Temporal Equilibrium Logic with Past Operators

Felicidad Aguado¹, Pedro Cabalar¹, Martín Diéguez² Gilberto Pérez¹ and Concepción Vidal¹

¹Computer Science Department, University of Corunna, Spain. ²IRIT, University of Toulouse, France.

Essays dedicated to Luis Fariñas del Cerro

3rd Workshop on Logical Reasoning and Computation March 4th, 2016. Toulouse, France

Initial motivation

- During my PhD (1990's), I was interested in KR for dynamic domains: reasoning about actions and change
- Representational problems: frame, Yale Shooting, ... How to deal with defaults like inertia?
- Most approaches used First Order Logic to represent time: Situation Calculus, Event Calculus, etc
- But I also became interested in temporal modal approaches.
 I downloaded many papers by some Fariñas del Cerro (French? Galician?)

Fariñas del Cerro?

French coauthors, Toulouse, ...

But did you know about his Galician Connection?

Aguado, Cabalar, Diéguez, Pérez, Vidal

TEL with Past Operators

Ferrol, Galicia, Spain

Ferrol, Galicia, Spain

Luis' father was born here, at San Felipe castle

Aguado, Cabalar, Diéguez, Pérez, Vidal

TEL with Past Operators

Initial motivation

 In 1996? I found out that Luis himself was teaching an introductory course on modal logic at Santiago de Compostela

• Fantastic experience: modal logic rocks!

(Back to actions and change) The stress was put on Non-monotonic Reasoning (NMR)

[AIJ 1980] Circumscription, Default Logic, NM Modal logic

[Gelfond & Lifschitz, JLP 93] Representing Action and Change by Logic Programs

Transition systems in Answer Set Programming (ASP) ASP = problem solving paradigm. Similar to SAT (models=solutions) Time: integer variables (iteratively) grounded before solving

Some nice features

- Elaboration tolerance: small changes in the problem ⇒ small changes in representation
- Simple solution to frame, ramification and qualification problems
- Easy to switch reasoning task: prediction (or simulation), explanation, planning, diagnosis
- Simple (linear) time structure: integer argument in predicates
- Incremental ASP exploits time index to reuse grounding/solving

But not thought for temporal reasoning

- Planning by iterative deepening with finite path length: we cannot prove non-existence of plan
- X Reactive systems out of the scope: e.g. a network server must keep on running (potentially) forever
- (Forgotten) reasoning task: verification of temporal properties.
 E.g. "At some point, fluent p will never change again"
- X Existing formal methods for transition systems: outside ASP

Idea: temporal (modal) LP

- Idea: why not using a modal extension of LP?
- Modal LP: solid background and literature
 - MOLOG [Fariñas 86]: modal operators in Prolog
 - Linear Temporal Logic (LTL) + LP: [Gabbay 87, Abadi & Manna 89, Orgun & Wadge 92] etc.
 - Example: TEMPLOG [Abadi 89]. Rules like

 $\Box(p \leftarrow \bigcirc q \land \diamondsuit r)$

- Problems with temporal LP formalisms
 - Good for goal-oriented top-down reading.
 Bad for representing causal rules
 - We cannot represent defaults: no default negation

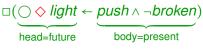
Temporal Equilibrium Logic

- Equilibrium Logic [Pearce 96] captures stable models and ASP using an intermediate logic (*Here-and-There*)
- Idea: mixing temporal modalities with an intermediate logic.
 Example: intuitionistic modal logic [Fariñas & Raggio 83]
- Temporal Equilibrium Logic (TEL) = LTL + Equilibrium Logic [Cabalar& Vega 07]
- A pair of tools [Cabalar & Diéguez 11, 14] using model checking and automata transformations
- TEL defines temporal stable models for arbitrary LTL formulas.

 $\Box(\bigcirc \textit{light} \leftarrow \textit{push} \land \neg \textit{broken})$

Keypoint

• For practical KR most implications go from present to future. We called this syntactic fragment splittable theories:



- Operators in the head may allow going beyond pure transitions
- But adding other operators in the rule body seems awkward:

Aguado, Cabalar, Diéguez, Pérez, Vidal

Keypoint

• A more practical choice: rule conditions that inspect the past. Example: the first time it's pushed, we have a 2 tics delay

 $\Box(\bigcirc \textit{light} \leftarrow \textit{push} \land \exists \neg \textit{push})$

 $\Box \neg push = not pushed before$

• Of course, we can use auxiliary atoms to memorise past events

 $\Box(\bigcirc light \leftarrow push \land \neg pushed_before)$ $\Box(\bigcirc pushed_before \leftarrow push)$ $\Box(\bigcirc pushed efore \leftarrow pushed before)$

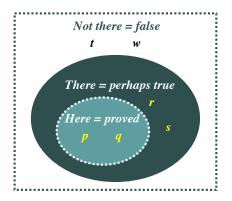
But temporal past is exponentially more succint [Laroussinie et al 02].

• Paper goal: extend TEL with past operators

Aguado, Cabalar, Diéguez, Pérez, Vidal

Equilibrium Logic

- Equilibrium Logic [Pearce96]: generalises stable models for arbitrary propositional theories.
- Here-and-There + selected models (classical & minimal)



When H = T we have a classical model.

Here-and-There

Satisfaction of formulas

 $\begin{array}{lll} \langle H, T \rangle \vDash \varphi & \Leftrightarrow & "\varphi \text{ is proved"} \\ \langle T, T \rangle \vDash \varphi & \Leftrightarrow & "\varphi \text{ potentially true"} & \Leftrightarrow & T \vDash \varphi \text{ classically} \end{array}$

- $\langle H, T \rangle \models p$ if $p \in H$ (for any atom p)
- , <> as always
- $\langle H, T \rangle \vDash \varphi \rightarrow \psi$ if both
 - $T \vDash \varphi \rightarrow \psi$ classically
 - $\langle H, T \rangle \vDash \varphi$ implies $\langle H, T \rangle \vDash \psi$
- Negation $\neg F$ is defined as $F \rightarrow \bot$

Definition (Equilibrium/stable model)

A model $\langle T, T \rangle$ of Γ is an equilibrium model iff

there is no $H \subset T$ such that $\langle H, T \rangle \models \Gamma$.

Aguado, Cabalar, Diéguez, Pérez, Vidal

(Linear) Temporal Equilibrium Logic

• Syntax = propositional plus

- $\Box \varphi$ = "forever" φ
- $\Diamond \varphi$ = "eventually" φ
- $\bigcirc \varphi =$ "next moment" φ
- $\varphi \mathcal{U} \psi = \varphi$ "until eventually" ψ
- $\varphi \mathcal{R} \psi = \varphi$ "release" ψ

In the paper: new operators

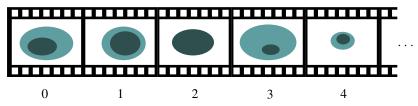
- $\exists \varphi =$ "always held" φ
- $\Leftrightarrow \varphi$ = "in the past" φ
- $\ominus \varphi$ = "previously" φ
- $\varphi \mathcal{S} \psi = \varphi$ "since" ψ
- $\varphi \mathcal{T} \psi = \varphi$ "triggered" ψ
- As we had with Equilibrium Logic:
 - A monotonic underlying logic: Temporal Here-and-There (THT)
 - 2 An ordering among models. Select minimal models.

Sequences

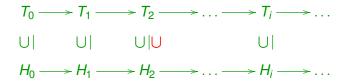
 $\bullet\,$ In standard LTL, interpretations are ∞ sequences of sets of atoms

					F
{p, q}	{ <i>p</i> }	<i>{q}</i>	{ }	{p, q}	
0	1	2	3	4	

• In THT we will have ∞ sequences of HT interpretations



We define an ordering among sequences H ≤ <T when



Definition (THT-interpretation)

is a pair of sequences of sets of atoms $\langle \mathbf{H}, \mathbf{T} \rangle$ with $\mathbf{H} \leq \mathbf{T}$.

Temporal Here-and-There (THT)

 $\langle \mathbf{H}, \mathbf{T} \rangle, i \vDash \varphi \iff "\varphi \text{ is proved at } i"$ $\langle \mathbf{T}, \mathbf{T} \rangle, i \vDash \varphi \iff "\varphi \text{ potentially true at } i" \Leftrightarrow \mathbf{T}, i \vDash \varphi \text{ in LTL}$

An interpretation *M* = ⟨H, T⟩ satisfies α at situation *i*, written *M*, *i* ⊨ α

α	$M, i \vDash \alpha$ when	
an atom p	$p \in H_i$	
\wedge,\vee	as usual	
$\varphi \rightarrow \psi$	T , $i \models \varphi \rightarrow \psi$ in LTL and $\langle \mathbf{H}, \mathbf{T} \rangle, i \models \varphi$ implies $\langle \mathbf{H}, \mathbf{T} \rangle, i \models \psi$	

Temporal Here-and-There (THT)

 $\langle \mathbf{H}, \mathbf{T} \rangle, i \vDash \varphi \quad \Leftrightarrow \quad "\varphi \text{ is proved at } i"$

 $\langle \mathbf{T}, \mathbf{T} \rangle, i \vDash \varphi \quad \Leftrightarrow \quad "\varphi \text{ potentially true at } i" \quad \Leftrightarrow \quad \mathbf{T}, i \vDash \varphi \text{ in LTL}$

An interpretation *M* = ⟨H, T⟩ satisfies α at situation *i*, written *M*, *i* ⊨ α

 $\begin{array}{c|c} \alpha & M, i \models \alpha \text{ when } \dots \\ \hline \bigcirc \varphi & (M, i+1) \models \varphi \\ \ominus \varphi & i = 0 \text{ or } i > 0, (M, i-1) \models \varphi \\ \hline \ominus \varphi & i > 0 \text{ and } (M, i-1) \models \varphi \\ \hline \Box \varphi & \forall j \ge i \text{ such that } M, j \models \varphi \\ \hline \forall \varphi & \forall j, 0 \le j \le i \text{ such that } M, j \models \varphi \\ \hline \diamondsuit \varphi & \exists j \ge i \text{ such that } M, j \models \varphi \\ \hline \Rightarrow \varphi & \exists j, 0 \le j \le i \text{ such that } M, j \models \varphi \\ \hline \vdots & \vdots \end{array}$

- *M* is a model of a theory Γ when $M, 0 \models \alpha$ for all $\alpha \in \Gamma$
- Again, we fix potential truth and minimise proved conclusions

Definition (Temporal Equilibrium Model)

of a theory Γ is a model $M = \langle \mathbf{T}, \mathbf{T} \rangle$ of Γ such that there is no $\mathbf{H} < \mathbf{T}$ satisfying $\langle \mathbf{H}, \mathbf{T} \rangle$, $0 \models \Gamma$.

Some examples

Example 1: TEL models of □(¬p → ○p). It's like an infinite program:

$$\neg p \rightarrow \bigcirc p$$

$$\neg \bigcirc p \rightarrow \bigcirc^2 p$$

$$\neg \bigcirc^2 p \rightarrow \bigcirc^3 p$$

$$\vdots$$

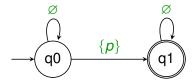
• TEL models have the form

corresponding to LTL models of $\neg p \land \Box(\neg p \leftrightarrow \bigcirc p)$.

 Example 2: consider TEL models of <>p is like p ∨ ○p ∨ ○○p ∨ …
 TEL models have the form

corresponding to LTL models of $\neg p \mathcal{U} (p \land \bigcirc \Box \neg p)$

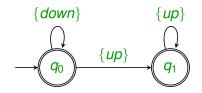
 In ASP terms, how can we represent temporal stable models? infinitely long, infinitely many



 Answer: using Büchi automata. An infinite-length word is accepted iff it visits some acceptance state infinitely often

Some examples

• Example: a lamp switch



We never get $up \land down$ Once up is true, it remains so forever

Aguado, Cabalar, Diéguez, Pérez, Vidal

In the paper you will find

- A translation of TEL(+past) into Quantified Equilibrium Logic (Kamp's translation, in fact)
- A (Tseitin-like) method to remove past operators by introducing auxiliary atoms

Kamp's translation

$$\begin{array}{cccc} [\bot]_t & \stackrel{def}{=} & \bot \\ [p]_t & \stackrel{def}{=} & p(t), \text{ with } p \in At. \\ \neg, \land, \lor, \rightarrow & \stackrel{def}{=} & \text{propagates to subformulas} \\ [\bigcirc \alpha]_t & \stackrel{def}{=} & [\alpha]_{t+1} \\ [\alpha \ \mathcal{U} \ \beta]_t & \stackrel{def}{=} & \exists x \ge t. \ ([\beta]_x \land \forall y \in [t, x). \ [\alpha]_y) \\ [\alpha \ \mathcal{S} \ \beta]_t & \stackrel{def}{=} & \exists \ 0 \le x \le t. \ ([\beta]_x \land \forall y \in (x, t]. \ [\alpha]_y) \end{array}$$

Theorem

 $[\cdot]_t$ is sound both for THT and TEL

Removing past operators

- Each "past" subformula χ is replaced by a new auxiliary proposition \mathbf{L}_{χ}
- Then, we add the axioms

$$df(\chi) \stackrel{\text{def}}{=} \begin{cases} \Box(\bigcirc \mathbf{L}_{\chi} \leftrightarrow \varphi) \land (\mathbf{L}_{\chi} \leftrightarrow \top) & \text{if } \gamma = \Theta\varphi; \\ \Box(\bigcirc \mathbf{L}_{\chi} \leftrightarrow \varphi) \land (\mathbf{L}_{\chi} \leftrightarrow \bot) & \text{if } \gamma = \widehat{\Theta}\varphi; \\ \Box(\bigcirc \mathbf{L}_{\chi} \leftrightarrow \bigcirc \psi \lor (\bigcirc \varphi \land \mathbf{L}_{\chi})) \land (\mathbf{L}_{\chi} \leftrightarrow \psi) & \text{if } \gamma = (\varphi \ S \ \psi); \\ \Box(\bigcirc \mathbf{L}_{\chi} \leftrightarrow \bigcirc \psi \land (\bigcirc \varphi \lor \mathbf{L}_{\chi})) \land (\mathbf{L}_{\chi} \leftrightarrow \psi) & \text{if } \gamma = (\varphi \ T \ \psi). \end{cases}$$

Theorem

THT(+past) models of Γ = (pure future) THT models of translation Γ' (after ignoring auxiliary atoms).

- Implementation on current tools
- Use for incremental ASP (clingo)
- Analysis of fundamental properties

Temporal Equilibrium Logic with Past Operators Aguado, Cabalar, Diéguez, Pérez & Vidal

Thanks for your attention

Thank you for your participation!

March 3rd-4th, 2016 Toulouse, France