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Abstract

In this paper we propose a spatial ontology for rea-
soning about holes, rigid objects and strings, taking a
classical puzzle as a motivating example. In this ontol-
ogy the domain is composed of spatial regions whereby
a theory about holes is defined over a mereological ba-
sis. We also assume primitives for representing shapes
of objects (including the string). From these primitives
we propose a sufficient condition for object’s penetra-
bility through holes. Additionally, a string is repre-
sented as a data structure defined upon a sequence of
sections limited by points where the string crosses itself
or points where it passes through a hole.

Introduction

Real life situations where we must deal with strings ty-
ing objects and passing through holes appear from time
to time in very different contexts. Examples range from
tying shoelaces, to handling ropes in a sailboat or or-
ganising the cable connections map inside an office, a
building or a whole city. Although humans show an
amazing intuition for solving problems of this nature,
a formal representation for reasoning about holes and
strings is still a relatively unexplored area. To under-
stand the problem, note for instance that using a fully
detailed mathematical model of the involved objects
does not seem feasible for computational purposes, let
alone when we consider deformable objects like a string.
Moreover, humans typically describe solutions to spa-
tial reasoning problems in terms of qualitative descrip-
tions instead. This is, in fact, the orientation followed
by Qualitative Spatial Reasoning (QSR) (Stock 1997),
a field that attempts the logical formalisation of spatial
knowledge based on primitive relations defined over el-
ementary spatial entities.

To obtain a suitable representation for strings and
holes we have adopted the following methodology. We
begin from specific formalisations of particular scenar-
ios, which usually imply a more abstract and simplified
description level, and advance them towards more gen-
eral representations to cover different domains, imply-
ing a more fine-grained ontology. As a starting point,
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puzzle-like examples constitute a good test bed, as they
offer a small number of objects while keeping enough
complexity for a challenging problem of KR.

Following this line, we take as a starting point the
work developed in (Cabalar & Santos 2006), which pre-
sented an automated solution to a classical string puz-
zle called Fisherman’s Folly (see Figure 1). To solve
the problem, the authors applied several strong as-
sumptions like identifying a single-holed object with its
unique hole, assuming that each hole always has two en-
try boundaries or ignoring that strings may form knots.
The treatment of knots, for instance, is unnecessary for
the final solution, but it may be reasonably objected
that there is no direct justification for discarding knots
from the very beginning, or that a slight change in the
puzzle goal could easily require handling knots.

In this paper we go one step further and remove these
assumptions to propose a more general ontology appli-
cable to other scenarios. On the one hand, we describe
a theory about holes defined over a mereological basis,
proposing a sufficient condition for object’s penetrabil-
ity through holes. In this way, we can derive infor-
mation of which objects can pass through a given hole,
something that was taken as given in (Cabalar & Santos
2006). On the other hand, we also extend the represen-
tation of strings used in (Cabalar & Santos 2006), mak-
ing a combination with the approach in (Takamatsu et
al. 2006) for dealing with knots. The goal of this pa-
per is solely to define the basic elements of an ontology
about rigid, flexible and holed object, therefore we leave
for future work the problem of representing actions and
change in this domain as well as the investigation of the
possible consequences of the resulting ontology.

The Fisherman’s Folly

The elements of the puzzle are a holed post (P ) fixed
to a wooden base (B), a string (Str), a ring (R), a
pair of spheres (S1, S2) and a pair of disks (D1,D2).
The spheres can be moved along the string, whereas
the disks are fixed at each string endpoint. The string
passes through the post’s hole in a way that one sphere
and one disk remain on each side of the post. It is worth
pointing out that the spheres are larger than the post’s
hole, therefore the string cannot be separated from the



post without cutting either the post, or the string, or
destroying one of the spheres. The disks and the ring, in
contrast, can pass through the post’s hole. In this work
we assume that neither the length nor the thickness
of the string constrain any solution to the puzzle, i.e.
the string is infinitely extensible and one-dimensional.
Relaxing these assumptions is a matter for future work.

(a) Initial (b) Goal

Figure 1: A spatial puzzle: the Fisherman’s Folly.

In the initial state (shown in Figure 1(a)) the post is
in the middle of the ring, which in its turn is supported
on the post’s base. The goal of this puzzle is to find
a sequence of transformations that, while maintaining
the physical integrity of the domain objects, allow us to
free the ring from the rest of objects, regardless their
final configuration. Figure 1(b) shows one possible goal
state. As we shall see, the representation for initial and
(one possible) goal states is shown, respectively, on line
0 and line 5 of Figure 2.

A crucial observation is that the puzzle actually deals
with four holes: the post hole (Ph), the ring hole Rh
and the two sphere holes Sh1 and Sh2. Note that
in a natural language description we would probably
identify holes with their host objects, saying that “the
string passes through the sphere” (hole) or that “the
post passes through the ring” (hole). Furthermore, we
would talk about “sliding the ring upwards the post,”
rather than “moving the post downwards the ring hole.”

In (Cabalar & Santos 2006) the puzzle entities
were classified into three different sorts: long objects,
regular objects and holes, corresponding in the puz-
zle to the sets {P, Str}, {R,S1, S2,D1,D2, B} and
{Ph,Rh, Sh1, Sh2}, respectively. A distinguishing fea-
ture of a long object x is that we usually identify the
two opposite extremities of its major axis. These ex-
tremities, denoted as x− and x+, respectively receive
the names of negative terminal and positive terminal of
x. As a thumb rule, when not stated, we assume in all
figures that rightmost or topmost extremities are pos-
itive, whereas leftmost or bottom are negative (where
the left-right dichotomy dominates the top-bottom one
to solve any ambiguity). To put an example of this no-
tation, the right disk D2 is linked to Str+, while the
post base B is linked to P−.

A second important observation is that a long ob-
ject may be simultaneously crossing several holes. In
fact, although the post just crosses Rh, when execut-
ing the puzzle’s solution, the string may be simulta-

neously passing through all the holes and, moreover,
it may cross the same hole several times. Thus, we
associate to each long object x a list Chain(x) col-
lecting the sequence of all hole crossings made by x
following, for instance, the arbitrary ordering from x−

to x+. Furthermore, the direction in which the string
crosses the hole is also relevant in order to provide an
unambiguous description of distinct puzzle states. To
understand why, just consider the partial configuration
represented in Figure 2(a). If we represent this situa-
tion using Chain(Str) = [. . . , Ph, Ph], then it would
not be possible to distinguish it from the state shown
in Figure 2(b), which clearly represents a substantially
different situation: the disk D2 is now to the right (or
positive side) of the post hole Ph. Therefore, in an
analogous way to long object terminals, we also denote
two poles1, h− and h+ per each hole h in the puzzle,
considering that in this case holes have only two en-
try boundaries. Thus, we can describe Chain(x) as
a list of (outgoing) hole poles – those through which
x exits when going from x− to x+. As a result,
Chain(Str) = [. . . , Ph−, Ph−] would represent Figure
2(a) whereas Chain(Str) = [. . . , Ph+, Ph+] would cor-
respond to the crossings in Figure 2(b).
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- + Str

D2

-

Str

Ph

+

- + Str

D2

-

Str

(a) (b)

Figure 2: Two distinct puzzle states.

Under this setting, the solution deals with two ele-
mentary actions: an action PassOb(t, p) for passing an
object terminal t towards a hole pole p, and an action
PassH(h, p) for passing the (object containing) hole
h towards the hole pole p. For brevity sake, we omit
here the detailed effects of these actions (see (Cabalar
& Santos 2006)), although they can be guessed from
the description of the puzzle’s solution in Figure 3. In
that figure, each state is identified by its sequence num-
ber plus the pair of lists Chain(P ) and Chain(Str) in
this order. The performed actions in each transition are
interlaced between each state i and the next one i + 1.

Note that State 5 has actually reached the goal since,
at this point, the ring hole Rh does not occur in any list,
i.e., it is not crossed by any long object. Rather than
the particular mechanics of the puzzle, our main con-
cern in this work is to analyse in more detail the spatial
knowledge representation used to obtain this solution.
For instance, it must be noticed that (Cabalar & San-
tos 2006) used additional information to constrain the
possible actions to be performed, including a predicate
CannotPass(x, h) to describe when an object x can-
not pass through a hole h. The information for this

1We follow the same thumb rule criterion of identifying
right or top as positive.



0 : [Rh+], [Sh+

1 , Ph+, Sh+

2 ]
PassOb(Str+, Ph−)

1 : [Rh+], [Sh+

1 , Ph+, Sh+

2 , Ph−]
PassOb(P+, R−) & PassH(Ph,R−)

2 : [ ], [Sh+

1 , Rh−, Ph+, Rh+, Sh+

2 , Rh−, Ph−, Rh+]
PassH(Sh2, Rh−)

3 : [ ], [Sh+

1 , Rh−, Ph+, Sh+

2 , Ph−, Rh+]
PassH(Rh,Ph+)

4 : [ ], [Sh+

1 , Ph+, Rh−, Sh+

2 , Rh+, Ph−]
PassH(Sh2, Rh+)

5 : [ ], [Sh+

1 , Ph+, Sh+

2 , Ph−]

Figure 3: A formal solution for the Fisherman’s puzzle.

predicate was assumed as given and had the form of an
explicit list of ground atoms. We claim that, with a
suitable representation for holes and objects, this pred-
icate should be derived. Furthermore, it should also
account for groups of objects rather than for a single
object x. To understand why, note that if we just con-
sider that the sphere S2 can pass through the ring hole
Rh, the action PassOb(Sh2, Rh−) (that is, moving S2

down the ring hole) could be performed in the initial
situation. But this movement is physically impossible,
since there would be a moment in which the post P
and the sphere S2 would cross Rh, and both objects
altogether cannot pass through the ring.

A theory about holes

In this section we follow the guidelines proposed in
(Varzi 1996; Casati & Varzi 1999) and construct a basic
ontology about holes using mereological relations.

The domain objects in this work are identified with
their occupancy regions. Holes are defined as the spatial
region that is part of the portion of an object’s comple-
ment that lies inside that object’s occupancy region.
We name this object the host of a hole.

There are at least three distinct types of holes: cavi-
ties, i.e. holes that are entirely hidden inside their hosts;
hollows, which are superficial depressions on the host;
and, perforating holes (or tunnels), which are holes that
have at least two distinct entrance boundaries. In this
paper we shall deal only with perforating holes, since
only these are relevant to the puzzle’s solutions2.

In the formalisation described below, holes are as-
sumed as open regions whose boundaries belong to
their host objects. The relationship between holes and
their hosts is formalised using the elementary relation:
H(h, x), meaning “h is a hole in the object x” (con-
versely, “x is the host of h”) (Casati & Varzi 1999).
For example, it is a fact about the puzzle domain de-
scribed above that H(Rh,R).

As we assumed that the space is only populated by

2Therefore, in the remainder of this paper we will use the
words: tunnels, perforating holes and holes interchangeably.

spatial regions, apart from the relation H/2, it is con-
venient to include in the basic theory about holes a
set of mereological relations accounting for the degree
of connectedness between regions. In this work we as-
sume RCC-8 ((Randell, Cui, & Cohn 1992)) which is
a first-order axiomatisation of spatial relations based
on a dyadic primitive relation of connectivity (C/2) be-
tween two regions. Informally, assuming two regions
x and y, the relation C(x, y), read as “x is connected
with y”, is true if and only if the closures of x and y
have a point in common. Assuming the C/2 relation
as primitive, and that x, y and z are variables for spa-
tial regions, the following mereological relations can be
defined: DC(x, y), which stands for “x is disconnected
from y”; EQ(x, y), for “x is equal to y”; PO(x, y), for
“x partially overlaps y”; EC(x, y), for “ the closure
of x and y are externally connected”; TPP (x, y), for
“x is a tangential proper part of y”; NTPP (x, y), for
“x is a non-tangential proper part of y”; and, TPPi/2
and NTPPi/2 are the inverse relations of TPP/2 and
NTPP/2 respectively.

Assuming RCC, the relation H(h, x) can be con-
strained by the axioms (1) and (2) below. Axiom (1)
guarantees that the host of a hole is not itself a hole;
whereas Axioms (2) states that the hole and it’s host
object are externally connected.

H(h, x) → ¬H(x, y) (1)

H(h, x) → EC(h, x) (2)

Moreover, Axiom 1 implies that the relation H is
irreflexive (meaning that no hole hosts itself) and anti-
symmetric (i.e., the host cannot be a hole of its hole).

An essential characteristic of holes is that they can
be interpenetrated by other objects. Therefore, the hole
ontology has to include relations about the relative lo-
cation of a hole wrt the penetrating object. In a world
uniquely populated by spatial regions, relative location
can be expressed by mereological relations. In order to
define relative location wrt a hole, we need the concept
of a hole entry boundary (EB) that is defined in (Casati
& Varzi 1999) by the relation EB(hi, h, x), read as “hi

is the maximally connected part of the hole h (fiat)
boundary that is nowhere a boundary of the host x.”
If a hole h has n entry boundaries, we denote them as
hi with 1 ≤ i ≤ n (as we deal with tunnels, n ≥ 2).

We can now express the following relations wrt an
object x and a hole h:

• x is wholly outside h (WOut(x, h)) iff DC(x, h);

• x is just outside h wrt the hole entry boundary hi

(JOut(x, h, hi)) iff

∃y(H(h, y)∧EB(hi, h, y))∧EC(x, hi)∧¬TPP (x, h);

• x is partially outside h wrt the EB hi (POut(x, h, hi))
iff

∃y(H(h, y) ∧ EB(hi, h, y)) ∧ PO(x, h) ∧ ¬PO(x, y);

• x is just inside h wrt the EB hi (JIn(x, h, hi)) iff

∃y(H(h, y) ∧ EB(hi, h, y)) ∧ EC(x, hi) ∧ TPP (x, h).



• x is wholly inside h (WIn(x, h)) iff

TPP (x, h) ∨ NTPP (x, h)) ∧ ¬∃hiJIn(x, h, hi).

WOut, JOut, POut, WIn and JIn are schematised
in Figure 4, where the host object is the cuboid, the
hole is the cylindrical figure inside the cuboid and the
penetrating object is the v-shaped figure.

h

(a) WOut

h

(b) JOut

h

(c)
POut

h

(d) JIn

h

(e)
WIn

Figure 4: Relative location of an object v wrt a hole h
.

It is worth pointing out that, in contrast to (Casati &
Varzi 1999), encoding the relative location of an object
wrt a hole using RCC relations allowed us to include
both JOut and JIn into the same formalism since RCC
is defined over the closure of regions. Therefore, the
concepts of just inside and just outside can coexist with
the initial assumption of holes as open regions. Another
difference between the formalism presented above wrt
that proposed in (Casati & Varzi 1999) is the inclusion
of the hole entry boundary in the definitions of JOut,
POut and JIn, in order to account for the action of an
object passing through a particular hole entry.

Figure 4 can be understood as a sequence of con-
tinuous transitions from the relation wholly outside to
wholly inside. In order to provide a formal solution to
the Fisherman’s Folly, however, we need to be able to
locate an object in space that is WOut, with respect to
every hole, but that is near a particular entry boundary
of a tunnel. In effect, tunnels are important qualitative
landmarks that could be used as local reference frames.
This idea is developed in the next section.

Hole subspaces

It is not unusual in the common language to charac-
terise sections of a road by the sections before and after
a tunnel. In a domestic domain, we decide where to lo-
cate (non-wireless) electronic objects according to the
nearby plugs (which are, in fact, tunnel entry bound-
aries). The issue of reasoning about tunnels becomes
quite critical when the problem is to locate buried in-
frastructure so that repairs can be conducted on a par-
ticular network of pipes and cables underground. How-
ever, to the best of our knowledge, there are no refer-
ences that account to the potential use of hole entry
boundaries as local reference frames. This section de-
scribes an initial attempt to cope with this issue.

Following the previously introduced notation, each
entry boundary is uniquely identified by a symbol re-
ferring to its host hole plus a subscript number. If a
global reference frame is assumed in the domain, the
entry boundaries can be identified by the 3D Cartesian
coordinates of their respective centre points; thus, the

local reference provided by the entry boundaries could
be associated to a global reference frame. In this work,
however, objects are only located with respect to the
near neighbourhoods of hole entry boundaries. An ob-
ject x is in the near neighbourhood of a hole EB hi iff
x is just outside hi or there is either another object y
connected to x or a hole hx in x connected to y and
y is just outside hi or partially outside hi. More for-
mally: NN(x, hi) iff JOut(x, h, hi)∨∃ y hx (H(hx, x)∧
(C(x, y)∨C(hx, y))∧(JOut(y, h, hi)∨POut(y, h, hi))).
Therefore, we can say that (in the situation of Figure
1(a)) the left sphere, left disk and a part of the string are
in the NN of Ph−. It is worth noting also that, for an
object x and a hole h, NN(x, h−) and NN(x, h+) are
not inconsistent as there are feasible situations where a
hole has two entry boundaries closer to each other. In
effect this is equivalent to describing the position of an
object wrt various distinct local reference frames.

We are now capable of expressing formally that an
object is near a tunnel (e.g., a car is parked outside the
Eurotunnel entrance) or that objects are related to a
complex arrangement of objects and holes (which is the
case of the puzzle in question). However, in order to
account for the main issues involved in the Fisherman’s
Folly, the theory has to include some basic ideas about
object’s shape so that it is capable of expressing object’s
penetrability through holes. The next section discusses
some insights about this issue.

The shapes of objects

Representing and reasoning about objects’ shape are,
at the same time, the most elusive and the most im-
portant issues in reasoning about the common sense
space (Cohn & Hazarika 2001). In this paper we cannot
escape from taking into account objects’ shape, since
the solution of puzzles such as that shown in Figure
1 involves passing an object of a particular shape and
size, through a hole entry boundary, also of a particular
shape and size. This section presents some primitives
to account for the shapes of rigid objects and strings.

We assume in this work ellipsoids and elliptic cylin-
ders (Figures 5(a) and 5(b), respectively) as the basic
primitives to describe the shapes of rigid objects.

A

B

C

D

E
F

(a)

E

F

A

B

C
D

(b)

Figure 5: Base shape primitive.

An ellipsoid (Figure 5(a)) is a 3D figure which every
planar cross section is an ellipsis. This figure has three
symmetry axes: AB, CD and EF (cf. Figure 5(a)) that
are called, respectively, major, mean and minor axes.
Thus, the spheres in our puzzle have ellipsoid shapes



whose three symmetry axes are of the same length. The
post is ellipsoid shaped, where its major axis is much
greater than both its mean and minor axes.

In an analogous way, we use an elliptic cylinder (Fig-
ure 5(b)) to account for the shapes of the puzzle objects
not represented by the ellipsoid. An elliptic cylinder is
a cylinder whose base is an ellipsis. This figure also has
a major, mean and minor axes (respectively axes AB,
CD and EF in Figure 5(b)). Thus, the shape of the
puzzle’s disks and ring can be approximated to cylin-
ders whose axis AB is much smaller than CD and EF ,
and the last two are of equal length. The shape of the
post base can also be approximated to a cylinder.

The string’s shape has an extra complication which
is related to this object’s intrinsic flexibility. Con-
sequently, every different shape resulting from non-
destructive deformations of a string is also a shape of
the string. In order to cope with this issue we define the
string’s shape as that of an elongated elliptical cylinder,
where AB is much greater than CD and EF , or the
shape resulting from the application of any sequence of
the transformations depicted in Figure 6 on such elon-
gated elliptical cylinder.

(a) (b) (c) (d)

Figure 6: The Reidemeister moves and the cross move.

Figure 6 shows the three Reidemeister moves (Rei-
demeister 1983) (Figures 6(a), 6(b) and 6(c)) and the
cross move (Takamatsu et al. 2006) (Figure 6(d)), that
can be described as follows: Reidemeister move I (Fig-
ure 6(a)) adds or deletes a simple twist in the string;
Reidemeister move II (Figure 6(b)) allows the inclusion
(or exclusion) of two crossings in the string; Reidemeis-
ter move III (Figure 6(c)) slides a strand of the string
from one side of a crossing to the other; the cross move
(Figure 6(d)) is defined on simple open curves and adds
or removes a string crossing by sliding an open end of
it over a continuous part of the string.

In the next section we use the shape primitives above
to propose a sufficient condition for an object to pass
through an entry boundary.

Passing an object through a hole

We first assume that every object is conducted through
a hole in the direction of the largest semi-line connecting
any two points of its boundary, this semi-line we call
conducting line. Thus, the post is always conducted
through the ring hole in the direction of its major axis;
similarly, the disks are conducted through the post hole
via their diameters (i.e., via their mean or minor axes).

Let’s define the region of the orthogonal projection
of an object o (taken through the object’s conducting
line) as pl(o) and the region defined by the orthogonal
projection of a hole entry boundary hi as p(hi). Now

we say that the object can pass through the hole if it is
possible to superimpose pl(o) and p(hi) so that

TPP (pl(o), p(hi)) ∨ NTPP (pl(o), p(hi)) ∨ (3)

EQ(pl(o), p(hi)).

This condition can be extended for the case of a group
of objects passing through a hole by simply considering,
instead of the object o in (3), the convex hull of the
group of objects.

Now that we have a way of checking whether a par-
ticular object can pass through a determined hole, the
next section defines a suitable representation for ex-
pressing the various states of the puzzle.

Dealing with a string

Similarly to the idea of chain described above, (Taka-
matsu et al. 2006) proposes a representation of the
various shapes a string assumes by collecting the points
where the string crosses itself, sweeping it from one of
its terminals to the other. This representation, called
p-data projection (Figure 7), is based on a 2D projec-
tion of a 3D knot and facilitates an algebraic treatment
of Reidemeister moves.

1
6
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2

4

3 + −

(a)

+ − − + − −

1  2  3  4  5  6
4  5  6  1  2  3

U   U   L   L   L   U

3  1  2  4  2  1

(b)

Figure 7: A knot and its p-data representation.

The p-data representation of a string is constructed
as follows. We first consider the direction of the string
as the direction in which it is being swept. From one
terminal of the string to the other, each point where
the string crosses itself receives an ID number (start-
ing from the number 1). Each ID appears twice in the
p-data structure, since a crossing is noted two times
when sweeping a string. This amounts to the first two
lines of the structure shown in Figure 7(b). At each
crossing we have to annotate also a sign of the cross-
ing and whether the string crosses over or under it-
self (respectively shown in the third and fourth lines
in Figure 7(b)). The latter is called the vertical posi-
tion of the crossing and is determined by verifying the
position of the string at each crossing found. The for-
mer can be obtained from the sign of the expression:

(~lupper ×~llower) ·~ez, where ~lupper and ~llower are, respec-
tively, the directions of the upper and lower parts of the
string at the crossing and ~ez is the normal vector of the
projection plane. The sign and the vertical position of
each crossing is summarised in the fifth line shown in
Figure 7(b), where the symbol 1 represents an upper
crossing whose sign is −; 2 represents a lower/−; 3 an
upper/+; and 4 a lower/+ crossing.

The p-data representation captures the essential
characteristics of crossings of a string on itself. This



representation, however, assumes that there are only
single crossings of the string; i.e., the string cannot cross
itself more than one time at each point.

Now, a way of combining both, chains (representing
hole subspaces) and p-data projections, encoding string
crossings is obtained by simply linking both structures,
incorporating information about the crossings within
chains and about the occurrence of objects (and holes)
along the p-data. This combined structure we call p-
chain and is represented in Figure 8(a).

Sh1 Ph Sh21

2D1

D2

+− +− − +

(a)

p−data =   1    *    2
                  2          1

− −
                  U         L
                  1          2

* = [Sh1+, Ph+, Sh2+]

Chain(Str) = [1, Sh1+, Ph+, Sh2+, 2]

(b)

Figure 8: A state and its p-chain representation.

Figure 8(a) shows a state of the Fisherman’s Folly
puzzle whereby the string crosses itself. The p-chain
structure representing this state is depicted in Figure
8(b) that shows a modified structure for Chain(Str)
and p-data. The structure Chain(Str) was extended
with the numbers 1 and 2 representing the string cross-
ing. Similarly, the p-data structure for this state was
extended with a symbol ∗ that represents the chain that
occurs between the crossing 1 and 2. For clarity, this
example shows a particular case where the string cross-
ing does not divide the chain structure. In the general
case the p-data may be annotated with symbols repre-
senting subsets of chains divided by string crossings.

Care should be taken for updating the states of both
chain and p-data structures when actions are performed
either on the string or on the objects connected to the
string. For the purposes of this work, we conjecture
that a set of actions that would completely describe
the changes in the puzzle shown in Figure 1 would
be composed of the three Reidemeister moves and the
cross move (Figure 6), that operate on the shape of the
string; and the two actions for passing objects through
holes, as described above. We also conjecture that the
data structures described above follow logically from
the completion of the ontology about holes, strings and
rigid objects presented in this paper. The development
of such extended theories is the subject of further in-
vestigations.

Concluding remarks
In this work we investigated knowledge representation
issues regarding the spatial aspects of a puzzle. The
puzzle chosen is called Fisherman’s Folly and is con-
stituted by an arrangement of rigid objects and non-
trivial elements such as holes and a string. The goal

of this paper is to define the basic elements of an on-
tology about rigid, flexible and holed object, therefore
we leave for future work the problem of representing
actions and change in this domain as well as the inves-
tigation of the possible consequences of the resulting
ontology. How elements of our framework can be used
to plan a solution of Fisherman’s Folly has being pre-
sented elsewhere (Cabalar & Santos 2006).

The first representation issue this paper tackled is
the development of a mereological theory about holes,
based on (Casati & Varzi 1999). This theory facilitates
the definition of hole subspaces, whereby it is possible to
localise objects with respect to hole entry boundaries.

We also proposed a combination of two novel data
structures, chains (Cabalar & Santos 2006) and p-data
projections (Takamatsu et al. 2006), for representing
the arrangement of the puzzle objects. This association
of data structures provides a powerful way to compute
problems involving holes and strings, which may be use-
ful for solving problems such as planning maintenance
work in a network of underground pipes an cables3.
Scaling the framework discussed in this paper to solve
such problems is subject for future research.
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