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Abstract. Partial equilibrium logic (PEL) is a new nonmonotonic reasoning for-
malism closely aligned with logic programming under well-founded and partial
stable model semantics. In particular it provides a logicalfoundation for these se-
mantics as well as an extension of the basic syntax of logic programs. In this paper
we describe PEL, study some of its logical properties and examine its behaviour
on disjunctive and nested logic programs. In addition we consider computational
features of PEL and study different approaches to its computation.
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1 Introduction

Of the various proposals for dealing with default negation in logic programming the
well-founded semantics(WFS) of Van Gelder, Ross and Schlipf [35] has proved to be
one of the most attractive and resilient. Particularly its favourable computational prop-
erties have made it popular among system developers and the well-known implemen-
tation XSB-Prolog5 is now extensively used in AI problem solving and applications in
knowledge representation and reasoning.

Closely related to WFS is the semantics ofpartial stable modelsdue to Przymusin-
ski [29]. Partial stable (henceforth p-stable) models provide a natural generalisation of
stable models to a multi-valued setting and on normal logic programs capture the well-
founded model as a special (minimal model) case. Although the newly developing area
of answer set programming(ASP) has focused mainly on (2-valued) stable models,
there has also been a steady stream of interest in the characterisation and computation
of p-stable models, eg [32, 33, 12, 13, 16].

Recently [6] proposed a solution to the following long-standing problem in the foun-
dations of WFS:
⋆ Partially supported by MEC projects TIC-2003-9001-C02 andTIN2006-15455-CO3
5 Seehttp://www.cs.sunysb.edu/~sbprolog/xsb-page.html



– Which (non-modal) logic can be considered adequate for WFS in the sense that
its minimal models (appropriately defined) coincide with the p-stable models of a
logic program?

This problem is tackled in [6] in a similar spirit to the way inwhich the so-called logic
of here-and-there, HT, has been used to capture ordinary stable models and led to the
development of a general nonmonotonic formalism calledequilibrium logic[24]. While
2-valued stable models can be characterised using the 3-valued Kripke frames ofHT,
for p-stable models one requires a more complex notion of frame of a kind studied by
Routley [31]. These are generalisations ofHT frames, referred to asHT2 frames, and
characterised by a 6-valued logic. To capture p-stable models in this setting a suitable
notion of minimal, totalHT2 model is defined, which we callpartial equilibrium (p-
equilibrium) model. These models were shown to coincide with p-stable models for
normal logic programs in [6] and for disjunctive logic programs in [7]. In addition [6]
axiomatises the logic ofHT2-models and proves thatHT2 captures the strong equiv-
alence of theories. The resulting logic of p-equilibrium models is calledpartial equi-
librium logic (PEL) and was proposed as a logical foundation for WFS and p-stable
semantics. It can be also seen as yielding a natural means to extend WFS and p-stable
semantics beyond the syntax of normal and disjunctive programs, eg to so-called nested
logic programs or to arbitrary propositional theories.

In this paper we examine a range of logical and computationalissues associated
with PEL and its underlying logics:HT2 and the logic of totalHT2 models, which we
denote byHT∗. The paper is organised into three main parts. In the first part, comprising
Sections 2, 3 and 4, we describe the logicHT2, introduce partial equilibrium models
and review their relation to partial stable models and the well-founded semantics for
logic programs. We also recall the strong equivalence theorem, we study the complex-
ity of the main reasoning tasks associated with PEL and we axiomatise the logicHT∗.
The second part comprises Sections 5, 6 and 7. Here we look at metalogical properties
of the entailment relation of PEL and examine transformation rules that preserve the
equivalence (ie sameness of p-equilibrium models) or strong equivalence of theories.
In a similar vein we apply properties of the underlying logic, HT2, to determine the
extent to which nested logic programs can be reduced to simpler programs. The third
part of the paper deals with strategies for computing p-equilibrium models and imple-
menting PEL. First, in Section 8, tableaux calculi are presented forHT2 and PEL; the
former is of interest in its own right as a tool for testing thestrong equivalence of the-
ories. Secondly, in Section 9 we extend the technique of Janhunenet al [16] that uses
program transformations to reduce the computation of p-stable models for disjunctive
programs to that of stable models; we show that this method can be extended to reduce
PEL to equilibrium logic. Lastly, in Section 10, we considerthe method ofsplitting a
logic program, a familiar technique for optimising computation under the stable model
semantics [18, 14]. We derive a splitting theorem for disjunctive and nested logic pro-
grams under PEL. Some further topics are discussed briefly byway of conclusion in
Section 11.



2 Logical preliminaries: the logicsHT2 and PEL

We introduce the logicHT2 and its semantics, given in terms ofHT2 frames, and we
definepartial equilibrium logic(PEL) in terms of minimalHT2 models. Formulas of
HT2 are built-up in the usual way using atoms from a given propositional signatureAt
and the standard logical constants:∧, ∨,→, ¬. We writeL(At) to stand for the set of
all well-formed formulae (ie the language) under signatureAt. A set ofHT2 formulae
is called atheory. The axiomatic system forHT2 is described in two stages. In the first
stage we include the following inference rules:

α, α → β
β

(Modus Ponens)
α→ β
¬β →¬α

plus the axiom schemata ofpositive logictogether with:

A1. ¬α ∧¬β →¬(α ∨β ), A2. ¬(α → α)→ β , A3. ¬(α ∧β )→¬α ∨¬β

Thus, both De Morgan laws are provable inHT2. Moreover, axiom A2 allows us
to define intuitionistic negation, ‘−’, in HT2 as:−α := α →¬(p0→ p0). In a second

stage, we further include the ruleα∨(β∧¬β )
α and the axiom schemata:

A4. −α ∨−−α
A5. −α ∨ (α → (β ∨ (β → (γ ∨−γ))))

A6.
∧2

i=0((αi →
∨

j 6=i α j )→
∨

j 6=i α j)→
∨2

i=0 αi

A7. α →¬¬α
A8. α ∧¬α →¬β ∨¬¬β
A9. ¬α ∧¬(α → β )→¬¬α
A10. ¬¬α ∨¬¬β ∨¬(α → β )∨¬¬(α → β )
A11. ¬¬α ∧¬¬β → (α → β )∨ (β → α)

HT2 is determined by the above inference rules and the schemata A1-A11.

Definition 1. A (Routley) frameis a triple 〈W,≤,∗〉, where W is a set,≤ a partial
order on W and∗ : W→W is such that x≤ y iff y∗ ≤ x∗. A (Routley) modelis a Routley
frame together with a valuation V ie a function from At×W −→ {0,1} satisfying: (1)
V(p,u) = 1 & u≤ w ⇒ V(p,w) = 1.

The valuationV is extended to all formulas via the usual rules for intuitionistic (Kripke)
frames for the positive connectives∧, ∨, → where the latter is interpreted via the≤
order:

V(ϕ → ψ ,w) = 1 iff for all w′ ≥ w,V(ϕ ,w′) = 1⇒V(ψ ,w′) = 1.

The main difference with respect to intuitionistic frames is the presence of the∗ operator
that is used for interpreting negation via the following condition:

V(¬ϕ ,w) = 1 iff V(ϕ ,w∗) = 0.



A propositionϕ is said to betrue in a modelM = 〈W,≤,∗,V〉, if V(ϕ ,v) = 1, for all
v∈W. A formulaϕ is valid, in symbols|= ϕ , if it is true in every model. It is easy to
prove by induction that condition (1) in Definition 1 above holds for any formulaϕ , ie

V(ϕ ,u) = 1 & u≤ w⇒V(ϕ ,w) = 1. (1)

Definition 2 (HT2 model).An HT2 modelis a Routley modelM = 〈W,≤,∗,V〉 such
that (i) W comprises 4 worlds denoted by h,h′,t,t ′, (ii) ≤ is a partial ordering on
W satisfying h≤ t, h≤ h′, h′ ≤ t ′ and t≤ t ′, (iii) the ∗ operation is determined by
h∗ = t∗ = t ′, (h′)∗ = (t ′)∗ = t, (iv) V is a valuation.

The diagram on the left depicts the≤-ordering among worlds (a
t ′AA

����
��

�

t h′oo

h

OO strictly higher location means≥) and the action of the∗-mapping
using arrows.

Truth and validity forHT2 models are defined analogously to the
previous case and from now on we let|= denote the truth (validity)
relation forHT2 models. We have the following completeness theo-
rem:6

Theorem 1 ([6]). |= ϕ iff ϕ is a theorem of HT2.

2.1 HT2 as a 6-valued logic

Now, consider anHT2 modelM = 〈W,≤,∗,V〉 and let us denote byH, H ′, T and
T ′ the four sets of atoms respectively verified at each corresponding point or world
h, h′, t, t ′. More succinctly, we can representM as the pair〈H,T〉 so that we group
each pair of unprimed/primed world asH = (H,H ′) andT = (T,T ′). By construction,
each of these pairsI = (I , I ′) satisfiesI ⊆ I ′, so thatI can be seen as a 3-valued in-
terpretation. GivenI and an atomp, we use the values{0,1,2} to respectively denote
p∈ I , p∈ I ′ \ I andp 6∈ I ′. As we have two pairs like this,〈H,T〉, the possible “situa-
tions” of a formula inHT2 can be defined by a pair of valuesxy with x,y ∈ {0,1,2}.
Condition (1) restricts the number of these situations to the following six: 00 := /0,
01 := {t ′}, 11 := {h′, t ′}, 02 := {t,t ′}, 12 := {h′,t,t ′}, 22 := W, where each set shows
the worlds at which the formula is satisfied. Thus, an alternative way of describingHT2

is by providing its logical matrix in terms of a 6-valued logic. As a result, the above
setting becomes an algebra of 6 cones:A HT2

:= 〈{00,01,11,02,12,22},∨,∧,→,¬〉
where∨ and∧ are set theoretical join and meet, whereas→ and¬ are defined as
follows: x→ y := {w : w≤ w′⇒ (w′ ∈ x⇒w′ ∈ y)}, ¬ x := {w : w∗ 6∈ x}. The only
distinguished element is22. The lattice structure of this algebra can be described by the
conditionxy≤ zt⇔ x≤ z& y≤ t and is shown in Figure 1, together with the resulting
truth-tables.
2.2 Minimal models and relation to logic programs

Given a pair of 3-valued interpretationsI1 = (I1, I ′1) andI2 = (I2, I ′2), thetruth-ordering
relation I1 ≤ I2 holds when bothI1 ⊆ I2 and I ′1 ⊆ I ′2. Note that by the semantics, if
〈H,T〉 is a model then necessarilyH ≤ T, since it is easy to check that this condition is

6 The first stage alone defines a logic complete for the general Routley frames.
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V(φ ∧ψ) = g.l .b.{V(φ),V(ψ)}

V(φ ∨ψ) = l .u.b.{V(φ),V(ψ)}

Fig. 1. Lattice structure and truth tables for the 6-valuedHT2 description.

equivalent toH ⊆ T andH ′ ⊆ T ′. Moreover, for any theoryΠ note that if〈H,T〉 |= Π
then also〈T,T〉 |= Π .

The ordering≤ is extended to a partial ordering� among models as follows. We
set〈H1,T1〉� 〈H2,T2〉 if (i) T1 = T2; (ii) H1≤H2. A model〈H,T〉 in whichH = T is
said to betotal. Note that the termtotalmodel does not refer to the absence of undefined
atoms. To represent this, we further say that a total partialequilibrium model iscomplete
if T has the form(T,T). We are interested here in a special kind of minimal model that
we call a partial equilibrium (or p-equilibrium) model. LetΠ be a theory.

Definition 3 (Partial equilibrium model). A modelM of Π is said to be apartial
equilibriummodel ofΠ if (i) M is total; (ii) M is minimal among models ofΠ under
the ordering�.

In other words a p-equilibrium model ofΠ has the form〈T,T〉 and is such that if〈H,T〉
is any model ofΠ with H ≤ T, thenH = T. We will sometimes use the abbreviation
T |≈Π to denote that〈T,T〉 is a p-equilibrium model of theoryΠ . Partial equilibrium
logic (PEL) is the logic determined by truth in all p-equilibrium models of a theory.
Formally we can define a nonmonotonic relation of PEL-inference as follows.

Definition 4 (entailment). Let Π be a theory,ϕ a formula andPEM (Π) the col-
lection of all p-equilibrium models ofΠ . We say thatΠ entailsϕ in PEL, in sym-
bolsΠ |∼ϕ , if either (i) or (ii) holds: (i) PEM (Π) 6= /0 andM |= ϕ for everyM ∈
PEM (Π); (ii) PEM (Π) = /0 andϕ is true in all HT2-models ofΠ .

In this definition, therefore, we consider the skeptical or cautious entailment relation;
a credulous variant is easily given if needed. Clause (ii) isneeded since, as Theorem
2 below makes clear, not all consistent theories have p-equilibrium models. Again (ii)
represents one possible route to understanding entailmentin the absence of intended
models; other possibilities may be considered depending oncontext.

We turn to the relation between PEL and logic programs. Adisjunctive logic pro-
gram is a set of formulas (also calledrules) of the form

a1∧ . . .∧am∧¬b1∧ . . .∧¬bn→ c1∨ . . .∨ck (2)



where thea,b,c with subscripts range over atoms andm,n,k≥ 0. For simplicity, given
any ruler like (2) above, we also use the symbolsB+(r),B−(r) andHd(r) to denote
the corresponding sets{a1, . . . ,am}, {b1, . . . ,bn} and{c1, . . . ,ck} respectively. By abuse
of notation, we understandB+(r) as the conjunction of its atoms, whereasB−(r) and
Hd(r) are understood as the disjunctions of their atoms (de Morganlaws hold for nega-
tion). As usual, an empty disjunction (resp. conjunction) is understood as the constant
⊥ (resp.⊤). As a result, whenr has the form (2) it can be represented more com-
pactly asB+(r)∧¬B−(r)→ Hd(r). Additionally, the body of a ruler is defined as
B(r) := B+(r)∧¬B−(r).

The definition of the p-stable models of a disjunctive logic programΠ is given as
follows. Given a 3-valued interpretationI = (I , I ′), Przymusinski’s valuation of formu-
las consists in interpreting conjunction as the minimum, disjunction as the maximum,
negation asI(¬ϕ) := 2− I(ϕ) and implication asI(ϕ → ψ) := 2 if I(ϕ) ≤ I(ψ) and
I(ϕ → ψ) := 0 otherwise. The constants⊥, u and⊤ are respectively valuated as 0, 1
and 2. We say thatI is a3-valued modelof a formulaϕ , writtenI |=3 ϕ , whenI(ϕ) = 2.
The reductof a programΠ wrt I , denoted asΠ I , consists in replacing each negative
literal¬b in Π by the constant corresponding toI(¬b). A 3-valued interpretationI is a
p-stablemodel ofΠ if I is a≤−minimal model ofΠ I .

Theorem 2 ([7]).A total HT2 model〈T,T〉 is a p-equilibrium model of a disjunctive
programΠ iff the 3-valued interpretationT is a p-stable model ofΠ .

We define a further partial ordering on total models by〈T1,T1〉 � 〈T2,T2〉 if both
T1 ⊆ T2 andT ′2 ⊆ T ′1 (intuitively, T1 has less information or defined atoms thanT2).
Then we say that a totalHT2 model that is�-minimal among the p-equilibrium models
of a theoryΓ is a well-founded modelof Γ . This terminology is justified by the fact
that if Π is a normal logic program, the unique�-minimal p-equilibrium model ofΠ
coincides with the well-founded model ofΠ in the sense of [35].

The notion of strong equivalence for logic programs was introduced in [19] and
logically characterised for the case of programs under stable model semantics. The
study of strong equivalence, its generalisations and computation, has since become a
lively research area within ASP, with potential for application to program optimisation.
Until now there was no analogous research programme for p-stable and WF semantics.
A basis is provided however by Theorem 3 below and several extensions proved in [7].

Definition 5 ((strongly) equivalent theories).Two theoriesΠ ,Π ′ are said to be (PEL)-
equivalent or simplyequivalent(resp.strongly equivalent), in symbolsΠ ≡ Π ′ (resp.
Π ≡s Π ′), iff they have the same p-equilibrium models (resp. iff foranyΓ , Π ∪Γ ≡
Π ′∪Γ ).

Theorem 3 ([6]).Two theoriesΠ , Π ′ are strongly equivalent iff they are HT2 equiva-
lent, ie have the same HT2 models.

This provides added interest in computational proof systems forHT2.



3 Complexity of reasoning inHT2 and PEL

We denote bySATCL andVALCL the classes of satisfiable formulas and valid formulas
respectively in Classical Logic, andSATHT2 andVALHT2 the classes of satisfiable and
valid formulas respectively inHT2 logic.

Theorem 4. SATHT2 is NP-complete and VALHT2 is coNP-complete.

Proof. For finite-valued logics it is straightforward that the satisfiability and validity
problems are at most NP-hard and coNP-hard respectively. Let ϕ be a formula over
{¬,→,∧,∨} and consider the formulaϕ ′ obtained by replacing every variablep in ϕ
by p→ ¬p. The formulaϕ ′ has the following properties: everyHT2-assignment,V,
verifies thatV(ϕ) ∈ {00,02}; if ϕ is satisfiable, then it has a model satisfyingV(p) ∈
{00,22} for every variablep in ϕ ′. If W(ϕ) = 00 for some assignmentW, then there
exists an assignmentV such thatV(ϕ) = 00 andV(p) ∈ {00,22} for every variablep
in ϕ ′. Finally, we have also:ϕ ∈ SATCL if and only if ϕ ′ ∈ SATHT2 andϕ 6∈ VALCL if
and only ifϕ ′ 6∈VALHT2. Thus, the polynomial transformation ofϕ into ϕ ′ reduces the
satisfiability and validity problems in classical logic to the corresponding problems in
HT2 and thereforeSATHT2 is NP-complete andVALHT2 is coNP-complete. ⊓⊔

Corollary 1. The problem of checking the strong equivalence of theories is coNP-
complete.

Theorem 5. The problem of deciding whether a formula in HT2 has partial equilib-
rium models (partial equilibrium consistency) isΣP

2 -complete.

Proof. It is straightforward from the finite-valued semantics ofHT2 to see that the
complexity is at mostΣP

2 . To prove that the complexity is in factΣP
2 we use the fact that

equilibrium consistency isΣP
2 -complete. Given a formulaϕ in HT, we define

ϕ ′ = ϕ ∧
∧

p occurs inϕ
(¬p∨¬¬p)

The formulaϕ ′ has the following properties: anyHT2-model ofϕ ′, V, verifiesV(p) ∈
{00,02,12,22} for every variablep in ϕ ; if V is a model ofϕ such thatV(p) ∈
{00,02,12,22}, then the assignmentV ′ defined as follows is also a model ofϕ : V ′(p) =
12 if V(p) = 02 andV ′(p) = V(p) otherwise (this fact can be proved easily by inspec-
tion of the truth tables). So, for the formulaϕ ′, we can “forget” the value 02 and the
bijection 00↔ 0, 12↔ 1, 22↔ 2 lets us conclude thatϕ has equilibrium models if
and only ifϕ ′ has partial equilibrium models. Thus, the polynomial transformation of
ϕ into ϕ ′ reduces equilibrium consistency to partial-equilibrium consistency and so this
problem isΣP

2 -complete. ⊓⊔

Corollary 2. The decision problem for equilibrium entailment isΠP
2 -complete.



4 The Logic of Total Models

Total models play an important role in the definition of PEL since p-equilibrium models
are a special kind of total model. We describe their logic. First note that total models
can be distinguished among allHT2-models via the scheme¬¬ϕ → ϕ . For anHT2

modelM = 〈(H,H ′),(T,T ′)〉= 〈WHT2
,≤,∗,V〉, whereWHT2

= {h,h′,t,t ′} set

∆M
w := {ϕ : V(ϕ ,w) = 1}

for w ∈WHT2
. Obviously,H ⊂ ∆M

h , H ′ ⊂ ∆M

h′ , etc. We omit the superscriptM if it
does not lead to confusion.

Proposition 1. The following items are equivalent:

1. 〈H,T〉 |= ¬¬ϕ → ϕ for anyϕ ,
2. H = T,
3. ∆h = ∆t and∆h′ = ∆t′ .

Proof. Condition 1 is equivalent to¬¬ϕ ∈ ∆w ⇒ ϕ ∈ ∆w for all w andϕ . By definition
of the∗ operation¬¬ϕ ∈ ∆w ⇔ ϕ ∈ ∆w∗∗ . Taking into accountt∗∗ = t andt ′∗∗ = t ′ we
obtain that condition 1 is equivalent to the inclusions

∆t ⊆ ∆h and ∆t′ ⊆ ∆h′ .

Inverse inclusions hold in allHT2-models, therefore 1⇔ 3. Implication 3⇒ 2 is obvi-
ous. The inverse implication follows by a routine inductionon the structure of formulas.

⊓⊔

Let us setHT∗ := HT2+{¬¬p→ p}. From the last proposition it follows that the num-
ber of possible situations of a formula in a totalHT2-model is reduced to the following
three,00 := /0, 11 := {h′, t ′}, 22 := {h,h′,t,t ′}, where each set shows the worlds at
which the formula is satisfied. Thus, the logicHT∗ can be characterised by the three-
element algebra:A HT∗ := 〈{00,11,22},∨,∧,→,¬〉 with the only distinguished ele-
ment22 and operations determined as the restrictions of the respective operation of the
algebraA HT2

. It is routine to check that the set{00,11,22} is closed underA HT2
-

operations.
At the same time,HT∗ differs from Przymusinski’s logicPrz3 [30] as well as from

N3 [34, 25], classical explosive logic with strong negation. All these logics are three-
valued and the operations∨ and∧ determine the structure of a linearly ordered lattice
on the set of truth-values. If we denote the least truth-value in all these logics by00,
the greatest by22, and the intermediate by11, we see that all the logics have the same
connectives¬, ∨, ∧, but different implications (see Fig 2). ComparingHT∗ andN3 we
note the following

Proposition 2. HT∗ $ N3, ¬(p→ q)↔ (p∧¬q) ∈ N3\HT∗.

For the comparison ofHT∗ andPrz3, recall that the language ofPrz3 contains also the
necessity operatorl (l22 = 22, lx = 00 otherwise) and→Prz3 can be defined via¬, ∨,
∧ andl : ϕ →Prz3 ψ := (¬lϕ ∨ lψ)∧ (¬l¬ψ ∨ l¬ϕ).

At the same time,lϕ can be defined inHT∗ as¬(ϕ →HT∗ ¬ϕ).



→HT∗ 00 11 22

00 22 22 22

11 00 22 22

22 00 11 22

→N3 00 11 22

00 22 22 22

11 22 22 22

22 00 11 22

→Prz3 00 11 22

00 22 22 22

11 00 22 22

22 00 00 22

Fig. 2.Truth tables for implication.

Proposition 3. The logic Prz3 is definable in HT∗. ⊓⊔

A simple axiomatisation ofHT∗ modulo the basic logicN∗ is given by the following

Proposition 4. HT∗ = N∗+{p∨ (p→ q)∨−q, p↔¬¬p, p∧¬p→ q∨¬q}.

In fact, the proof of this statement is a simplified version ofthe completeness proof for
HT2 in [6]. Thus, we obtainHT∗ by extending the intuitionistic fragment toHT and
adding the elimination of double negation and the Kleene axiom. Despite the fact that
HT∗ andHT have the same intuitionistic fragment, they have differentnegations and
HT∗ 6= HT. We can obtainHT from HT2 in the following way.

Proposition 5. The addition to HT2 of axiom(I) = ¬ϕ ∧ϕ →⊥, is equivalent to the
condition T= T ′.

Proposition 6. The addition to HT2 of De Jongh and Hendrik’s axiom (used to obtain
HT from intuitionistic logic),(dJH)= ϕ∨(ϕ→ψ)∨−ϕ is equivalent to the condition:
T,H ′ ∈ {H,T ′}.

The last two statements can be checked directly, and the nextone follows from
them.

Proposition 7 (reduction toHT). HT = HT2∪ (I)∪ (dJH).

5 Some Properties of Partial Equilibrium Inference

Since the early days of research on nonmonotonic logics it became commonplace to
study and compare logical systems with respect to general conditions on inference that
they satisfy. The aim was not only to classify systems without monotonicity but also to
select properties considered to be especially interestingor desirable. These properties
were catalogued in works such as [21, 17] which established many of the standard con-
ditions on inference that have been studied thereafter. Foran authoritative account see
[22].

Likewise it became a matter of routine to compare different approaches to the se-
mantics of logic programs according to the abstract properties satisfied by their associ-
ated inference relations, see eg [9, 10] for the case of normal programs.

We consider some of the properties of|∼ as a nonmonotonic inference relation. Gen-
erally speaking the behaviour of PEL entailment is fairly similar to that of equilibrium



logic or stable model inference; however|∼ fails some properties preserved by stable
inference. Consider the following properties of inference:

ϕ ∈Π ⇒ Π |∼ϕ reflexivity
∀i ∈ I ,Π |∼ψi ,Π ∪{ψi : i ∈ I} |∼ϕ ⇒ Π |∼ϕ cut

Π |∼ϕ ,Π |∼ψ ⇒ Π ∪ϕ |∼ψ cautious monotony
Π ∪ϕ |∼α,Π ∪ψ |∼α ⇒ Π ∪ (ϕ ∨ψ) |∼α disj. in antecedent

Π ∪ϕ |∼α,Π ∪¬ϕ |∼α ⇒ Π |∼α truth by cases
Π ∪ϕ |∼ψ ⇒ Π |∼ϕ → ψ conditionalisation

Π |∼ψ ,Π ∪ϕ |∼/ψ ⇒ Π |∼¬ϕ rationality
Π |∼ψ ,Π ∪ϕ |∼¬ψ ⇒ Π |∼¬ϕ weak rationality

Π |∼ϕ → ψ ,Π |∼¬ψ ⇒ Π |∼¬ϕ modus tollens

Proposition 8. Partial equilibrium inference fails cautious monotony, truth by cases,
conditionalisation, rationality and weak rationality.

Proof. The following variation of an example in [29] provides a counterexample to
cautious monotony. LetΠ be the disjunctive program:

¬c→ work∨sleep∨ tired, ¬c∧¬tired→ work, ¬c∧¬sleep→ tired,

¬c∧¬work→ sleep, a∨b, a→ c

ProgramΠ has just one partial equilibrium model({a,c},{a,c}), and so entails botha
andc. However, programΠ∪{c} has an additional partial equilibrium model({b,c},{b,c})
and soa is not entailed any more.

The second property, truth by cases, is not a valid principleof constructive reasoning
and fails already in the underlying monotonic logicHT2. To see this, letΠ be empty
and setα = (ϕ ∨¬ϕ).

Now consider the programΠ :

g∨d,¬ f → f , f ¬g→ a∨b∨c,¬b→ a,¬c→ b,¬a→ c

Π has two p-equilibrium modelsM1 = ({d},{a,b,c, f ,d}) and M2 = ({g},{a,b,
c, f ,g}). Evidently M1 6|= f → g. However,Π ∪ { f} has the unique p-equilibrium
model:({ f ,g},{a,b,c, f ,g}) in which g is true; falsifying the property of condition-
alisation. ⊓⊔

For the first condition we do however have two special cases, first:

Proposition 9 (cautious monotony for negated formulas).For any theoryΓ , if Γ |∼
¬ϕ thenΓ andΓ ∪{¬ϕ} have the same partial equilibrium models.

Secondly, since|∼ agrees with well-founded inference on normal programs, when Π
has this special form cautious monotony holds.

Proposition 10. Partial equilibrium inference satisfies reflexivity, cut, disjunction in
the antecedent and modus tollens.

To see this we use a lemma easily derivable by a simple inspection on semantic defini-
tions for PEL:



Lemma 1. (i) For any HT2 modelM and formulasϕ ,ψ , M |= ϕ∨ψ⇒M |= ϕ or M |=
ψ . (ii) Let M be a partial equilibrium model ofΠ such thatM |= ϕ . ThenM is an
partial equilibrium model ofΠ ∪{ϕ}.

Proof (Proposition 9).Clearly, by Lemma 1 any partial equilibrium model ofΓ in
which¬ϕ holds is also a partial equilibrium model ofΓ ∪{¬ϕ}. So it remains to show
the converse. LetM = 〈(T,T ′),(T,T ′)〉 be a partial equilibrium model ofΓ ∪{¬ϕ}.
As M is also a model forΓ , it remains to prove its�-minimality. Assume there exists
some strictly�-lower modelM ′ = 〈(H,H ′),(T,T ′)}〉. As M |= ¬ϕ is equivalent to
M , t ′ 6|= ϕ , we actually have thatM ′,t ′ 6|= ϕ too, and soM ′ |= ¬ϕ . But thenM ′ is
a model forΓ ∪{¬ϕ} which contradicts the minimality ofM as a partial equilibrium
model of that program. ⊓⊔

Proof (Proposition 10).Reflexivity is straightforward. For cut, apply Lemma 1. For
disjunction in the antecedent observe that every partial equilibrium model ofΠ ∪ (ϕ ∨
ψ) is a total model ofΠ in which eitherϕ holds orψ holds. By Lemma 1 (ii) it follows
that in the former case it must be a p-equilibrium model ofΠ ∪ϕ and in the latter case
it is a p-equilibrium model ofΠ ∪ψ . In each case by assumptionα is true in the model.

Assume the hypotheses of modus tollens. Then for any p-equilibrium modelM and
world t ′, M , t ′ 6|= ψ , while for all worldsu, M ,u |= ϕ ⇒M ,u |= ψ . HenceM ,t ′ 6|= ϕ
and soM |= ¬ϕ . ⊓⊔

6 Syntactic transformation rules for disjunctive programs

Following Brass and Dix [1–4], there has been considerable discussion of syntactic
transformation rules that preserve the semantics of programs. For example, while the
disjunctive semantics D-WFS of [1, 2] is well-known to preserve the rule of unfolding
or the General Principle of Partial Evaluation (GPPE for short, see below), p-stable
semantics does not (see Example 6.3 in [33] for a counterexample). More recently [23,
11] have studied for (2-valued) stable semantics the difference between transformation
rules that lead to equivalent programs and those that lead tostrongly equivalent (or even
uniform equivalent) programs. With the help ofHT2 and PEL, this distinction can also
be made for p-stable (p-equilibrium) semantics over disjunctive programs, or for WFS
over normal programs as a special case. We consider here the situation with respect to
the principal rules considered in [11]. In Table 2, equivalence and strong equivalence
are denoted as before by by≡,≡s. The rules themselves are summarised in Table 1. In
addition to the rules normally studied for p-stable, we consider also the weaker form
of unfolding, WGPPE, discussed in [11] and the rule S-IMP of Wang and Zhou [36]
whose meaning is explained below. We first give an example to show that although
p-stable does not obey the GPPE rule, it is not actually weaker than D-WFS.

Example 1 (from [36]).Consider the programΠ comprising two rules¬p→ b∨ l and
p∨ l . Neitherb nor¬b can be derived fromΠ under D-WFS and the STATIC semantics.
The p-equilibrium models are〈{l},{l}〉 and〈{p},{p}〉 and soΠ |∼ ¬b.

In fact, D-WFS just allows one to derive the minimal pure disjunction l ∨ p, whereas
p-equilibrium models further derive¬b. So, in this example, PEL isstrictly stronger



Table 1.Syntactic transformation rules from [11].

Name Condition Transformation

TAUT Hd(r)∩B+(r) 6= /0 P′ = P\{r}
RED+ a∈ B−(r1), 6 ∃r2 ∈ P : a∈ Hd(r2) P′ = P\{r1}∪{r ′}†

RED− Hd(r2)⊆ B−(r1), B(r2) = /0 P′ = P\{r1}
NONMIN Hd(r2)⊆ Hd(r1), B(r2)⊆ B(r1) P′ = P\{r1}

GPPE a∈ B+(r1), Ga 6= /0, for Ga = {r2 ∈ P | a∈ Hd(r2)} P′ = P\{r1}∪G′a
‡

WGPPE Same condition as for GPPE P′ = P∪G′a
‡

CONTRA B+(r)∩B−(r) 6= /0 P′ = P\{r}
S-IMP r, r ′ ∈ P, r � r ′ P′ = P\{r ′}
† r ′ : Hd(r1) ← B+(r1)∪not(B−(r1)\{a}).
‡ G′a = {Hd(r1)∪ (Hd(r2)\{a}) ← (B+(r1)\{a})∪not B−(r1)∪B(r2) | r2 ∈Ga}.

than D-WFS. On the other hand, unsoundness of GPPE in PEL alsoleads to examples
where PEL is strictly weaker than D-WFS. For instance, giventhe programΠ1 = {a∨
b,¬a→ a,a∧b→ c}, in D-WFS we can apply GPPE for atomb and then TAUT to
obtainΠ2 = {a∨b,¬a→ a} and derive¬c. However,Π1 has two p-equilibrium models
corresponding to〈{a},{a}〉 and〈{b},{a,b,c}〉, and since the latter leavesc undefined,
¬c cannot be derived. To sum up:

Proposition 11. D-WFS and PEL are not comparable (even when restricted to pure
disjunctions).

Proposition 12. The transformation WGPPE preserves strong equivalence,≡s. In fact:
{(p∧A→ B), (C→ p∨D)} ⊢ A∨C→ B∨D.

Proof. First, it is easy to see that transformations TAUT and NONMINpreserve strong
equivalence≡s, by simple inspection ofHT2 semantics. Then, on the one hand, by
NONMIN applied onC→ p∨D we obtainA∧C→ p∨D. SinceA∧C→ A∨D by
TAUT we can mix both intoA∧C→ (p∨D)∧ (A∨D) – see property (ix) in Section 7.
By (iii) in that section, this is equivalent toα : A∧C→ p∧A∨D. On the other hand,
applying NONMIN onp∧A→B we obtainp∧A→B∨D. AsD→B∨D follows from
TAUT, we can combine both intoβ : p∧A∨D→ B∨D (see (x) in Section 7). Finally,
the result follows from transitivity of→ applied toα andβ . ⊓⊔

We turn now to the rule S-IMP, due to [36] and discussed in [11]. As in the case
of NONMIN this is a kind of subsumption transformation allowing one to eliminate
a rule that is less specific than another rule belonging to theprogram. By definition,r
stands in the S-IMP relation tor ′, in symbolsr � r ′, iff there exists a setA⊆B−(r ′) such
that (i) Hd(r)⊆ Hd(r ′)∪A; (ii) B−(r)⊆ B−(r ′)\A; (iii) B+(r)⊆ B+(r ′). For stable or
equilibrium inference S-IMP is a valid rule, even preserving strong equivalence [11].
This is not so for PEL. Another rule, CONTRA, valid for stableinference, also fails in
PEL.

Proposition 13. The rules S-IMP and CONTRA are not sound for p-stable (p-equilibrium)
inference.



Table 2.Syntactic transformations preserving equivalence

Eq. TAUT RED+ RED− NONMIN GPPEWGPPECONTRA S-IMP

≡ yes yes yes yes no yes no no

≡s yes no yes yes no yes no no

Proof. The proof is by counterexample: letΠ be the program

r1 : a→ b∨c, r2 : a∧¬c→ b r3 : ¬a→ a r4 : ¬a→ c

And let Π ′ be Π \ {r2}. We claim:Π ′ is an S-IMP reduction ofΠ . Evidentlyr1 � r2

and sor2 is removed fromΠ . The only other candidates to be in the� relation arer3, r4

where{a} is the subset ofB−(r3) or B−(r4), but they fail the second requirement forr �

r ′ thatB−(r) is a subset ofB−(r ′)\{a}. There are no other possibilities to obtain an S-
IMP reduction. It is straightforward to check thatΠ has the unique p-equilibrium model
〈{},{a,b,c}〉 while Π ′ has the unique p-equilibrium model〈{},{a,b}〉. SinceΠ and
Π ′ have different p-equilibrium models, S-IMP reduction is not a sound transformation.

⊓⊔

7 Nested logic programs

The termnested logic programrefers to the possibility of nesting default negation, con-
junction and disjunction, both in the heads and bodies of theprogram rules. At least as
far as rule bodies are concerned, this feature is, in fact, quite common in most Prolog
interpreters, including XSB which relies on well-founded semantics. In this way, for in-
stance, a possible XSB piece of code could look likea :- \+ (b; c, \+ (d, \+ e))

or using logical notation:

¬(b∨c∧¬(d∧¬e))→ a (3)

The semantics for nested expressions under stable models was first described in [20].
In that paper, it was also shown that nested expressions can actually be unfolded until
a non-nested program (allowing negation and disjunction inthe head) is obtained by
applying the followingHT-valid equivalences:

(i) F ∧G↔G∧F andF ∨G↔G∨F.
(ii) (F ∧G)∧H↔ F ∧ (G∧H) and (F ∨G)∨H↔ F ∨ (G∨H).
(iii) F ∧ (G∨H)↔ (F ∧G)∨ (F ∧H) and F ∨ (G∧H)↔ (F ∨G)∧ (F ∨H).
(iv) ¬(F ∨G)↔¬F ∧¬G and ¬(F ∧G)↔¬F ∨¬G.
(v) ¬¬¬F ↔¬F .
(vi) F ∧⊤↔ F andF ∨⊤↔⊤.
(vii) F ∧⊥↔⊥ andF ∨⊥↔ F .
(viii) ¬⊤↔⊥ and¬⊥↔⊤.
(ix) (F →G∧H)↔ (F →G)∧ (F →H).



(x) (F ∨G→H)↔ (F →H)∧ (G→H).
(xi) (F ∧¬¬G→ H)↔ (F → H ∨¬G).
(xii) (F →G∨¬¬H)↔ (F ∧¬H →G).

Proposition 14. The formulas (i)-(x) are valid in HT2.

Proof. Validity of the equivalences (i),(ii),(iii),(vi),(vii) and (viii) are straightforward,
sinceHT2 satisfaction of conjunction, disjunction and truth constants is defined as in
classical logic. For the remaining proofs, let us use∀w′ to refer to any worldw′ such
thatwRw′.

(iv) This follows from the chain of equivalent conditions:M,w |=¬(F∨G) ⇔ M,w∗ 6|=
(F ∨G) ⇔ (M,w∗ 6|= F andM,w∗ 6|= G)⇔ (M,w |= ¬F andM,w |= ¬G) ⇔
M,w |= ¬F ∧¬G. The proof for negated conjunctions is completely analogous.

(v) This is obtained by the equivalenceM,w |=¬¬¬F⇔M,((w∗)∗)∗ 6|= F and the fact
that((w∗)∗)∗ = w∗ (see diagram in Definition 2).

(ix) This similarly follows from the sequence:

M,w |= F →G∧H⇔∀w′. M,w′ 6|= F or (M,w′ |= G andM,w′ |= H)

⇔ ∀w′.(M,w′ 6|= F or M,w′ |= G) and(M,w′ 6|= F or M,w′ |= H)

⇔ M,w |= (F →G)∧ (F → H).

(x) This follows from the equivalent conditions:

M,w |= F ∨G→H ⇔∀w′. M,w′ 6|= (F ∨G) or M,w′ |= H

⇔ ∀w′. (M,w′ 6|= F andM,w′ 6|= G) or M,w′ |= H

⇔ ∀w′. (M,w′ 6|= F or M,w′ |= H) and(M,w′ 6|= G or M,w′ |= H)

⇔ M,w |= (F → H)∧ (G→H). 2

Transformations (xi) and (xii), however, are not valid inHT2. As a result the occurrence
of double negation cannot be reduced in the general case to a disjunctive logic program
format as shown by:

Proposition 15. The theory{¬¬p→ p} is not HT2-equivalent to any disjunctive logic
programΠ (even allowing negation in the head) for signature{p}.

Proof. Let us try to build a programΠ with the sameHT2 models as{¬¬p→ p}. To
construct a given ruler ∈Π , we may have thatp may occur both positively or negatively
and both in the head or in the body. This leads to 24 = 16 possible rules. If we ignore the
rules that directly constitute an inconsistency or a tautology, it is not difficult to see that
the remaining set of non-trivial rules amounts to the following eight:{r1 : (p→⊥), r2 :
(¬p→ ⊥), r3 : (p∧¬p→ ⊥), r4 : p, r5 : (¬p→ p), r6 : ¬p, r7 : (p← ¬p), r8 :
(p∨¬p)}. Now, the models of¬¬p→ p are exactlyM1 = 〈( /0,{p}),( /0,{p})〉 and
M2 = 〈({p},{p}), ({p},{p})〉. It can be easily seen thatM1 is countermodel of rules
r1, r2, r3, r4 andr8 whereasM2 is countermodel ofr6, andr7. So none of these rules can
be included inΠ and the only remaining possibility isΠ = {r5}. However, this program
has in fact more models apart fromM1 andM2 – for instance,〈( /0, /0),({p},{p})〉. ⊓⊔



One might object that this behaviour is peculiar toHT2 and not the expected one for a
well-founded semantics for nested expressions. Consider,however, the following exam-
ple due to V. Lifschitz. Take the programsΠ1 = {¬¬p→ p} andΠ2 = {p∨¬p}which,
by (xi) areHT-equivalent. Intuitively, if we could not use double negation or negation
in the head, we could replace¬p by an auxiliary atomp and “define” this atom with a
rule like¬p→ p. As a result,Π1 would becomeΠ ′1 = {(¬p→ p),(¬p→ p)} whereas
Π2 would be nowΠ ′2 = {(p∨ p),(¬p→ p)}. The normal programΠ ′1 is a typical ex-
ample wherep andp should become undefined in WFS. On the other hand, forΠ ′2 one
would expect two complete models, one withp true andp false, and the symmetric one.
If we remove the auxiliary atom, these two different behaviours agree, in fact, with the
results in PEL forΠ1 andΠ2.

Although Proposition 15 shows that we cannot generally get rid of double negation
without extending the signature, we show next that the auxiliary atom technique used in
the example is in fact general enough for dealing with doublenegation in rule bodies,
and so, thanks to transformations (i)-(x), provides a method for unfolding bodies with
nested expressions.

A disjunctive logic program with double negationis a set of rules of the form:

a1∧·· ·∧an∧¬b1∧·· ·∧¬bm∧¬¬c1∧·· ·∧¬¬cs→ d1∨·· ·∨dt (4)

with m,n,s, t ≥ 0. We extend the previously defined notation so that, given a rule r like
(4) B−−(r) denotes the set of atoms{c1, . . . ,cs} or, when understood as a formula, their
conjunction.

Proposition 16. Let Π be a disjunctive logic program with double negation for alpha-
bet V . We define the disjunctive programΠ ′ consisting of a rule

¬c→ c (5)

for each double-negated literal¬¬c occurring inΠ , wherec is a new atom, plus a rule
r ′ for each rule r∈Π where: B+(r ′) := B+(r), B−(r ′) := B−(r)∪{c | c∈B−−(r)} and
Hd(r ′) := Hd(r). ThenΠ andΠ ′ are strongly equivalent modulo the original alphabet
At, that is,Π ∪Γ andΠ ′∪Γ have the same partial equilibrium models for any theory
Γ for alphabet At.

Lemma 2. For any pair of interpretations M′ � M and for any world w, we have
M′,w |= ¬ϕ iff M ,w |= ¬ϕ .

Lemma 3. Let M be a total model of p↔¬ϕ . Then, for any M′�M, we have: M′ |=
p↔¬ϕ iff M ′ |= ¬ϕ → p.

Proof. The left to right direction is trivial. For the right to left direction, assumeM′ |=
p←¬ϕ butM′ 6|= p→¬ϕ . Then, for some worldw, we getM′,w |= p andM′,w 6|=¬ϕ .
By Lemma 2 the latter impliesM,w 6|=¬ϕ , but asM |= p↔¬ϕ , we concludeM,w 6|= p.
However, asM′�M, M,w 6|= p impliesM′,w 6|= p reaching a contradiction. ⊓⊔

Proof (Proposition 16).By M|V we denote modelM modulo alphabetV. AssumeM0

is a partial equilibrium model ofΠ ∪Γ . Then, we can always buildM by adding toM0,



at each worldw, all the atomsc for whichM0,w |= ¬c. Clearly,M is still a total model,
whereas by construction,M |= c↔¬c. As a result, it is easy to see thatM |= Π ′, and
thus,M |= Π ′∪Γ asΓ is restricted to alphabetV, for whichM0 andM coincide. Now,
to see thatM is in equilibrium forΠ ′ ∪Γ , assume we had a smaller modelM′� M.
Since for anyc∈ B−−(r), M′ |= c← ¬c whereasM |= c↔ ¬c we apply Lemma 3 to
conclude thatM′ |= c↔ ¬c too. From this fact and Lemma 2 we get thatM′,w |= c
iff M,w |= c, for all w. Thus,M andM′ coincide in valuation of atomslc, and soM′|V
is strictly smaller thanM|V = M0. Finally, asM′ |= c↔ ¬c formulasc and¬c are
interchangeable inM′, and soM′ |= Π ∪Γ , ie, M′|V |= Π ∪Γ which contradicts the
minimality of M0.

Assume now that a givenM is a partial equilibrium model ofΠ ′ ∪Γ . Now, note
that the only rule head for each auxiliary atomc is the one from (5). By supportedness,
if M,w |= c thenM,w |= ¬c for all worldsw. This fact, together withM |= (5) implies
M |= c↔¬c, and so it is easy to see thatM |= Π ∪Γ , ie M|V |= Π ∪Γ . To show that
M|V is in equilibrium, assume we had some smallerM0 |= Π ∪Γ . Then we extendM0

to M′ so thatM′,w |= c if M0,w |= ¬c, for all worldsw. Now, we have the equivalence
chain:M,w |= c⇔ M,w |= ¬c⇔ M|V ,w |= ¬c, which by Lemma 2 is equivalent to
M0,w |= ¬c and this is equivalent toM′,w |= c by construction ofM′. In this way,M′

andM coincide in valuation of atomsc, and soM0 � M|V impliesM′� M. Finally, by
construction,M′ |= c↔¬c, and soM′ |= Π ′∪Γ contradicting the minimality ofM. ⊓⊔

Example 2.Take the program consisting of rule (3). Applying transformations (i)-(x)
we get that it is strongly equivalent to the pair of rules¬b∧¬c→ a and¬b∧¬¬d∧
¬e→ a which by Proposition 16 are strongly equivalent to

¬d→ d ¬b∧¬c→ a ¬b∧¬d∧¬e→ a

modulo the original alphabet.

8 A Tableau Calculus for PEL

We describe a tableaux system forHT2 using the standard methods for finite-valued
logics [15, 25]. The formulas in the tableau nodes are labelled with a set of truth-values,
namedsigns, and these signs are propagated to the subformulas using theexpansion
rules. The family of the signs depends on the logic in question and it is possible to
describe several tableaux systems for the same logic. ForHT2 we are going to use the
following family of signs

{00},{01},{11},{02},{22},{01,11}, [≤01], [≤ 11], [≤ 12], [≥ 01], [≥ 02], [≥ 12],

where[≥ v] = {w∈ 6 | w≥ v}, and[≤ v] = {w ∈ 6 | w≤ v}. Each expansion rule is
obtained by inspection of the truth tables. For example, therule

[≥01]:ϕ → ψ
{22}:ϕ [≥01]:ψ

in Figure 3 means that to evaluate the formulaϕ → ψ in {v | v≥ 01}, it is necessary
either to assign 22 toϕ or to assign a value greater than 01 toψ .



{22}:ϕ → ψ

{00}:ϕ {22}:ψ [≤01]:ϕ [≤12]:ϕ {11}:ϕ {02}:ϕ

[≥01]:ψ [≥12]:ψ {11}:ψ {02}:ψ

{00}:ϕ→ ψ

[≥01]:ϕ

{00}:ψ

[≤01]:ϕ → ψ

[≥01]:ϕ [≥12]:ϕ

{00}:ψ [≤01]:ψ

[≥01]:ϕ → ψ

{22}:ϕ [≥01]:ψ

[≤12:ϕ → ψ

[≥01]:ϕ {11}:ϕ {11}:ϕ {02}:ϕ [≥12]:ϕ [≥12]:ϕ {22}:ϕ

{00}:ψ [≤01]:ψ {02}:ψ {01,11}:ψ [≤11]:ψ {02}:ψ [≤12]:ψ

[≥12]:ϕ → ψ

{00}:ϕ ≥12:ψ [≤01]:ϕ {11}:ϕ {02}:ϕ

[≥01]:ψ {11}:ψ {02}:ψ

{11}:ϕ → ψ

{02}:ϕ [≥02]:ϕ

{01,11}:ψ {11}:ψ

{02}:ϕ → ψ

{11}:ϕ {11}:ϕ [≥12]:ϕ

{01}:ψ {02}:ψ {02}:ψ

{01,11}:ϕ → ψ

[≥02]:ϕ

{01,11}:ψ

{01}:ϕ→ ψ

[≥12]:ϕ

{01}:ψ

[≤11]:ϕ→ ψ

[≥01]:ϕ [≥02]:ϕ

{00}:ψ [≤11]:ψ

[≥02]:ϕ → ψ

{22}:ϕ [≥02]:ψ {01,11}:ϕ

{01,11}:ψ

{01}:¬ϕ

⊥

{02}:¬ϕ

⊥

{22}:¬ϕ

{00}:ϕ

[≥12]:¬ϕ

{00}:ϕ

[≥02]:¬ϕ

{00}:ϕ

{00}:¬ϕ

[≥02]:ϕ

[≤01]:¬ϕ

[≥02]:ϕ

[≤11]:¬ϕ

[≥01]:ϕ

[≤12]:¬ϕ

[≥01]:ϕ

[≥01]:¬ϕ

[≤11]:ϕ

{11}:¬ϕ

{01,11}:ϕ

{01,11}:¬ϕ

{01,11}:ϕ

Forv∈ {00,11,12}:
[≤v]:ϕ ∧ψ

[≤v]:ϕ [≤v]:ψ
; for v∈ {01,02,12,22}:

[≥v]:ϕ ∧ψ

[≥v]:ϕ

[≥v]:ψ

{01}:ϕ ∧ψ

{01}:ϕ [≥01]:ϕ {11}:ϕ {02}:ϕ

[≥01]:ψ {01}:ψ {02}:ψ {11}:ψ

{11}:ϕ ∧ψ

{11}:ϕ {11}:ϕ [≥12]:ϕ

{11}:ψ [≥12]:ψ {11}:ψ

{02}:ϕ ∧ψ

{02}:ϕ [≥02]:ϕ

[≥02]:ψ {02}:ψ

{01,11}:ϕ ∧ψ

{01,11}:ϕ [≥01]:ϕ

[≥01]:ψ {01,11}:ψ

[≤01]:ϕ ∧ψ

[≤01]:ϕ [≤01]:ψ {11}:ϕ {02}:ϕ

{02}:ψ {11}:ψ

Forv∈ {00,01,11,12}:

[≤v]:ϕ ∨ψ

[≤v]:ϕ

[≤v]:ψ

; for v∈ {01,02,22}:
[≥v]:ϕ ∨ψ

[≥v]:ϕ [≥v]:ψ

{01}:ϕ ∨ψ

[≤01]:ϕ {01}:ϕ

{01}:ψ [≤01]:ψ

{11}:ϕ ∨ψ

[≤11]:ϕ {11}:ϕ

{11}:ψ [≤11]:ψ

{02}:ϕ ∨ψ

[≤01]:ϕ {02}:ϕ {02}:ϕ

{02}:ψ [≤01]:ψ {02}:ψ

{01,11}:ϕ ∨ψ

{01,11}:ϕ [≤11]:ϕ

[≤11]:ψ {01,11}:ψ

[≥12]:ϕ ∨ψ

[≥12]:ϕ [≥12]:ψ {11}:ϕ {02}:ϕ

{02}:ψ {11}:ψ

Fig. 3. Expansion rules forHT2



{22}:ϕ → ψ

{00}:ϕ {22}:ψ [≤11]:ϕ

[≥11]:ψ

[≥11]:ϕ → ψ

{00}:ϕ [≥11]:ψ

[≤11]:ϕ → ψ

[≥11]:ϕ {22}:ϕ

{22}:ψ [≤11]:ψ

{00}:ϕ → ψ

[≥11]:ϕ

{00}:ψ

[≥11]:¬ϕ

[≤11]:ϕ

[≤11]:¬ϕ

[≥11]:ϕ

{00}:¬ϕ

{22}:ϕ

{22}:¬ϕ

{00}:ϕ

Forv∈ {00,11,22}:

[≤v]:ϕ ∧ψ

[≤v]:ϕ [≤v]:ψ

[≥v]:ϕ ∧ψ

[≥v]:ϕ

[≥v]:ψ

[≤v]:ϕ ∨ψ

[≤v]:ϕ

[≤v]:ψ

[≥v]:ϕ ∨ψ

[≥v]:ϕ [≥v]:ψ

Fig. 4. Expansion rules for total models ofHT2, ie. for HT∗

The usual notions ofclosedandterminatedtableaux in conjunction with a specific
initial tableauallow us to treat different problems such as satisfiability,validity, equiv-
alence, partial equilibrium property, etc. In the following definition we introduce the
concept ofclosed tableauin order to characterise validity inHT2.

Definition 6. Let ϕ be a formula in HT2:

1. Theinitial tableauto check the validity ofϕ is: T0 = [≤12]:ϕ
2. If T is a tableau and T′ is the tree obtained from T by applying one of the expansion

rules in Figure 3, then T′ is a tableau forϕ .
3. A branch B in a tableau T is calledclosedif one of the following conditions hold:

(i) it contains the constant⊥; (ii) it containssigned literals, S1: p,. . . ,Sn: p, such that
∩n

i=1Si = ∅. A tableau T is calledclosedif every branch is closed.

Intuitively, with the initial tableau[≤12]:ϕ we ask if it is possible to find an assignment
that evaluatesϕ in [≤ 12], in other words a countermodel. The expansion rules prop-
agate this question through the subformulas to the atoms. Ifevery non-atomic formula
has been expanded but we have a non-closed branch, then we canconstruct a counter-
model of the initial formula assigning a value to every variable chosen from its sign in
the branch. This sketches the proof of the following result.

Theorem 6 (Soundness and completeness of the tableaux system). The formulaϕ
is valid in HT2 if and only if there exists a closed tableau for it.

8.1 Partial equilibrium models

Tableaux systems can also be used to study additional properties and relations [25, 27].
In this section we define a system based on auxiliary tableauxin order to generate the
partial equilibrium models of a theory. We proceed in two phases. First, we generate
the total models of a theory by means of a tableau system in which we search for a



terminated tableau. Then, for every total model, an auxiliary tableau is constructed to
check whether the model in question is in partial equilibrium.

The total assignments evaluate formulas in{00,11,22} and thus we only need to
work with the following system of signs:[≤ 11] = {00,11}, [≤ 00] = {00}, [≥ 11] =
{11,22}, [≥ 11] = {22}.

Definition 7. Let Π = {ϕ1, . . . ,ϕn} be a theory in HT2:

1. Theinitial tableauto generate total models is a single branch tree containing the
following signed formulas:{22}:ϕ1,. . . ,{22}:ϕn.

2. If T is a tableau and T′ is the tree obtained from T by applying one of the expansion
rules in Figure 4, then T′ is tableau forϕ . As usual in tableaux systems for propo-
sitional logics, if a formula can be used to expand the tableau, then the tableau
is expanded in every branch below the formula using the corresponding rule, the
formula is marked and it is no longer used.

3. A branch in a tableau T is calledclosedif the signed literalsfor a variable p,
S1: p,. . . ,Sm: p, verify∩n

i=1Si = ∅. It is call openotherwise.
4. A branch in a tableau T is calledfinishedif it doesn’t contain non-marked formulas.
5. A tableau T is calledclosedif every branch is closed, and it isterminatedif every

branch is either closed or finished.

In this case the tableau begins with formulas signed with 22,since we are looking for
models. The expansion rules guarantee the construction of all possible models in such
a way that when all formulas have been expanded (marked), allthe models can be
determined on the basis of open branches.

Theorem 7. Let T be a non-closed terminated tableau forΠ , and{S1: p1, . . . ,Sn: pn} the
set of signed literals in an open branch. Then every assignment V verifying V(pi) ∈ Si ,
for all i, is a total model ofϕ . Moreover, all the total models ofΠ are generated from
T in this way.

Example 3.(Taken from [7]) Figure 5 shows the tableau for the theoryΠ = {¬p→
q∨ r, p∨ r}. The tableau is finished and allows us to construct the set of total models of
Π also shown in the Figure.

Auxiliary tableau to check the partial equilibrium propert y A total model is in par-
tial equilibrium if there is no other strictly smaller modelof the theory, under the partial
ordering�. In terms of the many-valued semantics, this ordering is defined between as-
signments based on the following relations between truth-values: 01�11, 02�12�22.
So, a procedure to generate partial equilibrium models is check every total model in
order to determine if there exists a model less than it. To do that, we are going to use
another tableau system using the expansion rules in Figure 3but a different notion of
closed tableau over an specific initial tableau.

Definition 8. Let ϕ be a formula in HT2 and V a total model ofϕ .

1. Theinitial tableauto check the partial equilibrium property of V forϕ is a single
branch tree containing the following signed formulas:{22}:ϕ , {00}: p for every p
such that V(p) = 00, {01,11}: p for every p such that V(p) = 11, and{02,12,22}: p for
every p such that V(p) = 22.



{22}: (¬p→ q∨ r)✓

{22}: (p∨ r)✓

{00}: (¬p)✓

{22}: p

{22}: p {22}: r

{22}: (q∨ r)✓

{22}: p

{22}: q {22}: r

{22}: p

{22}: q {22}: r

{00,11}: (¬p)✓

{11,22}: (q∨ r)✓

{22}: p

{11,22}: p

{11,22}: q {11,22}: r

{22}: r

{11,22}: p

{11,22}: q {11,22}: r

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15
p 22 22 22 22 22 22 22 22 22 11 11 11 00 00 00
q 22 22 22 11 11 11 00 00 00 22 11 00 22 11 00
r 22 11 00 22 11 00 22 11 00 22 22 22 22 22 22

Fig. 5. Main tableau for example 3 and the resulting total models.

2. If T is a tableau and T′ is the tree obtained from T applying one of the expansion
rules in Figure 3, then T′ is ϕ .

3. A branch B in a tableau T is called V-closedif one of the following conditions
holds: (i) it contains the constant⊥; (ii) it contains signed literals, S1: p,. . . ,Sn: p,
such that∩n

i=1Si = ∅; (iii) all the formulas in the branch have been expanded and,
for every variable p, it contains signed literals,S1: p,. . . ,Sn: p, such that∩n

i=1Si =
{V(p)}.

4. A tableau T is called V-closedif every branch is V-closed.

Adding literals of the form{01,11}: p, {02,12,22}: p or {00}: p, depending onV(p), to the
initial tableau, forces the tableau to generate only modelsless thanV. Nevertheless, we
know that one model will always be found,V itself, and therefore we must include one
more conditions on closure: a branch closes if it generates only the modelV.

Theorem 8. Let V be a total model ofϕ . V is a partial equilibrium model ofΠ if and
only if there exists a V-closed tableau forϕ .

In Figure 6 we show that, for the previous example, the modelV9 is a partial equilibrium
model; observe that the leftmost branch closes becauseV is the only model generated,
while all other branches close due to inconsistencies provoked by the three signed lit-
erals added to the initial tableau. In the second tableau in the same figure we check that
the modelV12 is not a partial equilibrium model.

We have chosen this presentation of the auxiliary tableau systems for the sake of
simplicity, but sacrificing efficiency. Following the techniques of [25, 26] we can im-
prove the methods of this section to obtain more efficient systems.



{02,12,22}: p

{00}: q

{00}: r

{22}: (¬p→ q∨ r)✓

{22}: (p∨ r)✓

{00}: (¬p)✓

{02,12,22}: p

{22}: p
✗

{22}: r
✗

{22}: (q∨ r)✓

{22}: p

{22}: q
✗

{22}: r
✗

{22}: r
✗

{00,01}: (¬p)

[≥01]: (q∨ r)✓

{22}: p

[≥01]: q
✗

[≥01]: r
✗

{22}: r
✗

[≤12]: (¬p)

[≥12]: (q∨ r)✓

{22}: p

[≥12]: q
✗

[≥12]: r
✗

{22}: r
✗

{11}: (¬p)✓

{11}: (q∨ r)✓

{01,11}: p
✗

{02}: (¬p)✓

{02}: (q∨ r)✓

{}:⊥
✗

{01,11}: p

{00}: q

{02,12,22}: r

{22}: (¬p→ q∨ r)✓

{22}: (p∨ r)✓

{00}: (¬p)✓

{02,12,22}: p
✗

{22}: (q∨ r)✓

{22}: p
✗

{22}: r

{22}: q
✗

{22}: r

{00,01}: (¬p)

[≥01]: (q∨ r)

[≤12]: (¬p)

[≥12]: (q∨ r)

{11}: (¬p)

{11}: (q∨ r)

{02}: (¬p)

{02}: (q∨ r)

Fig. 6.Auxiliary tableaux for two total models of example 3



9 Translating partiality by atoms replication

A promising approach to implementing p-stable models for disjunctive programs has
been developed by Janhunenet al [16]. They provide a method to capture p-stable
models by (2-valued) stable models using a linear-time transformation of the program.
We show here that their transformation can be extended to arbitrary propositional theo-
ries in such a way that PEL can be reduced to ordinary equilibrium logic. Furthermore
the method provides an encoding of the underlying logics, ofHT2 into HT.

The translation of a theoryΓ , denotedTr(Γ ), consists of a formulap→ p′ where
p′ is a new atom per each atomp occurring inΓ plus, for eachα ∈ Γ , the formula[α]
recursively defined as follows:

[ϕ → ψ ] :=
(

[ϕ ]→ [ψ ]
)

∧ [ϕ → ψ ]′ [ϕ → ψ ]′ := [ϕ ]′→ [ψ ]′

[¬ϕ ] := ¬ [ϕ ]′ [¬ϕ ]′ := ¬ [ϕ ]
[ϕ⊕ψ ] := [ϕ ]⊕ [ψ ] [ϕ⊕ψ ]′ := [ϕ ]′⊕ [ψ ]′

[p] := p [p]′ := p′

[ε] := ε [ε]′ := ε

where⊕ ∈ {∧,∨} andε ∈ {⊤,⊥}.

Example 4.The translationϕ = ¬(a→¬b)→ c consists of the formulasa→ a′, b→
b′, c→ c′ and¬(a′→¬b)→ c

)

∧
(

¬((a→¬b′)∧ (a′→¬b))→ c′.

It is quite easy to see that for any disjunctive ruler like (2), its translation[r] has the
form (a1∧ . . .∧am∧¬b′1∧ . . .∧¬b′n→ c1∨ . . .∨ck)∧
(a′1∧ . . .∧a′m∧¬b1∧ . . .∧¬bn→ c′1∨ . . .∨c′k) so thatTr(Π) amounts to Janhunen et
al’s transformation [16] whenΠ is a disjunctive logic program.

We prove next that the present generalisation of the Janhunen et al transformation
works not only for converting PEL into equilibrium logic, but is actually correct at the
monotonic level, ie it allows us to encodeHT2 into HT. Let us first extend the[·]′

notation to any set of atomsSso that[S]′ := {p′ | p∈ S}.

Proposition 17. An HT2 interpretationM1 = 〈(H,H ′),(T,T ′)〉 is an HT2 model ofΓ
iff M2 = 〈H ∪ [H ′]′ ,T ∪ [T ′]′〉 is an HT model of Tr(Γ ).

Proof. As M1 is anHT2 interpretation,H ⊆ H ′ andT ⊆ T ′ by construction, and thus
M2 |= p′← p for any p in the signature ofΓ . Analogously, if we take anyHT inter-
pretationM2 for the extended signature satisfying rulesp→ p′, thenM1 is a correctly
constructedHT2 interpretation. So, it just remains to show thatM1 |= ϕ iff M2 |= [ϕ ],
for anyϕ ∈ Γ . In fact, we will show that, for anyw∈ {h,t}, both:

(i) M1,w |= ϕ iff M2,w |= [ϕ ] and (ii)M1,w′ |= ϕ iff M2,w |= [ϕ ]′

We proceed by structural induction.

1. For⊥,⊤ it is trivial. For an atomp in the original alphabet,M1,h |= p⇔ p∈H⇔
p∈ H ∪ [H ′]′ ⇔ M2,h |= p and the same holds when replacingh/H by t/T. To
prove (ii) we have:M1,h′ |= p ⇔ p ∈ H ′ ⇔ p′ ∈ [H ′]′ ⇔ p′ ∈ H ∪ [H ′]′ ⇔
M2,h |= p′ and the same when replacingh/H by t/T.



2. Forϕ ∧ψ andϕ ∨ψ : direct application of the induction hypothesis onϕ ,ψ .
3. For¬ϕ , to prove (i) we have[¬ϕ ] = ¬ [ϕ ]′. Then,M2,w |= ¬ [ϕ ]′ ⇔M2,t 6|=

[ϕ ]′⇔ (by induction (ii))M1,t ′ 6|= ϕ ⇔M1,w |= ¬ϕ . The proof for (ii) is similar:
M2,w |= ¬ [ϕ ]⇔M2, t 6|= [ϕ ]⇔ (by induction (i))M1,t 6|= ϕ ⇔M1,w′ |= ¬ϕ .

4. Finally, forϕ → ψ and condition (i):M2,h |= [ϕ → ψ ]⇔M2,h |= ([ϕ ]→ [ψ ])∧
[ϕ → ψ ]′ ⇔ (M2,w 6|= [ϕ ] or M2,w |= [ψ ]) for w∈ {h,t} andM2,h |= [ϕ → ψ ]′

⇔ (by induction (i) and (ii))(M1,w 6|= ϕ or M1,w |= ψ) for w∈{h,t} andM1,h′ |=
ϕ → ψ ⇔M1,h |= ϕ → ψ . For worldw = t it suffices to replace above all oc-
currences ofh and h′ respectively byt and t ′. As for condition (ii), we have:
M2,h |= [ϕ → ψ ]′ ⇔M2,h |= [ϕ ]′ → [ψ ]′ ⇔ (M2,w 6|= [ϕ ]′ or M2,w |= [ψ ]′)
for w∈ {h, t} ⇔ (M1,w′ 6|= ϕ or M1,w′ |= ψ) for w∈ {h,t} ⇔M1,h′ |= ϕ → ψ .
Again, the proof forw = t is obtained by replacingh by t andh′ by t ′. ⊓⊔

Proposition 18. A total HT2 interpretation〈(T,T ′),(T,T ′)〉 is a partial equilibrium
modelof Γ iff 〈T ∪ [T ′]′ ,T ∪ [T ′]′〉 is an equilibrium model of Tr(Γ ).

Proof. By Proposition 17 it suffices to prove that model minimisations yield the same
effect in both cases. In fact, we show next that there exists aone to one correspondence
between both model ordering relations:

〈(H1,H ′1),(T,T ′)〉� 〈(H2,H ′2),(T,T ′)〉 ⇔ H1⊆ H2 andH ′1⊆ H ′2
⇔ H1⊆ H2 and [H ′1]

′ ⊆ [H ′2]
′ ⇔ H1∪ [H ′1]

′ ⊆ H2∪ [H ′2]
′

⇔ 〈H1∪ [H ′1]
′ ,T ∪ [T ′]′〉 ≤ 〈H2∪ [H ′2]

′ ,T ∪ [T ′]′〉 ⊓⊔

10 A splitting theorem for PEL

The previous tableau calculus offers a general method for satisfiability testing inHT2

and PEL, given any arbitrary theory. When we restrict the syntax to (some class of)
logic programs, we usually expect, however, that simpler computation methods can be
applied. Consider for instance the case of disjunctive logic programs. As shown in [7],
PEL also coincides with p-stable models for this syntactic class. Maintaining the same
minimisation criterion, we may easily find that a disjunctive program yields several
well-founded models (even no well-founded model at all), and the typical incremental
algorithm for computing WFS for normal programs is not applicable. However, it is
still possible to apply a form of incremental reasoning if wecan divide or “split” the
program into blocks without cyclic dependences among them.As an example, consider
the simple programΠ0 = {p∨q}which yields two p-stable models (also well-founded),
makingp true andq false in one case, and vice versa. Now, assume we have the enlarged
programΠ1 = Π0∪{¬r∧p→ r,q∧¬p→ s,¬s→ s}. It seems natural to use this second
set of formulas to compute atomsr ands, oncep andq are still fixed by the rule inΠ0.
This technique is called “splitting” and was first introduced in [18] for the case of stable
models. We now establish a similar result for PEL in the more general syntactic case
where theories are sets of implications.

Given a pairT = (T,T ′) and a set of atomsU , we denoteT|U = (T ∩U,T ′ ∩U).
We apply a similar notation for theories too. IfΠ is some theory in languageL(V), and
U ⊆V, then we writeΠ |U to stand for set of formulasΠ ∩L(U). We respectively call
bottomandtop the subtheoriesΠ |U andΠ\Π |U .



Definition 9 (Splitting set). Given a set of implicationsΠ on signature V, a subset
U ⊆V is called asplitting setfor Π if for all (ϕ → ψ) ∈Π\Π |U , ψ ∈ L(V\U).

Theorem 9 (Splitting theorem).Let Π be a set of implications, U a splitting set for
Π andT a pair (T,T ′) of sets of atoms T⊆ T ′. ThenT |≈Π iff both (i) T|U |≈Π |U and
(ii) T |≈Π ′, where

Π ′ := (Π\Π |U) ∪

∪ (T ∩U) (6)

∪ {¬p | p∈U\T ′} (7)

∪ {p↔ u | p∈ (T ′\T)∩U} (8)

Proof. “⇒” (i). AssumeT |≈Π butT|U |≈/ Π |U . As 〈T,T〉 |= Π , in particular,〈T,T〉 |=
Π |U , but then, clearly〈T|U ,T|U〉 |= Π |U . Thus, there must exist someH = (H,H ′),
H < T|U such that〈H,T|U 〉 |= Π |U . SinceΠ |U exclusively refers to atoms inU , this
means that any interpretation extendingH,H ′,T ∩U andT ′ ∩U with atoms not inU
will still be a model of that program. In particular, it is easy to see that for〈H2,T〉
with H2 = 〈H ∪ (T\U),H ′∪ (T ′\U)〉: (1) it is a well constructed interpretation; (2) it
satisfiesΠ |U ; (3) it is strictly lower than〈T,T〉; and (4) for any worldw and any formula
α ∈ L(V\U), 〈T,T〉,w |= α iff 〈H2,T〉,w |= α. As T |≈Π , (2) and (3) mean there must
exist some implicationϕ → ψ ∈ Π\Π |U such that〈H2,T〉 6|= ϕ → ψ . This means
〈H2,T〉,w |= ϕ and 〈H2,T〉,w 6|= ψ for some worldw, but as〈T,T〉 |= ϕ → ψ this
reduces the possibilities tow∈ {h,h′}. Assumew= h; then〈H2,T〉,h |= ϕ implying, by
the hereditary property, that〈H2,T〉,t |= ϕ which implies〈T,T〉,h |= ϕ . This, together
with 〈T,T〉 |= ϕ→ψ entails〈T,T〉,h |= ψ , but asψ does not refer to atoms inU , by (4)
we obtain〈H2,T〉,h |= ψ reaching a contradiction. The proof forw = h′ is completely
analogous, replacing the aboveh andt by their primed versions.
“⇒” (ii). Trivially 〈T,T〉 |= Π ′. Assume〈H,T〉 |= Π ′ with H < T. It is easy to see that
Π ′ fixes the interpretation of atoms inU , and so,H|U = T|U which implies〈H,T〉 |=
Π |U . On the other hand, as〈H,T〉 is model ofΠ ′, we also have〈H,T〉 |= Π\Π |U , so
that we get〈H,T〉 |= Π contradictingT |≈Π .
“⇐”. From (i) and (ii) it is clear that〈T,T〉 |= Π . Assume〈H,T〉 |= Π with H < T.
As Π |U only refers to atoms inU , 〈H|U ,T|U〉 |= Π |U , but this, together with (i), leaves
H|U = T|U as the only possibility. Now, as〈T,T〉 |= (6)∪ (7)∪ (8) and these formulas
exclusively refer to signatureU , we obtain〈H,T〉 |= (6)∪(7)∪(8). Finally, as〈H,T〉 |=
Π we also have〈H,T〉 |= Π\Π |U and so〈H,T〉 |= Π ′ contradictingT |≈Π ′. ⊓⊔

The previous theorem is completed with the following result. Let Π [ϕ/p] denote the
replacement in theoryΠ of any occurrence of atomp by the formulaϕ .

Theorem 10 (Replacement theorem).For any theoryΠ and any modelM :
(i) M |= Π ∪{p} iff M |= Π [⊤/p]∪{p}
(ii) M |= Π ∪{¬p} iff M |= Π [⊥/p]∪{¬p}
(iii) M |= Π ∪{p↔ u} iff M |= Π [u/p]∪{p↔ u}

Proof. For (i) the satisfaction ofp ath means thatp will hold at any world and so it can
be replaced by⊤. For (ii), the satisfaction of¬p at h meansp will be false att ′ and so



false at any world, so it can be replaced by⊥. Finally, it is easy to see thatM |= p↔ u
iff p is true ath′, t ′ but false ath,t, which coincides with the valuation ofu. ⊓⊔

Returning to the example programΠ1, U = {p,q} is a splitting set dividingΠ1 into
the bottomΠ0 and the topΠ1\Π0. As we saw,Π0 has two p-equilibrium models:
T1 = ({p},{p}) andT2 = ({q},{q}). Now, fixing T1, we consider the theoryΠ ′ =
Π1\Π0∪{p}∪{¬q} which, by the replacement theorem, is equivalent to{¬r ∧⊤→
r,⊥∧¬⊤→ s,¬s→ s, p,¬q}. After some trivial simplifications, this amounts to{¬r→
r,¬s→ s, p,¬q} whose unique p-equilibrium model is defined byT3 = ({p},{p, r,s}).
Following similar steps, when fixingT2 we finally get the program{s,¬s→ s,q,¬p}
with the only p-equilibrium modelT4 = ({q,s},{q,s}).

11 Concluding remarks

We have seen that partial equilibrium logic (PEL) provides afoundation for and general-
isation of the p-stable semantics of logic programs. We would argue that it is therefore
also a suitable framework for studying and extending the well-founded semantics of
programs. In this paper we have focused on logical properties of PEL and its underlying
logicsHT2 andHT∗ as well as on various methods of computing partial equilibrium
models. In this direction we have examined some general methods, such as tableaux
calculi and reduction techniques, that apply to arbitrary propositions, as well as specific
techniques, including splitting, that apply to logic programs. Further optimisation of
these computational methods is a topic for future work.

Since WFS is already successfully implemented and applied in practice, we do not
envisage our work as having an immediate impact on mature systems of logic program-
ming that already use WFS or p-stable models. Our motivationis rather to provide an
appropriate instrument for extending the basic syntax of logic programs and to under-
stand better the logical foundations of the p-stable approach. Nevertheless, these logical
foundations may also have an indirect influence on programming with WFS, even where
the language of normal programs is concerned. A possible example is provided by the
topic of strong equivalence, discussed briefly in Section 2.In answer set programming
the study of strong equivalence and related concepts is contributing to efforts devoted to
program optimisation and simplification. No analogous technique seems to have been
available so far in the case of programming with WFS and its variants. This avenue is
one that we think worth exploring in the future.

Another area of ongoing research concerns the addition of a second, strong or ex-
plicit negation to the syntax ofHT2. Several approaches were recently explored in a
preliminary work [8], where relations to the semantics WSFXof [28] and other vari-
ants of well-founded semantics with a second negation operator were investigated.
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