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Temporal Equilibrium Logic (TEL)

[Cabalar and Vega 2007]
» Answering Set Programming (ASP) capabilities 4+ temporal
features of standard LTL.
» For temporal reasoning not representable in ASP.

» Temporal extension of propositional Equilibrium Logic [Pearce
1996], the latter

» well-known logical foundation of ASP;
» generalizes stables models of ASP for arbitrary propositional
theories.

» Non-monotonic semantics: selection among the models of the
monotonic Temporal logic of Here-and-There (THT).

THT = LTL + intuitionistic logic of Here-and-There (HT)
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Temporal logic of Here and There (THT)

pu=Llplone|leVele—=p|Xp|pUp | Ry peP

Derived modalities:

- :=p — 1 (negation expressed in terms of implication)
Ti=-1

Fo:=TUg (eventually)

Gy := LRy (always)



THT semantics

LTL interpretation: infinite word over 2%

THT interpretation: (H,T) suchthat HC T

\_/ ‘There’ LTL-interpretation

‘Here’ LTL-interpretation

HC T means H(i) C T(4) for all ¢ > 0



THT semantics

LTL interpretation: infinite word over 2%

THT interpretation: (H,T) suchthat HC T

\_/ ‘There’ LTL-interpretation

‘Here’ LTL-interpretation

HC T means H(i) C T(4) for all ¢ > 0

(H,T) is total if H=T



THT semantics
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THT basic properties

(H’T)JF&S@ # (HvT)vi):_‘sp
HTiEe = (T,T)ike
(T.THEe & TRy

» Dual temporal modalities independent one from the other one

(HvT)7i ': Fo & (H,T),i ': =G-p
(HvT)7i ':¢U§0 & (H7T)7i ):ﬂ(ﬂf‘/}R_‘@)

» THT satisfiability is PSPACE-complete [Cabalar and Demri 2011]
(the same complexity as LTL satisfiability [Sistla and Clarke 1985]).
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Temporal Equilibrium Logic (TEL)

Non-monotonic semantics: restriction of THT to a subclass of models

A TEL model of ¢ is a total THT model (T, T) of ¢
such that
HC T implies (H, T) = ¢
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Temporal Equilibrium Logic (TEL)

Non-monotonic semantics: restriction of THT to a subclass of models

A TEL model of ¢ is a total THT model (T, T) of ¢
such that
HC T implies (H, T) = ¢

» TEL models: temporal generalization of stable models in
propositional ASP.
Negation interpreted as default negation in logic programs.
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Temporal Equilibrium Logic (TEL)

Non-monotonic semantics: restriction of THT to a subclass of models

A TEL model of ¢ is a total THT model (T, T) of ¢
such that
HC T implies (H, T) = ¢

» TEL models: temporal generalization of stable models in
propositional ASP.
Negation interpreted as default negation in logic programs.

G(=p — Xp)

Time 0, =p — Xp: p false by default, Xp holds.
Time 1, p and —p — Xp: p true.
Time 2, -p — Xp: ...

The unique TEL model is (T, T) where T =0, {p},0, {p},...
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Non-existence of TEL models

LTL satisfiability & TEL satisfiability
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Non-existence of TEL models

LTL satisfiability & TEL satisfiability

» Use of nested implication:
(necessary for non-existence of stable models in Equilibrium Logic)

G(—p —p)

T = {p}* unique LTL model, but (¢, {p}*) is a THT model.
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Non-existence of TEL models

LTL satisfiability & TEL satisfiability

» Use of nested implication:
(necessary for non-existence of stable models in Equilibrium Logic)

G(-p — p)
T = {p}* unique LTL model, but (0, {p}*) is a THT model.

» No finite justification for minimal knowledge:
GFp
LTL/THT satisfiable but no TEL model.
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Investigated problems

» Complexity of TEL satisfiability.
» Systematic analysis of natural THT fragments:

/_\ bound on implication nesting depth
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\/ allowed temporal operators

bound on temporal nesting depth



Investigated problems

» Complexity of TEL satisfiability.
» Systematic analysis of natural THT fragments:

/_\ bound on implication nesting depth

THT?(O1, Os, ....)

\/ allowed temporal operators

bound on temporal nesting depth

» Complexity of minimal LTL satisfiability.
An LTL model T of ¢ is minimal if H =1 ¢ for all H C T.



EXPSPACE-completeness for TEL satisfiability

TEL satisfiability is known to be in EXPSPACE [Cabalar and Demri 2011].
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EXPSPACE-completeness for TEL satisfiability

TEL satisfiability is known to be in EXPSPACE [Cabalar and Demri 2011].

Theorem (EXPSPACE lower bounds)

TEL satisfiability is EXPSPACE-complete even for the fragments

THTL(F,G,...)
THT(G,...)
THT™(U,...)

m > 2 (implication nesting depth) and k > 2 (temporal nesting depth)

EXPSPACE-hardness for THT3(F, G) is surprising because
» LTL/THT satisfiability of THT(F, G) is NP-complete
[Sistla and Clarke 1985, Cabalar and Demri 2011]

» Checking equilibrium models for HT! formulas is NP-complete.
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EXPSPACE-hardness for THT3(F, G) (no nesting of implication)

Polynomial-time reduction from a domino tiling problem for grids with
exponential number of columns.

—— —set of colors

1= <Ca A? n, dinita dﬁnal)
\'& domino types
set of domino types: tuples of four colors

Tilings of Z: grids with 2" columns and k rows (for some k) such that

Each cell contains a domino type;

v

the first cell contains d;,;s;
the last cell is the unique one containing df,q;
adjacent cells have the same color on the shared edge.

vV vy
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EXPSPACE-hardness for THT3(F, G) (no nesting of implication)

Polynomial-time reduction from a domino tiling problem for grids with
exponential number of columns.

—— —set of colors

1= <Ca A? n, dinita dﬁnal)
\'& domino types
set of domino types: tuples of four colors

Tilings of Z: grids with 2" columns and k rows (for some k) such that
» Each cell contains a domino type;
» the first cell contains d;,;
» the last cell is the unique one containing df,q;
» adjacent cells have the same color on the shared edge.
We construct o7 € THTA(F, G) such that

o7 is TEL satisfiable < there is a tiling of 7
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EXPSPACE-hardness for THT3(F, G) (no nesting of implication)

Encoding of tilings of Z:

Pyain =AU [1,77,] X {0,1} U {$}

» Cells with content d € A and column number i € [0,2" — 1]
encoded by finite words in

{100} {(n,ba)} T
b1,...,by is the binary encoding of column number i.

» Tilings encoded by finite words over Pjsayy listing the encodings
of rows from left to right, separated by occurrences of $.

929



EXPSPACE-hardness for THT3(F, G) (no nesting of implication)

We construct ¢z over P = Pyay U Prag U {u}

¢z = oprc A (UV Ppad)
wpre captures the pseudo-tiling codes (PTC) (H, T):

» T and H agree on P4y and for all 4, T(i) N Pyazn is a singleton;
» either T(i) O PragU{u} for all ¢ ((H, T) is good),

oru ¢ T(0) and T(i) N Prag is a singleton;
» if H# T, u ¢ H(0) and H(7) N Prag is a singleton.
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EXPSPACE-hardness for THT3(F, G) (no nesting of implication)

We construct ¢z over P = Pyay U Prag U {u}

o1 =pprc N (WV Ppaq)

wpre captures the pseudo-tiling codes (PTC) (H, T):

» T and H agree on P4y and for all 4, T(i) N Pyazn is a singleton;
» either T(i) O PragU{u} for all ¢ ((H, T) is good),

oru ¢ T(0) and T(i) N Prag is a singleton;
» if H# T, u ¢ H(0) and H(7) N Prag is a singleton.

» Unboundness: for infinitely many i, u € H(7).
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EXPSPACE-hardness for THT3(F, G) (no nesting of implication)

We construct ¢z over P = Pyay U Prag U {u}

o1 =pprc N (WV Ppaq)

wpre captures the pseudo-tiling codes (PTC) (H, T):

» T and H agree on P4y and for all 4, T(i) N Pyazn is a singleton;
» either T(i) O PragU{u} for all ¢ ((H, T) is good),

oru ¢ T(0) and T(i) N Prag is a singleton;
» if H# T, u ¢ H(0) and H(7) N Prag is a singleton.

» Unboundness: for infinitely many i, u € H(7).

(T, T) is non-good: there is non-total PTC (H, T) s.t. H and T agree on P \ {u}.

26



EXPSPACE-hardness for THT3(F, G) (no nesting of implication)

We construct ¢z over P = Pyay U Prag U {u}

o1 =pprc N (WV Ppaq)

wpre captures the pseudo-tiling codes (PTC) (H, T):

» T and H agree on P4y and for all 4, T(i) N Pyazn is a singleton;
» either T(i) O PragU{u} for all ¢ ((H, T) is good),
oru ¢ T(0) and T(i) N Prag is a singleton;
» if H# T, u ¢ H(0) and H(7) N Prag is a singleton.
» Unboundness: for infinitely many i, u € H(7).
(T, T) is non-good: there is non-total PTC (H, T) s.t. H and T agree on P \ {u}.

Since ppqq is over P\ {u}.
Remark: every TEL model of 7 is a good PTC.
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EXPSPACE-hardness for THT3(F, G) (no nesting of implication)

o1 = pprc A (UV Phad)

» for a good total PTC (T, T), no prefix of T encodes a tiling <
there is non-total PTC (H, T) satisfying ¢paq-
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EXPSPACE-hardness for THT3(F, G) (no nesting of implication)

o1 = pprc A (UV Phad)

» for a good total PTC (T, T), no prefix of T encodes a tiling <
there is non-total PTC (H, T) satisfying ¢paq-
» tag propositions mark local portions of H: for checking that a bad
condition is satisfied.
» goodness of (T, T) is crucial for ensuring the for each bad condition
B in T, there is a non-total PTC (H, T) witnessing B.
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EXPSPACE-hardness for THT3(F, G) (no nesting of implication)

o1 = pprc A (UV Phad)

» for a good total PTC (T, T), no prefix of T encodes a tiling <
there is non-total PTC (H, T) satisfying ¢paq-

» tag propositions mark local portions of H: for checking that a bad
condition is satisfied.

» goodness of (T, T) is crucial for ensuring the for each bad condition
B in T, there is a non-total PTC (H, T) witnessing B.

Lemma

The TEL models of @7 are the total good PTC (T, T) such that some
prefix of T encodes a tiling of T.

w7 is TEL satisfiable < there is a tiling of 7
20



Remaining main THT fragments

» Using only temporal modalities in {X, F}.
» No nesting of temporal modalities.

» No nesting of implication.
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Using only temporal modalities X and F
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Using only temporal modalities X and F

(T, T) is almost-empty if (*) for some i and for all k >, T(k) = 0.
The size of (T, T) is the smallest i satisfying (*).
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Using only temporal modalities X and F

(T, T) is almost-empty if (*) for some i and for all k >, T(k) = 0.
The size of (T, T) is the smallest i satisfying (*).

Theorem (Small size model property for THT(X, F))

¢ € THT(X,F), ¢ is TEL satisfiable = ¢ has an almost-empty TEL
model of size at most |p|3.
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Using only temporal modalities X and F

(T, T) is almost-empty if (*) for some i and for all k >, T(k) = 0.
The size of (T, T) is the smallest ¢ satisfying (*).

Theorem (Small size model property for THT(X, F))

¢ € THT(X,F), ¢ is TEL satisfiable = ¢ has an almost-empty TEL
model of size at most |p|3.

Corollary
TEL satisfiability of THT(X, F) is Yo-complete.©
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Using only temporal modalities X and F

(T, T) is almost-empty if (*) for some i and for all k >, T(k) = 0.
The size of (T, T) is the smallest ¢ satisfying (*).

Theorem (Small size model property for THT(X, F))

¢ € THT(X,F), ¢ is TEL satisfiable = ¢ has an almost-empty TEL
model of size at most |p|3.

Corollary
TEL satisfiability of THT(X, F) is Yo-complete.©

» LTL/THT satisfiability of THT (X, F) is already PSPACE-complete
[Sistla et Clarke 1985, Cabalar et Demri 2011]

For THT(X,F), LTL/THT satisfiability is harder than TEL satisfiability!
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No nesting of temporal modalities

» LTL/THT satisfiability of THT; is NP-complete
[Demri et al. 2002, Cabalar et al. 2007]

» TEL satisfiability of THT; is NEXPTIME-complete

Q7



No nesting of temporal modalities

» LTL/THT satisfiability of THT; is NP-complete
[Demri et al. 2002, Cabalar et al. 2007]

» TEL satisfiability of THT; is NEXPTIME-complete
» Untractable fragments of THT;: )

THTY'(F,G,...)
THT"(U,...) NEXPTIME-complete
THT™(R,...)

m > 2 (implication nesting depth)
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No nesting of temporal modalities

» LTL/THT satisfiability of THT; is NP-complete
[Demri et al. 2002, Cabalar et al. 2007]

» TEL satisfiability of THT; is NEXPTIME-complete
» Untractable fragments of THT;: )

THTY'(F,G,...)
THT"(U,...) NEXPTIME-complete
THT™(R,...)

m > 2 (implication nesting depth)
» Tractable fragments of THT: ©

THT,(X,F)

y-complet
THT, (X, G) } 2reompiete

THT; NP-complete
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No nesting of implication (negation expressed in terms of implication)

TEL satisfiability of THT! is EXPSPACE-complete

» Untractable fragments of THT!: (&)
THT}n(F7 G,...) is EXPSPACE-complete

m > 2 (temporal nesting depth)
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No nesting of implication (negation expressed in terms of implication)

TEL satisfiability of THT! is EXPSPACE-complete

» Untractable fragments of THT!: ©
THTL (F,G,...) is EXPSPACE-complete
m > 2 (temporal nesting depth)
» Tractable fragments of THT": ©

THT! NP-complete

THTY(X,R)

PSPACE-complet
THTL(X,U) } compiete

A1



No nesting of implication: the fragment THT*(X,R)

Remark:

¢ € THT!,

T minimal LTL model of ¢ } = (T, T) is a TEL model of ¢
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No nesting of implication: the fragment THT*(X,R)

Remark:

@ € THTH,

T minimal LTL model of ¢ } = (T,T) is a TEL model of ¢

Lemma (Main result for THT*(X,R))

An LTL satisfiable THT(X, R) formula has a minimal LTL model.
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No nesting of implication: the fragment THT*(X,R)

Remark:

@ € THTH,

T minimal LTL model of ¢ } = (T,T) is a TEL model of ¢

Lemma (Main result for THT*(X,R))
An LTL satisfiable THT(X, R) formula has a minimal LTL model.

Corollary
For THTY(X,R), LTL satisfiability = TEL satisfiability.
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No nesting of implication: the fragment THT'(X, U)

Remark:
¢ € THT!,

T minimal LTL model of ¢ } = (T, T) is a TEL model of ¢
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No nesting of implication: the fragment THT'(X, U)

Remark:
@ € THTY,

T minimal LTL model of ¢ } = (T, T) is a TEL model of ¢

Lemma (Properties of THT(X,U))

Every TEL model of a THT(X,U) formula is almost-empty.
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No nesting of implication: the fragment THT'(X, U)

Remark:
@ € THTY,
T minimal LTL model of ¢

} = (T,T) is a TEL model of ¢

Lemma (Properties of THT(X,U))
Every TEL model of a THT(X,U) formula is almost-empty.

Corollary (Main result for THT*(X,U))

Let o € THTH(X,U) and ¢ = p A FG /\ —p.
pEP ()
w is TEL satisfiable < 1) is LTL satisfiable

Proof: =) by the lemma above.
<) if 9 is LTL satisfiable, then ¢ has a minimal LTL model. By the

remark above, ¢ has a TEL model.
A7



No use of implication: the fragment THT

Remark: every THT? formula is LTL and THT satisfiable.

Theorem (Lower bound for THT®)
TEL satisfiability of THT® is PSPACE-hard.

Open question: the exact complexity of TEL satisfiability for THT.
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Minimal LTL satisfiability

Theorem

Minimal LTL satisfiability is EXPSPACE-complete.

Proof: Lower bound: the same reduction for the lower bound of TEL
satisfiability of THTL(F, G).

Upper bound: generalization of automata-theoretic approach for LTL
satisfiability.
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Minimal LTL satisfiability

Theorem
Minimal LTL satisfiability is EXPSPACE-complete.

Proof: Lower bound: the same reduction for the lower bound of TEL
satisfiability of THTL(F, G).

Upper bound: generalization of automata-theoretic approach for LTL
satisfiability.

» Minimal LTL satisfiability versus TEL satisfiability: different costs
for THT fragments.
» Example: for THT, minimal LTL satisfiability is NP-complete,
while TEL satisfiability is NEXPTIME-complete.



Discussion: wrap up

» Systematic analysis of complexity of TEL satisfiability for natural
THT fragments.

» No difference between implication (resp., temporal) nesting depth 2
and k£ > 2.

» THT(X,F): the unique tractable fragment with both nesting of
implication and nesting of temporal modalities.

» Different computational cost of dual temporal modalities.
Example: for THT(G), EXPSPACE-completeness; for THT(X, F),
Yo-completeness.



Discussion: wrap up

» Systematic analysis of complexity of TEL satisfiability for natural
THT fragments.

» No difference between implication (resp., temporal) nesting depth 2
and k£ > 2.

» THT(X,F): the unique tractable fragment with both nesting of
implication and nesting of temporal modalities.

» Different computational cost of dual temporal modalities.
Example: for THT(G), EXPSPACE-completeness; for THT(X, F),
Yo-completeness.

» Complexity of minimal LTL satisfiability.

» LTL over finite words: LTL satisfiability = minimal LTL satisfiability.
» LTL over infinite words: minimal LTL satisfiability exponentially
harder than LTL satisfiability.



Discussion: perspectives

» Expressiveness issues for TEL fragments:
» Kind of temporal problems expressible in tractable fragments.

» Is the syntactical hierarchy of considered THT fragments
semantically strict w.r.t. THT or TEL semantics?

Known results: the hierarchy of THT,,(U) fragments is strict w.r.t.
LTL semantics [Etessami et Wilke 1996].



Discussion: perspectives

» Expressiveness issues for TEL fragments:
» Kind of temporal problems expressible in tractable fragments.

» Is the syntactical hierarchy of considered THT fragments
semantically strict w.r.t. THT or TEL semantics?

Known results: the hierarchy of THT,,(U) fragments is strict w.r.t.
LTL semantics [Etessami et Wilke 1996].

» Characterization of TEL languages:

» Known results: TEL languages are w-regular [Cabalar et Demri 2011].
» Conjecture: TEL languages are LTL definable!
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