On the relation between possibilistic logic and modal logics of belief

Mohua Banerjee¹, Didier Dubois², Lluis Godo³, Henri Prade²

1. IIT Kanpur, India 2. IRIT - CNRS &Université Paul Sabatier - Toulouse (France) e-mail: dubois@irit.fr 3. IIIA-CSIC, Barcelona, Spain

Mohua Banerjee¹, Didier Dubois², Lluis Godo³, Henri Prade² On the relation between possibilistic logic and modal logics of belief

Outline

Possibility theory

A formalism for representing uncertainty due to incomplete information

- Incomplete information modelled by (fuzzy) subsets of mutually exclusive values of a quantity (or possible worlds)
- Possibility distributions π : Ω → [0, 1]: π(w) is the degree of possibility that w is the actual value or world
- max π = 1 (consistency)
- Two set functions similar to probability functions
 - **Possibility measure**: $\Pi(A) = \max_{w \in A} \pi(w)$ (plausibility)
 - Necessity measure: $N(A) = 1 \Pi(\overline{A})$ (certainty)

A proposition can be more or less impossible ($\Pi < 1$), more or less certain N > 0, or unknown ($N = 0, \Pi = 1$).

< ロ > < 同 > < 回 > < 回 > .

Possibility theory : previous works

- Shackle (1949 on), English economist. Degrees of potential surprize on a surprize scale
- Lewis (1973 on): Comparative possibility relations and their modal logics for counterfactuals
- Zadeh (1978) : imprecise linguistic statements modelled by fuzzy sets interpreted as possibility distributions
- Spohn (1988): degrees of disbelief on the scale of integers

The only numerical representations of Lewis comparative relations are possibility measures (Dubois 1986)

Possibilistic vs. modal logic Minimal Epistemic Logic Generalized Possibilist

KD Modal logic and possibility theory: analogy

	Possibility theory	Modal logic		
Tools	set functions <i>N</i> , Π	modalities \Box, \diamond		
Scale	[0, 1]	{0,1}		
Adjunction	$N(\phi \wedge \psi) = \min(N(\phi), N(\psi))$	$\Box(\phi \land \psi) \equiv \Box \phi \land \Box \psi$		
Duality	$\Pi(\phi) = 1 - N(\neg \phi)$	$\Box\phi\equiv\neg\diamondsuit\neg\phi$		
	$\Pi(\phi) \geq \textit{N}(\phi)$	$\Box\phi \to \Diamond\phi$		

It is natural to equate $\Box \phi$ and $N(\phi) > 0$

Mohua Banerjee¹, Didier Dubois², Lluis Godo³, Henri Prade² On the relation between possibilistic logic and modal logics of belief

Earlier connections between possibility theory and modal logic

- Fariñas del Cerro and Prade (1986): possibility theory, incomplete information databases and the modal logic of rough sets
- Dubois, Prade, Testemale (1988): Accessibility relation representing relative specificity between epistemic states
- Fariñas del Cerro and Herzig (1991): Possibility theory and Lewis modal logics using comparative possibility
- Boutilier (1994): interprets a possibility relation as an accessibility relation between possible worlds
- Esteva Godo Hajek (1995): Casting uncertainty theories in the language of fuzzy modal logics with Kripke semantics
- Resconi Klir etc. (1992-95): Relating degrees of uncertainty to accessibility relations
- Halpern, Ognjanovic, etc.

Elementary possibilistic logic

Possibility theory led to possibilistic logic (Dubois Lang Prade, 1987).

Syntax : Poslog formulas are

- Pairs (ϕ, a) where ϕ is a propositional formula in PROP and $a \in (0, 1]$.
- A poslog base *B* is a conjunction of such pairs (ϕ_i, a_i) .

Intended meaning : $N(\phi) \ge a$.

- **Axioms** : $(\phi, 1)$ for PROP tautologies ϕ .
- Basic inference rules (justified by the laws of possibility theory)
 - Resolution : $(\phi \lor \psi, a)$; $(\neg \phi \lor \chi, b) \vdash (\psi \lor \chi, \min(a, b))$
 - Weight weakening : If $a \ge b$ then $(\phi, a) \vdash (\phi, b)$
- Inconsistency degree : $Inc(B) = max\{a : B \vdash (\bot, a)\}.$
- Nontrival, non-monotonic consequences of B : φ s.t. B ⊢ (φ, a), with a > Inc(B).

< ロ > < 同 > < 回 > < 回 >

Possibilistic logic and Modal logic KD

	PosLog	Modal logic		
Atoms	$(\phi, a), \phi \in PROP, a \in (0, 1]$	PROP atoms		
Connectives	\wedge	\land, \neg, \Box		
Modalities	No nesting	Nested modalities		
Properties	$(\phi \wedge \psi, a) \equiv (\phi, a) \wedge (\psi, a)$	$\Box(\phi \land \psi) \equiv \Box \phi \land \Box \psi$		
Semantics	possibility distributions	accessibility relations		

So

- possibilistic logic is a graded belief logic with a very poor syntax
- modal logic can model all-or-nothing combinations of beliefs in a more expressive syntax.
- Restricted to formulas (*p*, 1), PosLog is isomorphic to PROP

A minimal two-tiered epistemic logic (MEL)

How to construct a modal logic with possibilistic semantics? **Idea**: Find the minimal language to express the statement that a proposition is unknown, encoding a belief $N(\phi) = 1$ as $\Box \phi$.

- Propositional variables $\mathcal{V} = \{a, b, c, \dots, p, \dots\}$
- φ, ψ, ... propositional formulae of *L* built using conjunction, disjunction, and negation (∧, ∨, ¬)

Output: Interpretent the second state of t

- Variables: $\mathcal{V}_{\Box} = \{\Box \phi : \phi \in \mathcal{L}\}$
- \mathcal{L}_{\Box} propositional language based on \mathcal{V}_{\Box}

 \Rightarrow The "subjective" fragment of KD (or S5) without modality nesting.

・ ロ ト ・ 同 ト ・ 回 ト ・ 回 ト

A minimal two-tiered epistemic logic (MEL)

How to construct a modal logic with possibilistic semantics? **Idea**: Find the minimal language to express the statement that a proposition is unknown, encoding a belief $N(\phi) = 1$ as $\Box \phi$.

- Propositional variables $\mathcal{V} = \{a, b, c, \dots, p, \dots\}$
- φ, ψ, ... propositional formulae of *L* built using conjunction, disjunction, and negation (∧, ∨, ¬)
- $\textcircled{O} \quad \textbf{Upper level: A propositional language } \mathcal{L}_{\Box}$
 - Variables: $\mathcal{V}_{\Box} = \{\Box \phi : \phi \in \mathcal{L}\}$
 - \mathcal{L}_{\Box} propositional language based on \mathcal{V}_{\Box}

 \Rightarrow The "subjective" fragment of KD (or S5) without modality nesting.

The MEL axioms

 \mathcal{L}_{\Box} is the minimal language to express partial knowledge about the truth of propositions. (you can write "the agent ignores ϕ " as $\neg \Box \phi \land \neg \Box \neg \phi$)

Axioms

(PL) Axioms of PROP for \mathcal{L}_{\Box} -formulas

$$(\mathsf{K}) \ \Box(\phi \to \psi) \to (\Box \phi \to \Box \psi)$$

(D)
$$\Box \phi \rightarrow \Diamond \phi$$

(Nec) $\Box \phi$, for each $\phi \in \mathcal{L}$ that is a PROP tautology, i.e. if $Mod(\phi) = \Omega$.

the inference rule is modus ponens.

$B \vdash_{MEL} \Phi$ if and only if $B \cup \{K, D, Nec\} \vdash_{PROP} \Phi$

Note : in KD45, Nec is an inference rule (necessitation).

伺 ト イ ヨ ト イ ヨ

Possibilistic semantics

The semantics does not require accessibility relations

- N(φ) = 1 means that φ holds in all worlds considered possible by the agent, i.e., there is a non-empty set *E* of possible interpretations (the epistemic state of the agent) such that *E* ⊆ [φ].
- The epistemic models of $\Box \phi$ are $\{E \neq \emptyset : E \subseteq [\phi]\} \subseteq 2^{\Omega}$

Satisfiability

- $E \models \Box \phi$ if $E \subseteq [\phi]$ (ϕ is certainly true in the epistemic state E)
- $E \models \Phi \land \Psi$ if $E \models \Phi$ and $E \models \Psi$
- $E \models \neg \Phi$ if $E \models \Phi$ is false

MEL is sound and complete with respect to this semantics *Clue*: an epistemic model of Φ is a standard propositional interpretation of \mathcal{L}_{\Box} .

MEL is just a propositional logic

A fragment of KD45, etc., with a restricted language but...

- *MEL* does NOT allow for (non-modal) propositional formulas : The languages \mathcal{L} and \mathcal{L}_{\Box} are disjoint.
 - KD45 axioms (4: $\Box \Phi \rightarrow \Box \Box \Phi$; 5: $\neg \Box \Phi \rightarrow \Box \neg \Box \Phi$) cannot be written in MEL.
- In MEL, formulas are evaluated on epistemic states (*E* ⊨ □φ) while in KD45 formulas are evaluated on possible worlds (*w* ⊨ □φ) via accessibility relations
- KD45 simplifies the expressions in KD, MEL minimally augments the expressive power of PROP.
- MEL has the deduction theorem, KD45 has not always.
- KD45 accounts for introspection: MEL describes what an agent knows about the epistemic state of another agent

Possibilistic vs. modal logic Minimal Epistemic Logic Generalized Possibilis

Positioning MEL wrt. Agent-based reasoning

Observer	← Agent	←	World
Belief about Agent	Belief about world		Actual world
$\mathcal{E}\subseteq 2^{\Omega}$	$\pmb{E}\subseteq \pmb{\Omega}$		$\textit{W}\in \Omega$
MEL	PROP		

- E is the set of worlds considered possible by the agent
- *C* is the set of epistemic states of the agent considered possible by the observer
- *E* is represented by a PROP base, \mathcal{E} by a MEL base

Generalized Possibilistic Logic: MEL + Poslog

Syntax : GPL formulas use graded KD modalities and form a language \mathcal{L}_{\Box}^{k} using a scale $\Lambda_{k} = \{0, \frac{1}{k}, \frac{2}{k}, ..., 1\}$.

- Atoms : $\Box_a \phi$ where ϕ is a propositional formula and $a \in \Lambda_k^+ = \{\frac{1}{k}, \frac{2}{k}, ..., 1\}$. They stand for (ϕ, a) , i.e. $N(\phi) \ge a$.
- All propositional formulas from atoms $\Box_a(\phi)$.

we can express :
$$\Pi(\phi) \geq \frac{i}{k}$$
, as $\neg \Box_{1-\frac{i-1}{k}}(\neg \phi)$

Axioms

(PL) Axioms of PROP for GPL-formulas

(K)
$$\Box_a(\phi \to \psi) \to (\Box_a \phi \to \Box_a \psi)$$

(D) $\Box_a \psi \to \neg \Box_b \neg \psi$

(Nec) $\square_a \phi$, for each tautology $\phi \in \mathcal{L}$

(W) $\Box_a \phi \rightarrow \Box_b \phi$, if $a \ge b$

If a = b is fixed, we get a copy of MEL.

Image: A image: A

Generalized Possibilistic Logic : Semantics and completeness

The semantics uses gradual epistemic models

- ⊢ □_aφ means that N(φ) ≥ a computed from possibility distribution π on Ω.
 (φ is certainly true at level at least a in the epistemic state π)
- The epistemic models of $\Box_a \phi$ are $\{\pi : \min_{w \not\models \phi} 1 \pi(w) \ge a\}$

Satisfiability

•
$$\pi \models \Box_{a} \phi$$
 if $N(\phi) \geq a$

•
$$\pi \models \Phi \land \Psi$$
 if $\pi \models \Phi$ and $\pi \models \Psi$

• $\pi \models \neg \Phi$ if $\pi \models \Phi$ is false

GPL is sound and complete with respect to this semantics *Clue*: an epistemic model of Φ is a standard propositional interpretation of \mathcal{L}_{\Box}^{k} .

- 同 ト - 三 ト - 三

Positioning GPL wrt. Agent-based reasoning

.

Possibilistic vs. modal logic Minimal Epistemic Logic Generalized Possibilist

Extending GPL to reason about the actual world and someone's beliefs

- Extended language \mathcal{L}_{\Box}^{k+} of GPL⁺ with objective formulas
 - If $\phi \in \mathcal{L}$, then $\phi \in \mathcal{L}_{\Box}^{k+}$
 - If $a \in \Lambda^k \setminus \{0\}$, then $\Box_a \phi \in \mathcal{L}_{\Box}^{k+}$
 - If $\Phi, \Psi \in \mathcal{L}^{k+}_{\Box}$ then $\neg \Phi, \Phi \land \Psi \in \mathcal{L}^{k+}_{\Box}$
- Semantics for GPL⁺: "pointed" GPL epistemic models, i.e., structures (*w*, π), where *w* ∈ Ω and π ∈ (Λ^k)^Ω.
- Truth-evaluation rules of formulas of \mathcal{L}^{k+}_{\Box} in (w, π) :

•
$$(w, \pi) \models \phi$$
 if $w \models \phi$, as $\phi \in \mathcal{L}$

- $(w, \pi) \models \Box_a \phi$ if $N(\phi) \ge a$ in π .
- usual rules for \neg and \land on $\Phi \in \mathcal{L}^{k+}_{\Box}$.
- Logical consequence, as usual: $\Gamma \models \Phi$ if, for every structure $(w, \pi), (w, \pi) \models \Phi$ whenever $(w, \pi) \models \Psi$ for all $\Psi \in \Gamma$.

Completeness of GPL⁺

Axiomatic system : We use the same axioms and inference rule as GPL (only language and semantics change).

Lemma

 $\Gamma \vdash_{GPL^+} \Phi \text{ iff}$ $\Gamma \cup \{\Box_1 \phi \mid \vdash_{PROP} \phi\} \cup \{\text{instances of axioms (K), (D) (W)} \} \vdash_{PROP} \Phi$

Theorem

 $\Gamma \vdash_{GPL^+} \Phi$ iff $\Gamma \models \Phi$ under the pointed e-model semantics.

We get closer to S5 if we add axiom T: $\Box_a \phi \rightarrow \phi$, which restricts pointed e-models to (w, π) where $w \in \{w : \pi(w) > 1 - a\}$ (GPL⁺⁷).

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Possibilistic vs. modal logic Minimal Epistemic Logic Generalized Possibilis

Relating MEL and MEL⁺ to KD45 and S5

MEL⁺ is the restriction of GPL⁺ to a = 1. (models are pointed e-models (w, E))

```
MEL<sup>+T</sup> is MEL<sup>+</sup> with axiom T (\Box \phi \rightarrow \phi)
(models are pointed e-models (w, E) with w \in E.)
```

Theorem

Let Φ be a formula from \mathcal{L}_{\Box} . Then

• $MEL \vdash \Phi$ iff $L \vdash \Phi$ for $L \in \{KD, KD4, KD45, S5\}$.

Let Φ be a formula from \mathcal{L}^+_{\Box} . Then

- $MEL^+ \vdash \Phi$ iff $L \vdash \Phi$ for $L \in \{KD, KD4, KD45\}$.
- $MEL^{+T} \vdash \Phi$ iff $S5 \vdash \Phi$

Relating MEL and MEL⁺ to KD45 and S5

Since any formula of KD45 and S5 is logically equivalent to another formula without nested modalities:

Theorem

The following conditions hold true:

- For any arbitrary modal formula Φ, there is a formula Φ' ∈ L⁺_□ such that KD45 ⊢ Φ iff MEL⁺ ⊢ Φ'.
- For any arbitrary modal formula Φ, there is a formula Φ' ∈ L⁺_□ such that S5 ⊢ Φ iff MEL^{+T} ⊢ Φ'.

(日) (日) (日)

What MEL, GPL and MEL⁺, GPL⁺ are good for

- A belief base in GPL typically contains what an observer A knows about the knowledge of an agent B.
- In GPL⁺, agent *A* is allowed to add what is known about the real world in the form of standard propositions.
- GPL⁺ suggests that the epistemic state of the observer is (F, E) whereby F is what the observer knows about the world and E is what he knows about the epistemic state of the other agent.
 - If A considers that B's beliefs are always correct, the former can assume axiom T is valid, thus he reasons in GPL⁺T to strengthen his own knowledge of the real world.
 - Alternatively, A may mistrust B and may wish to take advantage of knowing wrong beliefs of A; thus he reasons in GPL⁺

周レイモレイ

Conclusion

- Usual semantics of epistemic logics based on accessibility relations are not very natural for reasoning about incomplete information with an external point of view on agents
- Despite proximity of languages with KD45 and S5, the fragment GPL⁺ (resp. GPL⁺⁷) has simplified semantics that:
 - are more intuitive than equivalence relations.
 - are closer to the setting of uncertainty theories
- S5, with equivalence relations semantics, is more naturally the logic of rough sets (studied by Luis. F. with E. Orlowska)
- MEL, GPL are closer to logic programming, than to the epistemic logic introspective tradition (e.g. GPL captures Answer-set Programming - DP Schockaert, KR2012)

周レイモレイ