On the complexity of Temporal Equilibrium Logic

Laura Bozzelli^{*} David Pearce UPM, Madrid UPM, Madrid

LRC 2015, A Coruña

Temporal Equilibrium Logic (TEL)

[Cabalar and Vega 2007]

- ► Answering Set Programming (ASP) capabilities + temporal features of standard LTL.
- ► For temporal reasoning not representable in ASP.
- ► Temporal extension of propositional Equilibrium Logic [Pearce 1996], the latter
 - well-known logical foundation of ASP;
 - generalizes stables models of ASP for arbitrary propositional theories.
- ► Non-monotonic semantics: selection among the models of the monotonic Temporal logic of Here-and-There (THT).

THT = LTL + intuitionistic logic of Here-and-There (HT)

$\varphi ::= \bot \ | \ p \ | \ \varphi \wedge \varphi \ | \ \varphi \vee \varphi \ | \ \varphi \rightarrow \varphi \ | \ \mathsf{X} \varphi \ | \ \varphi \mathsf{U} \ \varphi \ | \ \varphi \mathsf{R} \ \varphi \qquad p \in P$

$\varphi ::= \bot \mid p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \to \varphi \mid \mathsf{X}\varphi \mid \varphi \mathsf{U}\varphi \mid \varphi \mathsf{R}\varphi \qquad p \in P$

Derived modalities:

$$\begin{split} \neg \varphi &:= \varphi \to \bot \quad (\text{negation expressed in terms of implication}) \\ \top &:= \neg \bot \\ \mathsf{F} \varphi &:= \top \mathsf{U} \varphi \quad (\text{eventually}) \\ \mathsf{G} \varphi &:= \bot \mathsf{R} \varphi \quad (\text{always}) \end{split}$$

LTL interpretation: infinite word over 2^P

 $\mathsf{H} \sqsubseteq \mathsf{T}$ means $\mathsf{H}(i) \subseteq \mathsf{T}(i)$ for all $i \ge 0$

LTL interpretation: infinite word over 2^P

THT interpretation: (H, T) such that $H \sqsubseteq T$ *(There' LTL-interpretation (Here' LTL-interpretation*

 $\mathsf{H} \sqsubseteq \mathsf{T}$ means $\mathsf{H}(i) \subseteq \mathsf{T}(i)$ for all $i \ge 0$

(H,T) is total if H = T

 $\mathsf{M}=(\mathsf{H},\mathsf{T})$

 $\begin{array}{ll} \mathsf{M}, i \not\models \bot \\ \mathsf{M}, i \not\models p & \Leftrightarrow p \in \mathsf{H}(i) \\ \mathsf{M}, i \not\models \varphi \lor \psi & \Leftrightarrow \text{either } \mathsf{M}, i \models \varphi \text{ or } \mathsf{M}, i \models \psi \\ \mathsf{M}, i \models \varphi \land \psi & \Leftrightarrow \mathsf{M}, i \models \varphi \text{ and } \mathsf{M}, i \models \psi \\ \mathsf{M}, i \models \varphi \to \psi & \Leftrightarrow \forall \mathsf{H}' \in \{\mathsf{H}, \mathsf{T}\}, \text{either } (\mathsf{H}', \mathsf{T}), i \not\models \varphi \text{ or } (\mathsf{H}', \mathsf{T}), i \models \psi \\ \mathsf{M}, i \models \varphi \varphi & \Leftrightarrow \mathsf{M}, i + 1 \models \varphi \\ \mathsf{M}, i \models \varphi \cup \psi & \Leftrightarrow \exists j \ge i, \, \mathsf{M}, j \models \psi \text{ and } \forall i \le k < j, \, \mathsf{M}, k \models \varphi \\ \mathsf{M}, i \models \varphi \mathsf{R} \psi & \Leftrightarrow \forall j \ge i, \, \text{either } \mathsf{M}, j \models \psi \text{ or } \exists i \le k < j, \, \mathsf{M}, k \models \varphi \end{array}$

M is a THT model of φ if M, 0 $\models \varphi$

THT basic properties

 $(\mathsf{H},\mathsf{T}), i \not\models \varphi \quad \not\Rightarrow \quad (\mathsf{H},\mathsf{T}), i \models \neg \varphi$ $(\mathsf{H},\mathsf{T}), i \models \varphi \quad \Rightarrow \quad (\mathsf{T},\mathsf{T}), i \models \varphi$ $(\mathsf{T},\mathsf{T}) \models \varphi \quad \Leftrightarrow \quad \mathsf{T} \models_{\mathsf{LTL}} \varphi$

THT basic properties

$$(\mathsf{H},\mathsf{T}), i \not\models \varphi \quad \not\Rightarrow \quad (\mathsf{H},\mathsf{T}), i \models \neg \varphi$$
$$(\mathsf{H},\mathsf{T}), i \models \varphi \quad \Rightarrow \quad (\mathsf{T},\mathsf{T}), i \models \varphi$$
$$(\mathsf{T},\mathsf{T}) \models \varphi \quad \Leftrightarrow \quad \mathsf{T} \models_{\mathsf{LTL}} \varphi$$

▶ Dual temporal modalities independent one from the other one

$$\begin{array}{ll} (\mathsf{H},\mathsf{T}),i\models\mathsf{F}\varphi & \Leftrightarrow & (\mathsf{H},\mathsf{T}),i\models\neg\mathsf{G}\neg\varphi \\ (\mathsf{H},\mathsf{T}),i\models\psi\mathsf{U}\varphi & \Leftrightarrow & (\mathsf{H},\mathsf{T}),i\models\neg(\neg\psi\mathsf{R}\neg\varphi) \end{array}$$

THT basic properties

$(H,T),i\not\models\varphi$	\Rightarrow	$(H,T),i\models\neg\varphi$
$(H,T),i\models\varphi$	\Rightarrow	$(T,T),i\models\varphi$
$(T,T)\models\varphi$	\Leftrightarrow	$T\models_{LTL}\varphi$

▶ Dual temporal modalities independent one from the other one

 $\begin{array}{ll} (\mathsf{H},\mathsf{T}),i\models\mathsf{F}\varphi & \Leftrightarrow & (\mathsf{H},\mathsf{T}),i\models\neg\mathsf{G}\neg\varphi \\ (\mathsf{H},\mathsf{T}),i\models\psi\mathsf{U}\,\varphi & \Leftrightarrow & (\mathsf{H},\mathsf{T}),i\models\neg(\neg\psi\mathsf{R}\neg\varphi) \end{array}$

 THT satisfiability is PSPACE-complete [Cabalar and Demri 2011] (the same complexity as LTL satisfiability [Sistla and Clarke 1985]).

Temporal Equilibrium Logic (TEL)

Non-monotonic semantics: restriction of THT to a subclass of models

A TEL model of φ is a total THT model (T, T) of φ such that $H \sqsubset T$ implies (H, T) $\not\models \varphi$

Temporal Equilibrium Logic (TEL)

Non-monotonic semantics: restriction of THT to a subclass of models

A TEL model of φ is a total THT model (T,T) of φ such that $\mathsf{H} \sqsubset \mathsf{T}$ implies $(\mathsf{H},\mathsf{T}) \not\models \varphi$

 TEL models: temporal generalization of stable models in propositional ASP.
Negation interpreted as default negation in logic programs. Non-monotonic semantics: restriction of THT to a subclass of models

A TEL model of φ is a total THT model (T,T) of φ such that $\mathsf{H} \sqsubset \mathsf{T}$ implies $(\mathsf{H},\mathsf{T}) \not\models \varphi$

► TEL models: temporal generalization of stable models in propositional ASP.

Negation interpreted as default negation in logic programs.

 $\mathsf{G}(\neg p \to \mathsf{X}p)$

Time 0, $\neg p \rightarrow Xp$: *p* false by default, Xp holds. Time 1, *p* and $\neg p \rightarrow Xp$: *p* true. Time 2, $\neg p \rightarrow Xp$: ...

The unique TEL model is (T,T) where $\mathsf{T} = \emptyset, \{p\}, \emptyset, \{p\}, \dots$

$\mathsf{LTL} \text{ satisfiability} \not\Rightarrow \mathsf{TEL} \text{ satisfiability}$

$\mathsf{LTL} \text{ satisfiability} \not\Rightarrow \mathsf{TEL} \text{ satisfiability}$

 Use of nested implication: (necessary for non-existence of stable models in Equilibrium Logic)

 $\mathsf{G}(\neg p \to p)$

 $\mathsf{T}=\{p\}^\omega$ unique LTL model, but $(\emptyset^\omega,\{p\}^\omega)$ is a THT model.

$\mathsf{LTL} \text{ satisfiability} \not\Rightarrow \mathsf{TEL} \text{ satisfiability}$

 Use of nested implication: (necessary for non-existence of stable models in Equilibrium Logic)

$$\mathsf{G}(\neg p \to p)$$

- $\mathsf{T}=\{p\}^\omega$ unique LTL model, but $(\emptyset^\omega,\{p\}^\omega)$ is a THT model.
- ▶ No finite justification for minimal knowledge:

$\operatorname{\mathsf{GF}} p$

 $\mathsf{LTL}/\mathsf{THT}$ satisfiable but no TEL model.

Investigated problems

► Complexity of TEL satisfiability.

► Systematic analysis of natural THT fragments:

 $\mathsf{THT}_{k}^{m}(O_{1},O_{2},\ldots)$ allowed temporal operators

- bound on temporal nesting depth

bound on implication nesting depth

Investigated problems

► Complexity of TEL satisfiability.

▶ Systematic analysis of natural THT fragments:

► Complexity of minimal LTL satisfiability. An LTL model T of φ is *minimal* if $H \not\models_{\mathsf{LTL}} \varphi$ for all $H \sqsubset \mathsf{T}$.

EXPSPACE-completeness for **TEL** satisfiability

TEL satisfiability is known to be in EXPSPACE [Cabalar and Demri 2011].

TEL satisfiability is known to be in EXPSPACE [Cabalar and Demri 2011].

Theorem (EXPSPACE lower bounds)

TEL satisfiability is EXPSPACE-complete even for the fragments $THT_{k}^{1}(F, G, ...)$ $THT_{k}^{m}(G, ...)$ $THT_{k}^{m}(U, ...)$ $m \geq 2 \text{ (implication nesting depth) and } k \geq 2 \text{ (temporal nesting depth)}$

EXPSPACE-hardness for $THT_2^1(F, G)$ is surprising because

- ► LTL/THT satisfiability of THT(F, G) is NP-complete [Sistla and Clarke 1985, Cabalar and Demri 2011]
- \blacktriangleright Checking equilibrium models for HT^1 formulas is NP-complete.

Polynomial-time reduction from a domino tiling problem for grids with exponential number of columns.

Tilings of \mathcal{I} : grids with 2^n columns and k rows (for some k) such that

- Each cell contains a domino type;
- the first cell contains d_{init} ;
- the last cell is the unique one containing d_{final} ;
- ▶ adjacent cells have the same color on the shared edge.

Polynomial-time reduction from a domino tiling problem for grids with exponential number of columns.

Tilings of \mathcal{I} : grids with 2^n columns and k rows (for some k) such that

- Each cell contains a domino type;
- the first cell contains d_{init} ;
- the last cell is the unique one containing d_{final} ;
- ▶ adjacent cells have the same color on the shared edge. We construct $\varphi_{\mathcal{I}} \in \mathsf{THT}_2^1(\mathsf{F},\mathsf{G})$ such that

 $\varphi_{\mathcal{I}}$ is TEL satisfiable \Leftrightarrow there is a tiling of \mathcal{I}

Encoding of tilings of \mathcal{I} :

$$P_{MAIN} = \Delta \cup [1, n] \times \{0, 1\} \cup \{\$\}$$

▶ Cells with content $d \in \Delta$ and column number $i \in [0, 2^n - 1]$ encoded by finite words in

$${d}^{+}{(1,b_1)}^{+}\dots{(n,b_n)}^{+}$$

 b_1, \ldots, b_n is the binary encoding of column number *i*.

▶ Tilings encoded by finite words over P_{MAIN} listing the encodings of rows from left to right, separated by occurrences of \$.

 $\varphi_{\mathcal{I}} = \varphi_{PTC} \land (u \lor \varphi_{bad})$

 φ_{PTC} captures the pseudo-tiling codes (PTC) (H, T):

- ▶ T and H agree on P_{MAIN} and for all $i, T(i) \cap P_{MAIN}$ is a singleton;
- ► either $\mathsf{T}(i) \supseteq P_{TAG} \cup \{u\}$ for all i ((H, T) is good), or $u \notin \mathsf{T}(0)$ and $\mathsf{T}(i) \cap P_{TAG}$ is a singleton;
- ▶ if $H \neq T$, $u \notin H(0)$ and $H(i) \cap P_{TAG}$ is a singleton.

 $\varphi_{\mathcal{I}} = \varphi_{PTC} \land (u \lor \varphi_{bad})$

 φ_{PTC} captures the pseudo-tiling codes (PTC) (H, T):

- ▶ T and H agree on P_{MAIN} and for all $i, T(i) \cap P_{MAIN}$ is a singleton;
- ► either $\mathsf{T}(i) \supseteq P_{TAG} \cup \{u\}$ for all i ((H, T) is good), or $u \notin \mathsf{T}(0)$ and $\mathsf{T}(i) \cap P_{TAG}$ is a singleton;
- ▶ if $H \neq T$, $u \notin H(0)$ and $H(i) \cap P_{TAG}$ is a singleton.
- Unboundness: for infinitely many $i, u \in H(i)$.

 $\varphi_{\mathcal{I}} = \varphi_{PTC} \land (u \lor \varphi_{bad})$

 φ_{PTC} captures the pseudo-tiling codes (PTC) (H, T):

- ▶ T and H agree on P_{MAIN} and for all $i, T(i) \cap P_{MAIN}$ is a singleton;
- ► either $\mathsf{T}(i) \supseteq P_{TAG} \cup \{u\}$ for all i ((H, T) is good), or $u \notin \mathsf{T}(0)$ and $\mathsf{T}(i) \cap P_{TAG}$ is a singleton;
- ▶ if $H \neq T$, $u \notin H(0)$ and $H(i) \cap P_{TAG}$ is a singleton.
- Unboundness: for infinitely many $i, u \in H(i)$.

 (T,T) is non-good: there is non-total PTC (H,T) s.t. H and T agree on $P \setminus \{u\}$.

 $\varphi_{\mathcal{I}} = \varphi_{PTC} \land (u \lor \varphi_{bad})$

 φ_{PTC} captures the pseudo-tiling codes (PTC) (H, T):

- ▶ T and H agree on P_{MAIN} and for all $i, T(i) \cap P_{MAIN}$ is a singleton;
- ► either $\mathsf{T}(i) \supseteq P_{TAG} \cup \{u\}$ for all i ((H, T) is good), or $u \notin \mathsf{T}(0)$ and $\mathsf{T}(i) \cap P_{TAG}$ is a singleton;
- ▶ if $H \neq T$, $u \notin H(0)$ and $H(i) \cap P_{TAG}$ is a singleton.
- Unboundness: for infinitely many $i, u \in H(i)$.

 (T,T) is non-good: there is non-total PTC (H,T) s.t. H and T agree on $P \setminus \{u\}$. Since φ_{bad} is over $P \setminus \{u\}$. **Remark:** every **TEL** model of $\varphi_{\mathcal{I}}$ is a good PTC. $\varphi_{\mathcal{I}} = \varphi_{PTC} \land (u \lor \varphi_{\textit{bad}})$

► for a good total PTC (T, T), no prefix of T encodes a tiling \Leftrightarrow there is non-total PTC (H, T) satisfying φ_{bad} .

 $\varphi_{\mathcal{I}} = \varphi_{PTC} \land (u \lor \varphi_{bad})$

- ► for a good total PTC (T, T), no prefix of T encodes a tiling \Leftrightarrow there is non-total PTC (H, T) satisfying φ_{bad} .
 - ▶ tag propositions mark local portions of H: for checking that a bad condition is satisfied.
 - ▶ goodness of (T, T) is crucial for ensuring the for each bad condition B in T, there is a non-total PTC (H, T) witnessing B.

 $\varphi_{\mathcal{I}} = \varphi_{PTC} \land (u \lor \varphi_{bad})$

- ► for a good total PTC (T, T), no prefix of T encodes a tiling \Leftrightarrow there is non-total PTC (H, T) satisfying φ_{bad} .
 - ▶ tag propositions mark local portions of H: for checking that a bad condition is satisfied.
 - ▶ goodness of (T, T) is crucial for ensuring the for each bad condition B in T, there is a non-total PTC (H, T) witnessing B.

Lemma

The TEL models of $\varphi_{\mathcal{I}}$ are the total good PTC (T, T) such that some prefix of T encodes a tiling of \mathcal{I} .

 $\varphi_{\mathcal{I}}$ is TEL satisfiable \Leftrightarrow there is a tiling of \mathcal{I}

30

- \blacktriangleright Using only temporal modalities in $\{X,F\}.$
- ▶ No nesting of temporal modalities.
- ▶ No nesting of implication.

 (T,T) is almost-empty if (*) for some *i* and for all $k \ge i$, $\mathsf{T}(k) = \emptyset$. The *size* of (T,T) is the smallest *i* satisfying (*).

 (T,T) is almost-empty if (*) for some *i* and for all $k \ge i$, $\mathsf{T}(k) = \emptyset$. The *size* of (T,T) is the smallest *i* satisfying (*).

Theorem (Small size model property for THT(X, F))

 $\varphi \in THT(X, F), \ \varphi \ is \ TEL \ satisfiable \Rightarrow \varphi \ has \ an \ almost-empty \ TEL \ model \ of \ size \ at \ most \ |\varphi|^3.$

 (T,T) is almost-empty if (*) for some *i* and for all $k \ge i$, $\mathsf{T}(k) = \emptyset$. The *size* of (T,T) is the smallest *i* satisfying (*).

Theorem (Small size model property for THT(X, F))

 $\varphi \in THT(X, F), \ \varphi \ is \ TEL \ satisfiable \Rightarrow \varphi \ has \ an \ almost-empty \ TEL \ model \ of \ size \ at \ most \ |\varphi|^3.$

Corollary

TEL satisfiability of THT(X, F) is Σ_2 -complete.

 (T,T) is almost-empty if (*) for some *i* and for all $k \ge i$, $\mathsf{T}(k) = \emptyset$. The *size* of (T,T) is the smallest *i* satisfying (*).

Theorem (Small size model property for THT(X, F))

 $\varphi \in THT(X, F), \ \varphi \ is \ TEL \ satisfiable \Rightarrow \varphi \ has \ an \ almost-empty \ TEL \ model \ of \ size \ at \ most \ |\varphi|^3.$

Corollary

TEL satisfiability of THT(X, F) is Σ_2 -complete.

► LTL/THT satisfiability of THT(X, F) is already PSPACE-complete [Sistla et Clarke 1985, Cabalar et Demri 2011]

For THT(X, F), LTL/THT satisfiability is harder than TEL satisfiability!

No nesting of temporal modalities

- ► LTL/THT satisfiability of THT₁ is NP-complete [Demri et al. 2002, Cabalar et al. 2007]
- ▶ TEL satisfiability of THT_1 is NEXPTIME-complete

No nesting of temporal modalities

- ► LTL/THT satisfiability of THT₁ is NP-complete [Demri et al. 2002, Cabalar et al. 2007]
- ▶ TEL satisfiability of THT_1 is $\mathsf{NEXPTIME}$ -complete
 - Untractable fragments of THT_1 : \bigcirc

 $\left. \begin{array}{c} \mathsf{THT}_1^{\boldsymbol{m}}(\mathsf{F},\mathsf{G},\ldots) \\ \mathsf{THT}_1^{\boldsymbol{m}}(\mathsf{U},\ldots) \\ \mathsf{THT}_1^{\boldsymbol{m}}(\mathsf{R},\ldots) \end{array} \right\} \text{ NEXPTIME-complete}$

 $m \geq 2$ (implication nesting depth)

No nesting of temporal modalities

- ► LTL/THT satisfiability of THT₁ is NP-complete [Demri et al. 2002, Cabalar et al. 2007]
- ▶ TEL satisfiability of THT_1 is $\mathsf{NEXPTIME}$ -complete
 - Untractable fragments of THT_1 : \bigcirc

 $\left. \begin{array}{c} \mathsf{THT}_1^{\boldsymbol{m}}(\mathsf{F},\mathsf{G},\ldots) \\ \mathsf{THT}_1^{\boldsymbol{m}}(\mathsf{U},\ldots) \\ \mathsf{THT}_1^{\boldsymbol{m}}(\mathsf{R},\ldots) \end{array} \right\} \text{ NEXPTIME-complete}$

- $m \ge 2$ (implication nesting depth)
- Tractable fragments of THT_1 : \bigcirc

$$\begin{array}{c} \mathsf{THT}_{1}(\mathsf{X},\mathsf{F}) \\ \mathsf{THT}_{1}(\mathsf{X},\mathsf{G}) \end{array} \right\} \hspace{0.2cm} \Sigma_{2} \text{-complete} \\ \\ \mathsf{THT}_{1}^{1} \hspace{0.2cm} \mathsf{NP}\text{-complete} \end{array}$$

39

No nesting of implication (negation expressed in terms of implication) $\label{eq:negative}$

 $\mathsf{TEL}\xspace$ satisfiability of THT^1 is $\mathsf{EXPSPACE}\text{-complete}$

▶ Untractable fragments of THT^1 : \bigcirc

 $\mathsf{THT}_m^1(\mathsf{F},\mathsf{G},\ldots)$ is EXPSPACE-complete

 $m \geq 2$ (temporal nesting depth)

TEL satisfiability of THT^1 is $\mathsf{EXPSPACE}$ -complete

▶ Untractable fragments of THT^1 : \bigcirc

 $\mathsf{THT}_m^1(\mathsf{F},\mathsf{G},\ldots)$ is EXPSPACE-complete

 $m \ge 2$ (temporal nesting depth)

▶ Tractable fragments of THT^1 : ③

 $\left. \begin{array}{ll} \mathsf{THT}_1^1 & \mathsf{NP}\text{-complete} \\ \\ \mathsf{THT}^1(\mathsf{X},\mathsf{R}) \\ \\ \mathsf{THT}^1(\mathsf{X},\mathsf{U}) \end{array} \right\} \quad \mathsf{PSPACE}\text{-complete} \end{array}$

No nesting of implication: the fragment $\mathsf{THT}^1(\mathsf{X},\mathsf{R}\,)$

Remark:

$$\left. \begin{array}{l} \varphi \in \mathsf{THT}^1, \\ \mathsf{T} \text{ minimal LTL model of } \varphi \end{array} \right\} \ \Rightarrow \ (\mathsf{T},\mathsf{T}) \text{ is a TEL model of } \varphi \end{array}$$

Remark:

$$\left. \begin{array}{l} \varphi \in \mathsf{THT}^1, \\ \mathsf{T} \text{ minimal LTL model of } \varphi \end{array} \right\} \ \Rightarrow \ (\mathsf{T},\mathsf{T}) \text{ is a TEL model of } \varphi \end{array} \right\}$$

Lemma (Main result for $THT^{1}(X, R)$)

An LTL satisfiable $THT^1(X, R)$ formula has a minimal LTL model.

Remark:

$$\left. \begin{array}{l} \varphi \in \mathsf{THT}^1, \\ \mathsf{T} \text{ minimal LTL model of } \varphi \end{array} \right\} \ \Rightarrow \ (\mathsf{T},\mathsf{T}) \text{ is a TEL model of } \varphi \end{array} \right\}$$

Lemma (Main result for $THT^1(X, R)$)

An LTL satisfiable $THT^1(X, R)$ formula has a minimal LTL model.

Corollary

For $THT^1(X, R)$, LTL satisfiability = TEL satisfiability.

No nesting of implication: the fragment $THT^{1}(X, U)$

$\begin{array}{c} \textbf{Remark:} \\ \varphi \in \mathsf{THT}^1, \\ \mathsf{T} \text{ minimal LTL model of } \varphi \end{array} \right\} \hspace{0.2cm} \Rightarrow \hspace{0.2cm} (\mathsf{T},\mathsf{T}) \text{ is a TEL model of } \varphi$

No nesting of implication: the fragment $THT^{1}(X, U)$

Remark: $\varphi \in \mathsf{THT}^1,$ $\mathsf{T} \text{ minimal LTL model of } \varphi$ \Rightarrow (T, T) is a TEL model of φ

Lemma (Properties of THT(X, U))

Every TEL model of a THT(X, U) formula is almost-empty.

No nesting of implication: the fragment $THT^{1}(X, U)$

Remark: $\varphi \in \mathsf{THT}^1,$ $\mathsf{T} \text{ minimal LTL model of } \varphi \rightarrow (\mathsf{T},\mathsf{T}) \text{ is a TEL model of } \varphi$

Lemma (Properties of THT(X, U))

Every TEL model of a THT(X, U) formula is almost-empty.

Corollary (Main result for $THT^1(X, U)$)

Let $\varphi \in THT^1(X, U)$ and $\psi = \varphi \wedge FG \bigwedge_{p \in P(\varphi)} \neg p$. φ is TEL satisfiable $\Leftrightarrow \psi$ is LTL satisfiable

Proof: \Rightarrow) by the lemma above.

 \Leftarrow) if ψ is LTL satisfiable, then φ has a minimal LTL model. By the remark above, φ has a TEL model.

No use of implication: the fragment THT^0

Remark: every THT^0 formula is LTL and THT satisfiable.

Theorem (Lower bound for THT^0) TEL satisfiability of THT^0 is PSPACE-hard.

Open question: the exact complexity of TEL satisfiability for THT^0 .

Theorem

Minimal LTL satisfiability is EXPSPACE-complete.

Proof: Lower bound: the same reduction for the lower bound of TEL satisfiability of $\mathsf{THT}_2^1(\mathsf{F},\mathsf{G})$.

Upper bound: generalization of automata-theoretic approach for LTL satisfiability.

Theorem

Minimal LTL satisfiability is EXPSPACE-complete.

Proof: Lower bound: the same reduction for the lower bound of TEL satisfiability of $THT_2^1(F, G)$.

Upper bound: generalization of automata-theoretic approach for LTL satisfiability.

- Minimal LTL satisfiability versus TEL satisfiability: different costs for THT fragments.
 - ► Example: for THT₁, minimal LTL satisfiability is NP-complete, while TEL satisfiability is NEXPTIME-complete.

Discussion: wrap up

- Systematic analysis of complexity of TEL satisfiability for natural THT fragments.
 - ▶ No difference between implication (resp., temporal) nesting depth 2 and k > 2.
 - ► THT(X, F): the unique tractable fragment with both nesting of implication and nesting of temporal modalities.
 - Different computational cost of dual temporal modalities. Example: for THT(G), EXPSPACE-completeness; for THT(X, F), Σ₂-completeness.

Discussion: wrap up

- Systematic analysis of complexity of TEL satisfiability for natural THT fragments.
 - ▶ No difference between implication (resp., temporal) nesting depth 2 and k > 2.
 - ► THT(X, F): the unique tractable fragment with both nesting of implication and nesting of temporal modalities.
 - Different computational cost of dual temporal modalities. Example: for THT(G), EXPSPACE-completeness; for THT(X, F), Σ₂-completeness.
- ▶ Complexity of minimal LTL satisfiability.
 - ▶ LTL over *finite* words: LTL satisfiability = minimal LTL satisfiability.
 - ► LTL over infinite words: minimal LTL satisfiability exponentially harder than LTL satisfiability.

- ▶ Expressiveness issues for TEL fragments:
 - ▶ Kind of temporal problems expressible in tractable fragments.
 - ► Is the syntactical hierarchy of considered THT fragments semantically strict w.r.t. THT or TEL semantics?
 - Known results: the hierarchy of $\mathsf{THT}_m(\mathsf{U})$ fragments is strict w.r.t. LTL semantics [Etessami et Wilke 1996].

▶ Expressiveness issues for TEL fragments:

- ▶ Kind of temporal problems expressible in tractable fragments.
- ► Is the syntactical hierarchy of considered THT fragments semantically strict w.r.t. THT or TEL semantics?

Known results: the hierarchy of $\mathsf{THT}_m(\mathsf{U})$ fragments is strict w.r.t. LTL semantics [Etessami et Wilke 1996].

- ▶ Characterization of TEL languages:
 - ▶ Known results: TEL languages are ω -regular [Cabalar et Demri 2011].
 - ▶ Conjecture: TEL languages are LTL definable!

MANY THANKS ©

