of interest in the chidsatibn and computation
of p-stable models, eg [32, 33,12, 13, 16].

Recently [6] proposed a solution to the following long-stizng problem in the foun-
dations of WFS:
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— Which (non-modal) logic can be considered adequate for WiHBé sense that
its minimal models (appropriately defined) coincide witlk ftrstable models of a
logic program?

This problem is tackled in [6] in a similar spirit to the waywiich the so-called logic

of here-and-thergHT, has been used to capture ordinary stable models and led to th
development of a general nonmonotonic formalism caigailibrium logic[24]. While
2-valued stable models can be characterised using theugd/&ripke frames oHT,

for p-stable models one requires a more complex notion ofiéraf a kind studied by
Routley [31]. These are generalisationdtF frames, referred to ad T2 frames, and
characterised by a 6-valued logic. To capture p-stable lad¢his setting a suitable
notion of minimal, totaH T2 model is defined, which we catlartial equilibrium (p-
equilibrium) model These models were shown to coincide with p-stable models fo
normal logic programs in [6] and for disjunctive logic pragis in [7]. In addition [6]
axiomatises the logic dfiT2-models and proves th&tT? captures the strong equiv-
alence of theories. The resulting logic of p-equilibriumdets is calledpartial equi-
librium logic (PEL) and was proposed as a logical foundation for WFS anilpes
semantics. It can be also seen as yielding a natural meanseioddVFS and p-stable
semantics beyond the syntax of normal and disjunctive airogr eg to so-called nested
logic programs or to arbitrary propositional theories.

In this paper we examine a range of logical and computatimsaks associated
with PEL and its underlying logic$4 T2 and the logic of totaH T? models, which we
denote byH T*. The paper is organised into three main parts. In the fir$t amprising
Sections 2, 3 and 4, we describe the logi€?, introduce partial equilibrium models
and review their relation to partial stable models and th#-fsanded semantics for
logic programs. We also recall the strong equivalence #hapwe study the complex-
ity of the main reasoning tasks associated with PEL and wenaiise the logi¢d T*.
The second part comprises Sections 5, 6 and 7. Here we loo&tatagical properties
of the entailment relation of PEL and examine transfornmatides that preserve the
equivalence (ie sameness of p-equilibrium models) or gtexuivalence of theories.
In a similar vein we apply properties of the underlying lqditT?2, to determine the
extent to which nested logic programs can be reduced to smppbgrams. The third
part of the paper deals with strategies for computing plégitim models and imple-
menting PEL. First, in Section 8, tableaux calculi are pnéset forH T2 and PEL; the
former is of interest in its own right as a tool for testing #ieong equivalence of the-
ories. Secondly, in Section 9 we extend the technique ofulaatet al [16] that uses
program transformations to reduce the computation of plkstamodels for disjunctive
programs to that of stable models; we show that this methndeaextended to reduce
PEL to equilibrium logic. Lastly, in Section 10, we considiee method ofplitting a
logic program, a familiar technique for optimising comgiga under the stable model
semantics [18, 14]. We derive a splitting theorem for disfive and nested logic pro-
grams under PEL. Some further topics are discussed brieflydyyof conclusion in
Section 11.



2 Logical preliminaries: the logicsHT? and PEL

We introduce the logi¢i T2 and its semantics, given in termsdfT? frames and we
definepartial equilibrium logic(PEL) in terms of minimaHT? models. Formulas of
HT? are built-up in the usual way using atoms from a given prdjmsl signatureit
and the standard logical constants:v, —, —. We write £(At) to stand for the set of
all well-formed formulae (ie the language) under signatireA set of HT? formulae

is called atheory. The axiomatic system fdf T2 is described in two stages. In the first
stage we include the following inference rules:

aa—p (Modus Ponens) a—p

B S

plus the axiom schemata pbsitive logictogether with:

Al.maA-B—=(aVvB), A2.-(a—a)—pB, A3.-(aAB)—-aV-P

Thus, both De Morgan laws are provableHiT2. Moreover, axiom A2 allows us
to define intuitionistic negation*’, in HT? as: —a := a — —(pp — po). In a second
stage, we further include the r V(Ba“ﬁ) and the axiom schemata:

Ad, —aVvV—-——a

AS. —aV(a — (BV(B—(yV=Y))))

A6. No((ai — V4 @) = Visaj) — Vioai
A7. a — -«

A8. aA-a — BV

A9. —an—(a— B)— ——a

Al10. ——aV-—-BV-(a—B)V--(a—fB)
All. ——aA—-—B—=(a—=B)V(B—a)

HT? is determined by the above inference rules and the schematslA.

Definition 1. A (Routley) frameis a triple (W, <,x), where W is a set< a partial

orderonW and: W — W is such that X y iff y* < x*. A(Routley) models a Routley
frame together with a valuation V ie a function from>AWW — {0,1} satisfying: (1)
Vipuy=1&u<w = V(pw) =1

The valuatiorV is extended to all formulas via the usual rules for intuitsbic (Kripke)
frames for the positive connectives v, — where the latter is interpreted via the
order:

V(¢ — y,w) =1 iffforall w>wV(¢,wW)=1=V(y,w)=1.

The main difference with respect to intuitionistic frame#hie presence of theoperator
that is used for interpreting negation via the following dition:

V(-¢,w) =1 iff V(¢,w*)=0.



A propositiong is said to beruein a model.# = (W, <,x,V), if V(¢,v) = 1, for all
veW. Aformulag is valid, in symbolsk= ¢, if it is true in every model. It is easy to
prove by induction that condition (1) in Definition 1 abovddwfor any formulag, ie

V(g,uy=1& u<w=V(¢p,w) =1 1)

Definition 2 (HT? model). An HT? modelis a Routley model# = (W, <,x,V) such
that (i) W comprises 4 worlds denoted byhht,t/, (i) < is a partial ordering on
W satisfying < t, h< K, i <t and t <t/ (iii) the * operation is determined by

h*=t*=t/, (h)* = (t')* =t, (iv) V is a valuation.

N The diagram on the left depicts tkeordering among worlds (a
strictly higher location meanz) and the action of the-mapping
/ using arrows.
t o Truth and validity forH T2 models are defined analogously to the
previous case and from now on we letdenote the truth (validity)
h relatfison forHT2 models. We have the following completeness theo-
rem:.

Theorem 1 ([6]). = ¢ iff ¢ is a theorem of HY.

2.1 HT? as a 6-valued logic

Now, consider arHT? model.# = (W,<,*,V) and let us denote by, H’, T and

T’ the four sets of atoms respectively verified at each corredipg point or world

h, i, t, t'. More succinctly, we can represemt as the paifH,T) so that we group
each pair of unprimed/primed world &s= (H,H’) andT = (T, T’). By construction,
each of these pairs= (I,1’) satisfies| C I, so thatl can be seen as a 3-valued in-
terpretation. Giverh and an atonp, we use the valuef0, 1,2} to respectively denote
pel,pel’\landp¢ |’. As we have two pairs like thigH, T), the possible “situa-
tions” of a formula inHT? can be defined by a pair of valuggwith x,y € {0,1,2}.
Condition (1) restricts the number of these situations ® ftillowing six: 00 := 0,
01:={t'}, 11:={W t'}, 02:= {t,t'}, 12:= {HW t,t'}, 22 := W, where each set shows
the worlds at which the formula is satisfied. Thus, an altéreavay of describindd T2

is by providing its logical matrix in terms of a 6-valued logiAs a result, the above
setting becomes an algebra of 6 cone&!T := ({00,01,11,02,12,22},V, A, —, )
whereV and A are set theoretical join and meet, whereasand — are defined as
follows: x —»y:={w:w<w = (W ex=W €y)}, - x:={w:w"¢x}. Theonly
distinguished element . The lattice structure of this algebra can be describeddy th
conditionxy < zt & x < z& y <t and is shown in Figure 1, together with the resulting

truth-tables. _ _
2.2 Minimal models and relation to logic programs

Given a pair of 3-valued interpretatiohs= (I1,17) andl, = (I, 15), thetruth-ordering
relation I; < I, holds when botH; C I, andl] C I5. Note that by the semantics, if
(H,T) is a model then necessarliyy < T, since it is easy to check that this condition is

6 The first stage alone defines a logic complete for the genenatl& frames.



o | —¢ — |00 01 11 02 12 22
22 00| 22 00 [ 22 22 22 22 22 22

| 01 11 01|00 22 22 22 22 22

12 11| 11 11| 00 02 22 02 22 22
AN 02| 00 02|00 11 11 22 22 22
11 02 12 | 00 12| 00 01 11 02 22 22
\01/ 22 | 00 22 (00 01 11 02 12 22

0|0 V(QAW) = gl.b V(). V ()}
V(@V ) = Lub{V(e).V (@)}

Fig. 1. Lattice structure and truth tables for the 6-valu#@2 description.

equivalenttaH C T andH’ C T’. Moreover, for any theoryl note that if(H,T) = 1
then also(T,T) = I1.

The ordering< is extended to a partial orderirig among models as follows. We
set(H1,T1) < (Ho, To) if (i) Ty =To; (i) H1 <Hy. Amodel(H,T) in whichH =T is
said to beotal. Note that the terntotal model does not refer to the absence of undefined
atoms. To represent this, we further say that a total padiailibrium model icomplete
if T has the form(T,T). We are interested here in a special kind of minimal model tha
we call a partial equilibrium (or p-equilibrium) model. LBt be a theory.

Definition 3 (Partial equilibrium model). A model.# of I1 is said to be gpartial
equilibriummodel off1 if (i) .# is total; (ii) .# is minimal among models &1 under
the ordering<.

In other words a p-equilibrium model éf has the form(T, T) and is such thatifH, T)

is any model oflT with H < T, thenH = T. We will sometimes use the abbreviation
T ke I to denote tha{T,T) is a p-equilibrium model of theor#l . Partial equilibrium
logic (PEL) is the logic determined by truth in all p-equilibriurodels of a theory.
Formally we can define a nonmonotonic relation of PEL-infeeeas follows.

Definition 4 (entailment). Let [T be a theory,¢ a formula andZ£.# (1) the col-
lection of all p-equilibrium models ofl. We say that'7 entails¢ in PEL, in sym-
bols 1 |~ ¢, if either (i) or (ii) holds: (i) Z2&.# (1) # 0 and .# = ¢ for every.# €

2EH#(N); (i) P&# (M) =0andg is true in all HT2-models of 7.

In this definition, therefore, we consider the skeptical antous entailment relation;
a credulous variant is easily given if needed. Clause (ijdeded since, as Theorem
2 below makes clear, not all consistent theories have plibgquim models. Again (ii)
represents one possible route to understanding entailiméhé absence of intended
models; other possibilities may be considered dependirapatext.

We turn to the relation between PEL and logic programsligjunctive logic pro-
gramis a set of formulas (also calledles) of the form

aA...ANanA—bi AL A=by—C1 V.V Gk (2)



where thea, b, c with subscripts range over atoms amgh, k > 0. For simplicity, given
any ruler like (2) above, we also use the symb&s(r),B~(r) andHd(r) to denote
the corresponding sefs, ..., am}, {b1,...,bn} and{c,...,c} respectively. By abuse
of notation, we understar8i (r) as the conjunction of its atoms, where&is(r) and
Hd(r) are understood as the disjunctions of their atoms (de Mdeyeshold for nega-
tion). As usual, an empty disjunction (resp. conjunctienjinderstood as the constant
1 (resp.T). As a result, wherr has the form (2) it can be represented more com-
pactly asB™(r) A—B~(r) — Hd(r). Additionally, the body of a rule is defined as
B(r) :=B*(r) A=B~(r).

The definition of the p-stable models of a disjunctive logiogram/T is given as
follows. Given a 3-valued interpretatidn= (1,1"), Przymusinski's valuation of formu-
las consists in interpreting conjunction as the minimursjuttiction as the maximum,
negation ag(—¢) :=2—1(¢) and implication ad(¢ — ) :=2if I(¢) < I(¢) and
(¢ — ) := 0 otherwise. The constants, u and T are respectively valuated as 0, 1
and 2. We say thdtis a3-valued modebf a formulag, writtenl =3 ¢, whenl (¢) = 2.
Thereductof a programyT wrt |, denoted ag$1', consists in replacing each negative
literal —=b in IT by the constant correspondinglto-b). A 3-valued interpretatiohis a
p-stablemodel of 7 if | is a< —minimal model off7'.

Theorem 2 ([7]). A total HT? model(T, T) is a p-equilibrium model of a disjunctive
program/T iff the 3-valued interpretatioil is a p-stable model dfl.

We define a further partial ordering on total models @y, T1) < (T2, T») if both
T1 €T, andT; C Ty (intuitively, T1 has less information or defined atoms th&).
Then we say that a totéd T2 model that is<-minimal among the p-equilibrium models
of a theoryl is awell-founded modedf I". This terminology is justified by the fact
that if 7 is a normal logic program, the uniqueminimal p-equilibrium model of1
coincides with the well-founded model bf in the sense of [35].

The notion of strong equivalence for logic programs wasouidiced in [19] and
logically characterised for the case of programs underestatodel semantics. The
study of strong equivalence, its generalisations and caéatipn, has since become a
lively research area within ASP, with potential for apptioa to program optimisation.
Until now there was no analogous research programme faalgesand WF semantics.
A basis is provided however by Theorem 3 below and severahskins proved in [7].

Definition 5 ((strongly) equivalent theories).Two theoried1, 1’ are said to be (PEL)-
equivalent or simphequivalent(resp.strongly equivalent in symbols7 = 1’ (resp.
1 =5 "), iff they have the same p-equilibrium models (resp. ifféfoy ™, MUl =
mnur).

Theorem 3 ([6]). Two theoried1, 1’ are strongly equivalent iff they are HTequiva-
lent, ie have the same HTnodels.

This provides added interest in computational proof systemH T2,



3 Complexity of reasoning inHT2 and PEL

We denote by8AT, andVALc, the classes of satisfiable formulas and valid formulas
respectively in Classical Logic, arf8iAT,;2 andV AL, the classes of satisfiable and
valid formulas respectively il T2 logic.

Theorem 4. SAT,t2 is NP-complete and VAl;2 is coNP-complete.

Proof. For finite-valued logics it is straightforward that the satibility and validity
problems are at most NP-hard and coNP-hard respectivety Lkee a formula over
{=,—,A,V} and consider the formul@’ obtained by replacing every variahtein ¢
by p — —p. The formulag’ has the following properties: evelyT?-assignmenty,
verifies that (¢) € {00,02}; if ¢ is satisfiable, then it has a model satisfyW(p) €
{00,22} for every variablep in ¢'. If W(¢) = 00 for some assignmek¥, then there
exists an assignmelt such tha¥ (¢) = 00 andV (p) € {00,22} for every variablep
in ¢'. Finally, we have alsop € SAT, if and only if ¢’ € SAT,2 and¢ & VAL, if
and only if¢’ & VAL, 2. Thus, the polynomial transformation éfinto ¢’ reduces the
satisfiability and validity problems in classical logic teetcorresponding problems in
HT? and thereforSAT, 12 is NP-complete antl AL, 12 is cONP-complete. O

Corollary 1. The problem of checking the strong equivalence of theosesoNP-
complete.

Theorem 5. The problem of deciding whether a formula in Hfias partial equilib-
rium models (partial equilibrium consistency)Zf-complete.

Proof. It is straightforward from the finite-valued semanticsHT? to see that the
complexity is at mosEy. To prove that the complexity is in faZb we use the fact that
equilibrium consistency i&5-complete. Given a formul@ in HT, we define

¢'=¢A A (-pv-p)

p occurs ing

The formulag’ has the following properties: ayT?-model of¢’, V, verifiesV (p) €
{00,02,12,22} for every variablep in ¢; if V is a model of¢ such thatV(p)
{00,02,12,22}, then the assignme¥t defined as follows is also a model@fV’'(p) =

12 if V(p) = 02 andVv’(p) = V(p) otherwise (this fact can be proved easily by inspec-
tion of the truth tables). So, for the formud, we can “forget” the value 02 and the
bijection 00+ 0, 12« 1, 22+ 2 lets us conclude that has equilibrium models if
and only if¢’ has partial equilibrium models. Thus, the polynomial tfansation of

¢ into ¢’ reduces equilibrium consistency to partial-equilibriunnsistency and so this
problem is=5-complete. O

Corollary 2. The decision problem for equilibrium entailmentig-complete.



4 The Logic of Total Models

Total models play an important role in the definition of PEhca p-equilibrium models
are a special kind of total model. We describe their logicsthiote that total models
can be distinguished among &IT2-models via the scheme—¢ — ¢. For anHT?

model.# = ((H,H’),(T,T")) = WHT? <« V), whereWHT = {h,I,t,t'} set
A = {¢:V(p,w) =1}

for w e WHT?, Obviously,H ¢ A7, H C A, etc. We omit the superscript/ if it
does not lead to confusion.

Proposition 1. The following items are equivalent:

1. (H,T) E——¢ — ¢ forany¢,
2.H=T,
3. Ay =4 andAh/ = At"

Proof. Condition 1 is equivalentte—¢ € Ay, = ¢ € Ay, for all wand¢. By definition
of thex operation——¢ € Ay < ¢ € Ay+. Taking into account** =t andt* =t" we
obtain that condition 1 is equivalent to the inclusions

A C Ap and Ay C Ay

Inverse inclusions hold in ali T?>-models, therefore & 3. Implication 3= 2 is obvi-
ous. The inverse implication follows by a routine inductamnthe structure of formulas.
O

Letus seHT* := HT?+{——p— p}. From the last proposition it follows that the num-
ber of possible situations of a formula in a tothl >-model is reduced to the following
three,00 :=0, 11 := {h',t'}, 22:={h,h' t,t'}, where each set shows the worlds at
which the formula is satisfied. Thus, the loddd * can be characterised by the three-
element algebrae"T" := ({00,11,22},V,A,—, =) with the only distinguished ele-
ment22 and operations determined as the restrictions of the régpeperation of the
algebraczHT?. It is routine to check that the s¢00, 11,22} is closed undersHT*-
operations.

At the same timeH T* differs from Przymusinski's logi€rz; [30] as well as from
N3 [34, 25], classical explosive logic with strong negatiol. these logics are three-
valued and the operationsandA determine the structure of a linearly ordered lattice
on the set of truth-values. If we denote the least truthevauall these logics byo,
the greatest bg2, and the intermediate i1, we see that all the logics have the same
connectives-, V, A, but different implications (see Fig 2). Comparidd * andN3z we
note the following

Proposition 2. HT* & N3, ~(p— q) < (pA—q) € N3\ HT*.

For the comparison dfiT* andPrz;, recall that the language &fz; contains also the
necessity operatdr(l22 = 22, Ix = 00 otherwise) and—p,, can be defined via, Vv,
A andl: ¢ —prz Y= (P VIP)A (DI VI-g).

At the same timel,¢ can be defined INT* as—(¢ —nT1+ —@).



—n7-|00 11 22 —N,[00 11 22 —prz;|00 11 22

00 |22 2222 00 |22 22 22 00 |22 2222
11 |00 22 22 11 |22 22 22 11 |00 22 22
22 |00 11 22 22 |00 11 22 22 |00 00 22

Fig. 2. Truth tables for implication.

Proposition 3. The logic Prz is definable in HT. a

A simple axiomatisation afi T* modulo the basic logibdl* is given by the following
Proposition 4. HT* =N*+{pVv(p—q)V —0q, p< ——p, pA-p—qV —q}.

In fact, the proof of this statement is a simplified versionhaf completeness proof for
HT?2 in [6]. Thus, we obtairHT* by extending the intuitionistic fragment t6T and
adding the elimination of double negation and the KleeneraxiDespite the fact that
HT* andHT have the same intuitionistic fragment, they have differeegations and
HT* % HT. We can obtaitH T from HT? in the following way.

Proposition 5. The addition to HF of axiom(l) = =¢ A ¢ — L, is equivalent to the
condition T="T'.

Proposition 6. The addition to H? of De Jongh and Hendrik’s axiom (used to obtain
HT from intuitionistic logic)(dJH)= ¢ V(¢ — )V —¢ is equivalent to the condition:
T,H e {H,T'}.

The last two statements can be checked directly, and theamexfollows from
them.

Proposition 7 (reductiontoHT). HT = HT2U (1) U (dJH)

5 Some Properties of Partial Equilibrium Inference

Since the early days of research on nonmonotonic logicsciatbe commonplace to
study and compare logical systems with respect to genendlittons on inference that
they satisfy. The aim was not only to classify systems witlmanotonicity but also to
select properties considered to be especially interestirdesirable. These properties
were catalogued in works such as [21, 17] which establishealyrof the standard con-
ditions on inference that have been studied thereafteraf@uthoritative account see
[22].

Likewise it became a matter of routine to compare differgaraaches to the se-
mantics of logic programs according to the abstract prigsesatisfied by their associ-
ated inference relations, see eg [9, 10] for the case of ngrrograms.

We consider some of the propertiegofis a nonmonotonic inference relation. Gen-
erally speaking the behaviour of PEL entailment is fairlyitar to that of equilibrium



logic or stable model inference; howeverfails some properties preserved by stable
inference. Consider the following properties of inference

pel="rr¢ reflexivity
Viel,Mrg, Nu{g:ielirdg =T cut
Mo, Ny=nNudpy cautious monotony
NnNuepra,Muypa=nu(@vy)ra disj.inantecedent
nuepra,Mu-¢pra=rnNr~a truth by cases
nuepy=rnNpkro¢—y conditionalisation
My, MUY =MNpk—¢ rationality
Ny, MU p—yY=MNpk~-¢ weak rationality
Mo —Y,MNe—Y=MN—¢ modus tollens

Proposition 8. Partial equilibrium inference fails cautious monotonyttn by cases,
conditionalisation, rationality and weak rationality.

Proof. The following variation of an example in [29] provides a cterexample to
cautious monotony. Let be the disjunctive program:

-c — workV sleepvtired, —cA —tired — work, —cA —sleep— tired,
—-CA—-work— sleep avb, a—c

Program/T has just one partial equilibrium modgla, c},{a,c}), and so entails bota
andc. However, progranil U{c} has an additional partial equilibrium modéb, c}, {b,c})
and saa is not entailed any more.

The second property, truth by cases, is not a valid princpdenstructive reasoning
and fails already in the underlying monotonic lo¢id@ 2. To see this, lefl be empty
and seth = (¢ V 9).

Now consider the prograifi:

gvd,~f - f f -g—avbvc,-b—a-c—b-a—c

I has two p-equilibrium models#; = ({d},{a,b,c, f,d}) and.#> = ({g},{a,b,
¢, f,g}). Evidently .#; [~ f — g. However,[T U {f} has the unique p-equilibrium
model: ({f,g},{a,b,c, f,g}) in which g is true; falsifying the property of condition-
alisation. O

For the first condition we do however have two special cagess, fi

Proposition 9 (cautious monotony for negated formulas)For any theoryl, if I |~
-¢ thenl" andl" U{—¢} have the same partial equilibrium models.

Secondly, sincé- agrees with well-founded inference on normal programs,nafie
has this special form cautious monotony holds.

Proposition 10. Partial equilibrium inference satisfies reflexivity, cutsjdnction in
the antecedent and modus tollens.

To see this we use a lemma easily derivable by a simple inspemt semantic defini-
tions for PEL.:



Lemma 1. (i) Forany HT?> model# and formulasp, s, # = ¢V = .# = ¢ or .4 =
Y. (i) Let .# be a partial equilibrium model of1 such that# = ¢. Then.# is an
partial equilibrium model of TU {¢}.

Proof (Proposition 9).Clearly, by Lemma 1 any partial equilibrium model bfin
which—¢ holds is also a partial equilibrium model 6fU{—¢}. So it remains to show
the converse. Let# = ((T,T'),(T,T’)) be a partial equilibrium model of U{—¢}.
As . is also a model fof", it remains to prove itsd-minimality. Assume there exists
some strictly<-lower model.#’ = ((H,H’),(T,T')}). As .# = —¢ is equivalent to
AU ¢, we actually have thatz’ t' |~ ¢ too, and sa#’ = —¢. But then.Z’ is
a model for” U{—¢} which contradicts the minimality of# as a partial equilibrium
model of that program. a

Proof (Proposition 10)Reflexivity is straightforward. For cut, apply Lemma 1. For
disjunction in the antecedent observe that every partialibgum model of [T U (¢ v
) is a total model of T in which eitherg holds ory holds. By Lemma 1 (i) it follows
that in the former case it must be a p-equilibrium modeiiafl ¢ and in the latter case
itis a p-equilibrium model of T U (. In each case by assumptiaris true in the model.
Assume the hypotheses of modus tollens. Then for any pibguih model# and
worldt’, .t £ @, while for all worldsu, .#,u = ¢ = .# ,ul= . HenceZ ,t' |~ ¢
and so# = 9. O

6 Syntactic transformation rules for disjunctive programs

Following Brass and Dix [1-4], there has been consideralseudsion of syntactic
transformation rules that preserve the semantics of progir&or example, while the
disjunctive semantics D-WFS of [1, 2] is well-known to pregethe rule of unfolding
or the General Principle of Partial Evaluation (GPPE forrsheee below), p-stable
semantics does not (see Example 6.3 in [33] for a countengbegnMore recently [23,
11] have studied for (2-valued) stable semantics the diffee between transformation
rules that lead to equivalent programs and those that lestddiogly equivalent (or even
uniform equivalent) programs. With the helpléT2 and PEL, this distinction can also
be made for p-stable (p-equilibrium) semantics over disjue programs, or for WFS
over normal programs as a special case. We consider heriguhtan with respect to
the principal rules considered in [11]. In Table 2, equinake and strong equivalence
are denoted as before by by =s. The rules themselves are summarised in Table 1. In
addition to the rules normally studied for p-stable, we @dasalso the weaker form
of unfolding, WGPPE, discussed in [11] and the rule S-IMP @iy and Zhou [36]
whose meaning is explained below. We first give an examplétovghat although
p-stable does not obey the GPPE rule, it is not actually wethlke D-WFS.

Example 1 (from [36])Consider the prograrfi comprising two rules-p — bV and
p V1. Neitherb nor—b can be derived fromil under D-WFS and the STATIC semantics.
The p-equilibrium models arl },{l}) and{{p},{p}) and solT |~ —b.

In fact, D-WFS just allows one to derive the minimal pure wligjtionl v p, whereas
p-equilibrium models further deriveb. So, in this example, PEL istrictly stronger



Table 1. Syntactic transformation rules from [11].

| Name | Condition | Transformation ]
TAUT _ |HA()NB*(r) £0 P=P\{r}

RED" |aeB(r1), Ara € P: ac Hd(rp) P =P\ {riju{r}t
RED™ Hd(rz) CB(r1),B(r2) =0 P = P\{r1}
NONMIN | Hd(r2) € Hd(r1), B(rz) € B(r1) P = P\{I’l}

GPPE |acB™(r1),Ga#0, for Ga={r, e P|ac Hd(rp)}| P =P\ {r }UG,}
WGPPE | Same condition as for GPPE P =PUGLH
CONTRA| B*(r)nB~(r) £0 P =P\ {r}

S-IMP i’ eP,r<r’ P =P\ {r'}

Tr :Hd(ry) — Bt (r{)unot(B~(r)\{a}).
¥ G, ={Hd(r)) U(Hd(r2) \{a}) < (B*(r1)\{a})unotB (ry)UB(rz) | r> € Ga}.

than D-WFS. On the other hand, unsoundness of GPPE in PEleads to examples
where PEL is strictly weaker than D-WFS. For instance, gitenprograntl; = {aV
b,~a — a,aAb — c}, in D-WFS we can apply GPPE for atomand then TAUT to
obtainl1, = {aVvb,—~a— a} and derive-c. However,[1; has two p-equilibrium models
corresponding t¢{a}, {a}) and({b}, {a,b,c}), and since the latter leavesindefined,
—c cannot be derivedlo sum up:

Proposition 11. D-WFS and PEL are not comparable (even when restricted te pur
disjunctions).

Proposition 12. The transformation WGPPE preserves strong equivalengén fact:
{(pAA—B), (C—pvD)} H AvC—BVD.

Proof. First, it is easy to see that transformations TAUT and NONNMINserve strong
equivalence=s, by simple inspection oHT? semantics. Then, on the one hand, by
NONMIN applied onC — pV D we obtainAAC — pV D. SinceAAC — AV D by
TAUT we can mix both intdAAC — (pV D) A (AV D) — see property (ix) in Section 7.
By (iii) in that section, this is equivalent i@ : AAC — pA AV D. On the other hand,
applying NONMIN onpAA — Bwe obtainpAA— BVvD. AsD — BV D follows from
TAUT, we can combine both intB : pAAV D — BV D (see (x) in Section 7). Finally,
the result follows from transitivity of> applied toa andp. a

We turn now to the rule S-IMP, due to [36] and discussed in.[AE]in the case
of NONMIN this is a kind of subsumption transformation aliog one to eliminate
a rule that is less specific than another rule belonging tg@tbhgram. By definitionr
stands in the S-IMP relation t6, in symbols <ir’, iff there exists a sed C B~ (r’) such
that (i) Hd(r) C HA(r") UA; (ii) B=(r) C B~ (r')\A; (iii) BT (r) C B*(r’). For stable or
equilibrium inference S-IMP is a valid rule, even presegvetrong equivalence [11].
This is not so for PEL. Another rule, CONTRA, valid for staliéerence, also fails in
PEL.

Proposition 13. The rules S-IMP and CONTRA are not sound for p-stable (phbgiuim)
inference.



Table 2. Syntactic transformations preserving equivalence

[Eq][TAUT[RED' [RED” [NONMIN|GPPEWGPPECONTRA[S-IMP)
=1 yes| yes | yes yes no | yes no no

=s|| Yes no yes yes no yes no no

Proof. The proof is by counterexample: IBt be the program
ri:a—bve, rp;:aA—-c—brzg:-a—ar:-a—c

And let 11" be 1\ {r2}. We claim:1’" is an S-IMP reduction of1. Evidentlyri <ir

and sar; is removed fronf1. The only other candidates to be in theelation arez, r4

where{a} is the subset d~ (r3) orB~(r4), but they fail the second requirement foq

r’ thatB=(r) is a subset oB~(r’) \ {a}. There are no other possibilities to obtain an S-

IMP reduction. Itis straightforward to check th@thas the unique p-equilibrium model

{{},{a,b,c}) while I’ has the unique p-equilibrium modg]},{a,b}). Sincell and

1" have different p-equilibrium models, S-IMP reduction is asound transformation.
O

7 Nested logic programs

The termnested logic programefers to the possibility of nesting default negation, con-
junction and disjunction, both in the heads and bodies optbgram rules. At least as
far as rule bodies are concerned, this feature is, in faée gommon in most Prolog
interpreters, including XSB which relies on well-foundedrantics. In this way, for in-
stance, a possible XSB piece of code could lookdike- \+ (b; c, \+ (d, \+ e))

or using logical notation:

—(bvcA-(dA-e)) — a 3)

The semantics for nested expressions under stable modsl§rstadescribed in [20].

In that paper, it was also shown that nested expressionsotaallgt be unfolded until

a non-nested program (allowing negation and disjunctiothénhead) is obtained by
applying the followingH T-valid equivalences:

(i) FAG— GAF andF VG« GVF.
(i) FAG)IAH—=FA(GAH) and (FVG)VH < FV(GVH).
(i) FA(GVH) — (FAG)V(FAH) and FV(GAH) < (FVG)A(FVH).
(iv) =(FVG)+ —F A=G and =(F AG) « —F v -G.
(Vi) FAT—FandFVT < T.
(vi) FAL« LandFVv 1 < F.
(vii) =T « Land—1 < T.
(ix) (F—-GAH) < (F—=G)A(F —=H).



xX) (FVG—H)« (F—=H)A(G—H).
xi) (FA=-—-G—H)« (F—=HV-G).
(xii) (F—>GV—-—-H)< (FA-H —G).

Proposition 14. The formulas (i)-(x) are valid in HZ.

Proof. Validity of the equivalences (i), (ii),(iii),(vi),(vii) ad (viii) are straightforward,
sinceHT? satisfaction of conjunction, disjunction and truth conssas defined as in
classical logic. For the remaining proofs, let us i to refer to any worldv such
thatwRw.

(iv) This follows from the chain of equivalent conditioMd;w = ~(F VG) < M,w* [~
(FVG) & (M,w' £ F andM,w* }£G) & (M,w = —-F andM,w = -G) <
M,w = —F A =G. The proof for negated conjunctions is completely analsgou

(v) This is obtained by the equivalenbew |= ———F < M, ((w*)*)* = F and the fact
that((w*)*)* = w* (see diagram in Definition 2).

(ix) This similarly follows from the sequence:

M,w = F - GAH < YW. M,W [~ F or (M,w |=GandM,w = H)
< YW.(M,W £ F orM,w = G) and(M,w [~ F orM,w = H)
< MwE(F—-G)A(F—H).

(x) This follows from the equivalent conditions:
MwEFVG—H&VWW.MW [~ (FVG)orM,w =H
& YW. (M,W £ F andM,w £ G) orM,w = H
YW, (MW £F orM,w =H)and(M,w [~ GorM,w =H)
s MwE(F—=H)A(G—H). O

Transformations (xi) and (xii), however, are not valiHiT 2. As a result the occurrence
of double negation cannot be reduced in the general caseisfuactive logic program
format as shown by:

Proposition 15. The theory{ ——p — p} is not HT2-equivalent to any disjunctive logic
program/[T (even allowing negation in the head) for signattre}.

Proof. Let us try to build a progranil with the saméH T2 models ag——p — p}. To
constructa givenrulec I, we may have thgt may occur both positively or negatively
and both in the head or in the body. This leadste-216 possible rules. If we ignore the
rules that directly constitute an inconsistency or a taugglit is not difficult to see that
the remaining set of non-trivial rules amounts to the follogweight:{r1: (p— L), ra:
(mp— L), r3i(pA=p— L), ra:p, r5:(=p—p), r6: =P, r7: (P —p), rg:
(pV —p)}. Now, the models of-—p — p are exactlyM; = ((0,{p}), (0,{p})) and
Mz = (({p},{p}), ({pP},{pP})). It can be easily seen thht; is countermodel of rules
ri, ro, rs, rs andrg whereadvl, is countermodel ofg, andr;. So none of these rules can
be included in7 and the only remaining possibility I3 = {rs}. However, this program
has in fact more models apart fravly andM; — for instance{(0,0), ({p},{p})). O



One might object that this behaviour is peculiaH®? and not the expected one for a
well-founded semantics for nested expressions. Considerver, the following exam-
ple due to V. Lifschitz. Take the prograrmig = {—~—p — p} andl1, = {pV —p} which,
by (xi) areHT-equivalent. Intuitively, if we could not use double negatbr negation
in the head, we could replaeg by an auxiliary atonp and “define” this atom with a
rule like =p — P. As aresult/7; would becoméT; = {(=p— p),(—p— P)} whereas
I3 would be nowl15 = {(pVP),(—p — P)}. The normal progranil; is a typical ex-
ample wherg andp should become undefined in WFS. On the other handIfoone
would expect two complete models, one wittrue andp false, and the symmetric one.
If we remove the auxiliary atom, these two different behavsoagree, in fact, with the
results in PEL for1; and[Ts.

Although Proposition 15 shows that we cannot generallyigetfrdouble negation
without extending the signature, we show next that the auryihtom technique used in
the example is in fact general enough for dealing with doulelgation in rule bodies,
and so, thanks to transformations (i)-(x), provides a me:floo unfolding bodies with
nested expressions.

A disjunctive logic program with double negatitma set of rules of the form:

aA--AagA—by A A=bmA=—CL A Am—Cs — V-V Gk (4)

with m,n,s;t > 0. We extend the previously defined notation so that, givarderfike
(4) B~ (r) denotes the set of atonjs, ..., Cs} or, when understood as a formula, their
conjunction.

Proposition 16. Let [T be a disjunctive logic program with double negation for aph
bet V. We define the disjunctive progréhhconsisting of a rule

-c—C (5)

for each double-negated literal—c occurring inl1, wheret is a new atom, plus a rule

r’ for each rule re 1 where: B (r') :=B*(r), B~ (r'):=B (r)u{c|ceB ~(r)} and
Hd(r’) := Hd(r). ThenlT and 1’ are strongly equivalent modulo the original alphabet
At, thatis,[TUl and/M’ Ul have the same partial equilibrium models for any theory
I for alphabet At.

Lemma 2. For any pair of interpretations M< M and for any world w, we have
M/ w = ¢ iff M,w = —¢.

Lemma 3. Let M be a total model of p> —¢. Then, for any M<<M, we have: M |=
pe =g iff M == — p.

Proof. The left to right direction is trivial. For the right to lefirgction, assum#’ |=
p < —¢ butM’ = p— —¢. Then, for some worldy, we getM’, w = pandM’, w = —¢.
By Lemma 2 the latter implieSl, w = —¢, butasM = p < —¢, we concludéM, w - p.
However, asVl’ <M, M, w = p impliesM’,w }~ p reaching a contradiction. a

Proof (Proposition 16)By M|y we denote mode¥l modulo alphabe¥. AssumeMg
is a partial equilibrium model off UT" . Then, we can always buil by adding toVlg,



at each worldv, all the atom& for which Mg, w = —c. Clearly,M is still a total model,
whereas by constructioM = T« —c. As a result, it is easy to see thdt}= 1/, and
thus,M = M’ UT asr is restricted to alphab#t, for which Mg andM coincide. Now,
to see thaM is in equilibrium for 1’ U, assume we had a smaller modi#l < M.
Since for anyc € B~ (r), M’ =t «— —c whereaM =T < —c we apply Lemma 3 to
conclude thaM’ = T < —c too. From this fact and Lemma 2 we get thdt,w =T
iff M,w = ¢, for all w. Thus,M andM’ coincide in valuation of atomg, and soM’ |y
is strictly smaller tharM|y = My. Finally, asM’ |= T < —c formulast and —c are
interchangeable iv’, and soM’ =T UT, ie, M’|y = MUl which contradicts the
minimality of M.

Assume now that a giveNl is a partial equilibrium model of!” U . Now, note
that the only rule head for each auxiliary ataris the one from (5). By supportedness,
if M,w |= ¢ thenM,w = —c for all worldsw. This fact, together with |= (5) implies
M =T« —c, and so it is easy to see thdtl= 1 U T, ie M|y =M Ul . To show that
M|y is in equilibrium, assume we had some smalllgr= T U™ . Then we extendp
to M’ so thatM’,w = T if Mg, w = —c, for all worldsw. Now, we have the equivalence
chain:M,w =t < M,w = —-¢ < M|y,w = —c, which by Lemma 2 is equivalent to
Mo, w = —c and this is equivalent tM’, w |= T by construction oM’. In this way,M’
andM coincide in valuation of atomg and soMg <t M|y impliesM’ <t M. Finally, by
constructionM’ =« —c, and sV’ |= 1’ UT" contradicting the minimality of1. O

Example 2.Take the program consisting of rule (3). Applying transfations (i)-(x)
we get that it is strongly equivalent to the pair of rutesA —-¢c — aand—b A —-—d A
—e — awhich by Proposition 16 are strongly equivalent to

-d—d -bA-Cc—a -bA-dA—-e—a

modulo the original alphabet.

8 A Tableau Calculus for PEL

We describe a tableaux system 62 using the standard methods for finite-valued
logics [15, 25]. The formulas in the tableau nodes are labailith a set of truth-values,
namedsigns and these signs are propagated to the subformulas usirexpiaasion
rules The family of the signs depends on the logic in question ansl possible to
describe several tableaux systems for the same logiddFdrwe are going to use the
following family of signs

{00}, {01}, {11},{02}, {22}, {01,11},[< 01], [< 11],[< 12],[> 01],[> 02, [> 12,

where[>v] = {we 6 |w> v}, and[< V] = {w e 6| w < v}. Each expansion rule is
obtained by inspection of the truth tables. For examplerukee

>015:9 — ¢

{22}:¢|[>01: ¢

in Figure 3 means that to evaluate the formg@ila> @ in {v| v > 01}, it is necessary
either to assign 22 t¢ or to assign a value greater than 0ljto



(2229 — ¢ {00}:9 — ¢ [<01:¢ — ¢
(<01: ¢ |[<12): ¢ |{11}: ¢ | {02}: (>01:¢ (>01:9|[>12:¢
(>01: | [>12: (P |{11}: (P|{02}: (P {00} {o0}: |[<01: ¢
[<12:¢ — ¢

{00}: @ |{22: ¢

>01:¢ — ¢

>01: | {10}: ¢ |{11): | {02:¢ |(>12:0|(>12:0| {22):¢
{221:|[z00:
{00}: (| [<01): | {02): | {01.11): | [<1): | {02: | [<12:

[>12:¢ — ¢ {19 — ¢ {02 — ¢
(<0L:¢|{11}: ¢ |{02:¢  {02p:¢ [[202:¢  {11}:¢|{11}:¢|[>12:¢
oL {11 p|{02: ¢y {oriip:y|{11p:¢  {oL}:y\{02: {02
oLk — ¢ {op— ¢ <1 — @ >02:¢ — @
(>02:¢ (>12:¢ (>01: ¢ |[>02): ¢ {22}:9|[>02: Y |{0111}: ¢
{o11}:¢p {o:y (oo} |[<11: ¢ {or11}:¢p
{01}:~¢ {02: ¢ {223:-¢ (>12: ¢ (>02:~¢ {00}: ¢
1 1 {00}: ¢ {o0}: ¢ {o0}: ¢ (>02:¢

[<01:—¢ [<11:—¢ [<12: ¢ [>01:—¢ {11}: ¢ {0111}: ¢

{00}: p|>12:¢)

[>02: ¢ [>01: ¢ [>01: ¢ [<11:¢ {01,11}: ¢ {01,11}: ¢

VgAY
[<V:pAY I

Forve {00,11,12}: ; forve {01,02 12 22}: :
{ } (V| [<v: { : [[iv]] Z’
>v:

{013:9 A gAY {02):9 A
(>01: ¢ | {(11):¢ | {02:¢ (11:¢| (12: ¢ |[>12:¢ {02): ¢ {[>02: ¢
0P|y (R [202:|{02: P

o111 A Y (<0 AP
{0111):¢| [>01: ¢ [<01: ¢ |[<01: | {12}: ¢
[>01: |{0L11): {02):

[<v:p VY
I vV

Forve {00,01,11,12}: [<v:¢ ; forve {0102 22}:
vy (>v:@|[(>v: @
<Vl

{019 VY {119 VY {029 VY
(<01:¢ | {01}:9 [<11:¢| {11}:¢ (<01:¢ | {02}: |{02}:9
{o1}: ¢ |[<01: ¢ (11 |[<19: ¢ {02}: 4 |[<01: (| {02}:

{or1:9 vV >12:9 VY
{0111}:| [<11: ¢ (>12:¢|[>12: P |{11}: ¢
(<114 ({or11y:y {023y

{01}:¢
[>01: ¢

{02:¢
(11

{02):¢
(1P

Fig. 3. Expansion rules foHT?




(2229 — ¢ <19 — ¢ {00:¢ — Y
(0016 [ 22y 0119 *'% ~ e[ e
: : <11: >11]: : >11:
{00}: ¢ |[>11:
(>11: ¢ {221y |[<21: ¢ {o0}:
[>11:—¢ [<11:—¢ {00}: ¢ {22): ¢
[<11:¢ >11:¢ {221:¢ {o0}y: ¢
Forv e {00,11,22}:
VPAY  [<pVY
[P AY v d oy v VY
>V|: <v|:
(<V: @ |[<v: @ - - 2] |[=v: ¢
[>v: <V

Fig. 4. Expansion rules for total models BfT2, ie. for HT*

The usual notions oflosedandterminatedtableaux in conjunction with a specific
initial tableauallow us to treat different problems such as satisfiabiiidity, equiv-
alence, partial equilibrium property, etc. In the follogidefinition we introduce the
concept ottlosed tableain order to characterise validity A T2.

Definition 6. Let¢ be a formulain HE:

1. Theinitial tableauto check the validity of is: To = [<12:¢

2. If T is a tableau and Tis the tree obtained from T by applying one of the expansion
rules in Figure 3, then Tis a tableau forg.

3. Abranch B in atableau T is calledosedif one of the following conditions hold:
(i) it contains the constant ; (ii) it contains signed literalss;: p,. . . s: p, such that
NiL,S = @. Atableau T is callectlosedif every branch is closed.

Intuitively, with the initial tableau<12:¢ we ask if it is possible to find an assignment
that evaluate® in [< 12], in other words a countermodel. The expansion rules prop-
agate this question through the subformulas to the atoneselly non-atomic formula
has been expanded but we have a non-closed branch, then wertgtruct a counter-
model of the initial formula assigning a value to every valgachosen from its sign in
the branch. This sketches the proof of the following result.

Theorem 6 (Soundness and completeness of the tableaux sys}eThe formula¢
is valid in HT? if and only if there exists a closed tableau for it.

8.1 Partial equilibrium models

Tableaux systems can also be used to study additional giegand relations [25, 27].
In this section we define a system based on auxiliary tabl@aaxder to generate the
partial equilibrium models of a theory. We proceed in two s#m First, we generate
the total models of a theory by means of a tableau system iohmie search for a



terminated tableauThen, for every total model, an auxiliary tableau is cansid to
check whether the model in question is in partial equilibriu

The total assignments evaluate formulag@®,11,22} and thus we only need to
work with the following system of signg< 11] = {00,11}, [< 00] = {00}, [> 11] =
{11,22}, [> 11) = {22}.

Definition 7. LetlT = {¢1,...,¢n} be a theoryin HF:

1. Theinitial tableauto generate total models is a single branch tree containieg t
following signed formulas;22}: ¢1,. . . {22}: @n.

2. If T is a tableau and Tis the tree obtained from T by applying one of the expansion
rules in Figure 4, then Tis tableau for¢. As usual in tableaux systems for propo-
sitional logics, if a formula can be used to expand the tablehen the tableau
is expanded in every branch below the formula using the spoading rule, the
formula is marked and it is no longer used.

3. A branch in a tableau T is calledlosedif the signed literalsfor a variable p,
Si:p,. .. swp, verifyn ;§ = @. Itis call openotherwise.

4. AbranchinatableauT is calldthishedif it doesn’t contain non-marked formulas.

5. Atableau T is calledlosedif every branch is closed, and it terminatedf every
branch is either closed or finished.

In this case the tableau begins with formulas signed withs&ze we are looking for
models. The expansion rules guarantee the constructiohpdssible models in such
a way that when all formulas have been expanded (markedjhalmodels can be
determined on the basis of open branches.

Theorem 7. Let T be a non-closed terminated tableaufbrand{s;: p1,...,S: pn} the
set of signed literals in an open branch. Then every assighmeerifying (p;) € S,
for all i, is a total model ofp. Moreover, all the total models d¢i are generated from
T in this way.

Example 3.(Taken from [7]) Figure 5 shows the tableau for the theBry= {-p —
gVr,pVvr}. The tableau is finished and allows us to construct the setaifinodels of
T also shown in the Figure.

Auxiliary tableau to check the partial equilibrium propert y A total modelis in par-
tial equilibrium if there is no other strictly smaller modslthe theory, under the partial
ordering<. In terms of the many-valued semantics, this ordering isddfbetween as-
signments based on the following relations between trathes: 0ki11, 02<112<22.
So, a procedure to generate partial equilibrium models écklevery total model in
order to determine if there exists a model less than it. Tohdd, tve are going to use
another tableau system using the expansion rules in Figbtd & different notion of
closed tableau over an specific initial tableau.

Definition 8. Let¢ be a formulain HZ and V a total model op.

1. Theinitial tableauto check the partial equilibrium property of V f@ris a single
branch tree containing the following signed formulasz}: ¢, {oo}:p for every p
such that \(p) = 00, {o1,11}: p for every p such thatp) = 11, and{02,12,22}: p for
every p such that {p) = 22.



{22):(-p—qvr)O
|
{22}:(pvr)O
-

{o0y: (=p) U {22:(qvr)0 {0011}: (—p) 0

{22:p {221:p {22::p {1122} (qlv ro
{22:p  {22nr {22:q {221 {22:Q  {22hT  {22:p {221t
{1122):p {11,22}: p

{1122:Q  {1122:r  {1122}:q {1122}

V1 |V2|V3|Va| V5 V6| V7 V8| Vo [Vio|V11|V12|V13|V14[Vi5
22|22|22|22|22|22|22|22/22/11|11{11|00| 00|00
22|122|122|11]11/11/00{00{00| 22| 11| 00| 22| 11|00
22/111)00/22/11/00({22{11{00] 22| 22| 22| 22| 22| 22

=]

Qo

=

Fig. 5. Main tableau for example 3 and the resulting total models.

2. If T is a tableau and Tis the tree obtained from T applying one of the expansion
rules in Figure 3, then Tis ¢.

3. A branch B in a tableau T is called-®losedif one of the following conditions
holds: (i) it contains the constant; (ii) it contains signed literalss;: p,...,S:p,
such than! ;S = &; (iii) all the formulas in the branch have been expanded and,
for every variable p, it contains signed literals; p,...,s:p, such than! ;S =
{V(p)}-

4. Atableau T is called \tlosedif every branch is V -closed.

Adding literals of the form{o111}:p, {02,1222}: p or {oo}: p, depending oV (p), to the
initial tableau, forces the tableau to generate only madslsthary/. Nevertheless, we
know that one model will always be found,itself, and therefore we must include one
more conditions on closure: a branch closes if it generatbstbe modeV.

Theorem 8. LetV be a total model ap. V is a partial equilibrium model of7 if and
only if there exists a V-closed tableau fpr

In Figure 6 we show that, for the previous example, the mdgliel a partial equilibrium
model; observe that the leftmost branch closes becdusé¢he only model generated,
while all other branches close due to inconsistencies ey the three signed lit-
erals added to the initial tableau. In the second tablecheiisame figure we check that
the modeN;, is not a partial equilibrium model.

We have chosen this presentation of the auxiliary tableatesys for the sake of
simplicity, but sacrificing efficiency. Following the tedques of [25, 26] we can im-
prove the methods of this section to obtain more efficieniesys.
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Fig. 6. Auxiliary tableaux for two total models of example 3




9 Translating partiality by atoms replication

A promising approach to implementing p-stable models fsjutlictive programs has
been developed by Janhunehal [16]. They provide a method to capture p-stable
models by (2-valued) stable models using a linear-timesfamation of the program.
We show here that their transformation can be extended tambpropositional theo-
ries in such a way that PEL can be reduced to ordinary equifibfogic. Furthermore
the method provides an encoding of the underlying logic$] Bf into HT.

The translation of a theorly, denotedTr(I" ), consists of a formulp — p’ where
p’ is a new atom per each atoproccurring inl” plus, for eacho € I, the formulaja|
recursively defined as follows:

(¢ — @] = ([¢] = [W]) Alp — y] [0 — ) = [9] — [y
[-9] == ~[¢] -] == [¢]
oy = [d]D[Y] oyl =[o] @y
[p] :==p ' :=p
€] =€ ] :=¢

whered € {A,V} ande € {T,L}.

Example 4.The translatiop = —(a — —b) — c consists of the formulas— &', b —
b/, c—c and—(a — —b) —c) A (=((a— —b) A (& — b)) — .

It is quite easy to see that for any disjunctive ruléke (2), its translatior{r] has the
form(aiA... AamA—DyA...A=BL = C VLV E)A

(@ A...NapA—by AL A=by — ¢ V...V q) so thatTr(/T) amounts to Janhunen et
al’s transformation [16] whefl is a disjunctive logic program.

We prove next that the present generalisation of the Jamhetred transformation
works not only for converting PEL into equilibrium logic, tig actually correct at the
monotonic level, ie it allows us to encod&T? into HT. Let us first extend thé]’
notation to any set of aton®so thatlS’ := {p’ | p< S}.

Proposition 17. An HT? interpretation.#; = ((H,H’), (T, T’)) is an HT? model of"
iff .4r=(HU[H'),TU[T)) isan HT model of T(T").

Proof. As .# is anHT? interpretationH C H’ andT C T’ by construction, and thus
Mo = p' — pfor any p in the signature of . Analogously, if we take anfT inter-
pretation.#> for the extended signature satisfying rufes-> p/, then.#; is a correctly
constructedd T interpretation. So, it just remains to show tha = ¢ iff .45 = [¢],
forany¢ < I". In fact, we will show that, for any € {h,t}, both:

() #1Wi= ¢ iff Aowi=[¢] and  (i).2aW ¢ iff 25w (o]
We proceed by structural induction.

1. ForL,T itis trivial. For an atorp in the original alphabet/;,hEp< peH <
pcHU[H'| < .#,h}= pand the same holds when replacimyH by t/T. To
prove (i) we have.Z1,W =p < peH < pe[H] & pPeHUH] <
#>,h = p' and the same when replacihgH byt/T.



2. Forg Ay and¢ Vv : direct application of the induction hypothesis ¢np.

3. For—¢, to prove (i) we havg—¢] = =[9]. Then, #,w |= =[] < >,
[¢] < (by induction (ii)).#1,t' - ¢ < .#1,w = —=¢. The proof for (ii) is similar:
Mo,W == [Q) & Mot (@] < (by induction (i).#1,t [ ¢ < A1,W = —¢.

4. Finally, for¢ —  and condition (i).#2,h |= [¢ — Y] < A2.h = (9] — [Y]) A
6 — Y] & (2w (9] or oW [Y]) forwe {ht} and. 2, h = [p — y)
< (by induction (i) and (ii)).#1,w £ ¢ or .#1,wE= @) forwe {h,t} and.#1,h' =
¢ — Y& A,hi= ¢ — . For worldw =t it suffices to replace above all oc-
currences ofh and i respectively byt andt’. As for condition (ii), we have:
ME (9 — ] & aahE 9] — W] & (Maw i (9] or iz wi= [Y])
forwe {ht} < (A1,W £ ¢ or 41,W E ) forwe {hit} < 7,0 E¢d — .
Again, the proof fow =t is obtained by replacing byt andh’ byt’. O

Proposition 18. A total HT? interpretation ((T,T'),(T,T')) is a partial equilibrium
modelof I iff (TU[T'), TU[T]') is an equilibrium model of T ).

Proof. By Proposition 17 it suffices to prove that model minimisaiyield the same
effectin both cases. In fact, we show next that there existgeao one correspondence
between both model ordering relations:

<(H17 Hi)’ (T7T/)> ﬂ <(H27 Hé)a (TaT/)> = Hl g H2 andHi g Hé
& Hi CHpand[H{' C HY' < HiU[H{' CHUHy)
& (HiU[H)) , TUT)) < (Hau[HY) , TUlT]) O

10 A splitting theorem for PEL

The previous tableau calculus offers a general method fisfisdility testing inHT?
and PEL, given any arbitrary theory. When we restrict thetayio (some class of)
logic programs, we usually expect, however, that simplenmatation methods can be
applied. Consider for instance the case of disjunctiveclpgbgrams. As shown in [7],
PEL also coincides with p-stable models for this syntaddas& Maintaining the same
minimisation criterion, we may easily find that a disjunetiprogram vyields several
well-founded models (even no well-founded model at ally #re typical incremental
algorithm for computing WFS for normal programs is not apgile. However, it is
still possible to apply a form of incremental reasoning if ean divide or “split” the
program into blocks without cyclic dependences among tiesan example, consider
the simple progranfilp = { pV q} which yields two p-stable models (also well-founded),
makingp true andj false in one case, and vice versa. Now, assume we have thigeshla
program/1y = MpU{-r Ap—r,gA—p—s,—s— s}. It seems natural to use this second
set of formulas to compute atomsinds, oncep andq are still fixed by the rule irfTg.
This technique is called “splitting” and was first introddde [18] for the case of stable
models. We now establish a similar result for PEL in the mareayal syntactic case
where theories are sets of implications.

Given a paifT = (T,T’) and a set of atomld, we denoteT |y = (TNU,T'NU).
We apply a similar notation for theories too/¥fis some theory in languag¥V ), and
U CV, then we writelT|y to stand for set of formula8 N £(U). We respectively call
bottomandtop the subtheoriefl |y andM\ M|y .



Definition 9 (Splitting set). Given a set of implication§l on signature V, a subset
U CV is called asplitting setfor 1 if for all (¢ — ) € M\ |y, Y € £(V\U).

Theorem 9 (Splitting theorem).Let [T be a set of implications, U a splitting set for
M andT a pair (T, T') of sets of atoms T T'. ThenT k 1 iff both (i) T|y |y and
(i) T 1', where

n':= (M\My) U

U (Tnu) (6)
U{-p|pecU\T"} (7)
U{p—ulpe(T\T)nU} (8)

Proof. “=" (i). AssumeT k1 butT|y FEMu. As(T,T) = 11, in particular,(T,T) =
M|y, but then, clearlT|y,T|y) E M|u. Thus, there must exist sonte= (H,H’),

H < T|y such thatH,T|u) = M|u. Sincell|y exclusively refers to atoms id, this
means that any interpretation extendidgH’, T N"U andT’NU with atoms not irJ
will still be a model of that program. In particular, it is ga® see that fofH,, T)
with Hy = (HU (T\U),H' U (T"\U)): (1) it is a well constructed interpretation; (2) it
satisfied1|y; (3) itis strictly lower thanT, T); and (4) for any worldvand any formula
aeLV\U) (T, T),wkE=aiff (Hy,T),wEa.AsT k11, (2) and (3) mean there must
exist some implicatiorp — ¢ € MM\IM|y such that(Hz, T) = ¢ — . This means
(H2,T),w = ¢ and (H, T),w (= ¢ for some worldw, but as(T,T) &= ¢ — ¢ this
reduces the possibilities toe {h,h'}. Assumew = h; then(H,, T),h = ¢ implying, by
the hereditary property, théitl», T),t = ¢ which implies(T,T),h = ¢. This, together
with (T, T) = ¢ — @ entails(T, T),h = ¢, but asy does not refer to atoms th, by (4)
we obtain{H,, T),h = ¢ reaching a contradiction. The proof far= h' is completely
analogous, replacing the abdvandt by their primed versions.

“=" (ii). Trivially (T,T) |=11'. Assume(H,T) = " with H < T. Itis easy to see that
' fixes the interpretation of atoms , and soH|y = T|y which implies(H,T) =
|y. On the other hand, a#i,T) is model of1’, we also havéH,T) = M\ M|y, so
that we getH, T) = I contradictingT k I1.

“«<". From (i) and (ii) it is clear thatT,T) |= 1. Assume(H,T) =T with H < T.
As M|y only refers to atoms i), (H|u, T|u) E MM|u, but this, together with (i), leaves
H|u = T|u as the only possibility. Now, a8, T) = (6) U (7) U (8) and these formulas
exclusively refer to signatukg, we obtain(H, T) = (6)U(7)U(8). Finally, as(H,T) |=
I we also havéH, T) = M\ M|y and so(H,T) |= M’ contradictingT = I1'. 0

The previous theorem is completed with the following resiét 7[¢ /p| denote the
replacement in theor§l of any occurrence of atomp by the formulag.

Theorem 10 (Replacement theorem)or any theoryl1 and any model#:
() «#=nu{pt iff.#ZE=0[T/plu{p}

(i) 2 =nu{-pt iff.#En0[L/plu{-p}

(i) # ENU{p—u}iff # EMNu/plU{p— u}

Proof. For (i) the satisfaction gp ath means thap will hold at any world and so it can
be replaced by. For (ii), the satisfaction of:p ath meansp will be false att’ and so



false at any world, so it can be replaced byFinally, it is easy to see tha#Z = p < u
iff pis true at,t’ but false ah,t, which coincides with the valuation of ad

Returning to the example prografhy, U = {p,q} is a splitting set dividingT; into
the bottom[Ty and the toplli\IMo. As we saw,lTp has two p-equilibrium models:
T1=({p},{p}) andT2 = ({g},{q}). Now, fixing T1, we consider the theor§l’ =
M\ Mou {p}uU{—qg} which, by the replacement theorem, is equivalenfto A T —
r,LA—=T —s,-s— s, p,—q}. After some trivial simplifications, this amountsfer —
r,—s— s, p,~q} whose unique p-equilibrium model is definedBy= ({p},{p,r,s}).
Following similar steps, when fixing» we finally get the progranfs,—s — s,q,—p}
with the only p-equilibrium modeT 4, = ({q,s},{q,s}).

11 Concluding remarks

We have seen that partial equilibrium logic (PEL) providémadation for and general-
isation of the p-stable semantics of logic programs. We diangue that it is therefore
also a suitable framework for studying and extending thd-feeinded semantics of
programs. In this paper we have focused on logical promofieEL and its underlying
logicsHT? andHT* as well as on various methods of computing partial equiliori
models. In this direction we have examined some generalodstisuch as tableaux
calculi and reduction techniques, that apply to arbitrapppsitions, as well as specific
techniques, including splitting, that apply to logic pragrs. Further optimisation of
these computational methods is a topic for future work.

Since WFS is already successfully implemented and appiigdactice, we do not
envisage our work as having an immediate impact on matutersgof logic program-
ming that already use WFS or p-stable models. Our motivasisather to provide an
appropriate instrument for extending the basic syntax giclprograms and to under-
stand better the logical foundations of the p-stable amtrdsdevertheless, these logical
foundations may also have an indirectinfluence on programgmith WFS, even where
the language of normal programs is concerned. A possiblepbeais provided by the
topic of strong equivalence, discussed briefly in Sectiolm 2nswer set programming
the study of strong equivalence and related concepts isibotihg to efforts devoted to
program optimisation and simplification. No analogous teghe seems to have been
available so far in the case of programming with WFS and iteawés. This avenue is
one that we think worth exploring in the future.

Another area of ongoing research concerns the addition e€ansl, strong or ex-
plicit negation to the syntax dfi T2. Several approaches were recently explored in a
preliminary work [8], where relations to the semantics WS#?{28] and other vari-
ants of well-founded semantics with a second negation ¢qensere investigated.
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