Analysing and Extending Well-Founded and Partial Stable Semantics using Partial Equilibrium Logic

Pedro Cabalar<sup>1</sup>

Sergei Odintsov<sup>2</sup> David Pearce<sup>3</sup> Agustín Valverde<sup>4</sup>

<sup>1</sup>University of Corunna (Spain)

<sup>2</sup>Sobolev Institute of Mathematics (Novosibirsk, Russia)

<sup>3</sup>Universidad Rey Juan Carlos (Spain)

<sup>4</sup>University of Málaga (Spain)

#### Presented by Axel Polleres<sup>3</sup> ICLP 2006. Seattle

# Outline



#### Introduction

- Logical foundations of Logic Programming
- Partial Equilibrium Logic

## Contributions

- Correspondence results
- Strong equivalence
- Nested logic programs
- Other results in the paper

# Conclusions

# Outline



### Introduction

- Logical foundations of Logic Programming
- ۲

- Correspondence results
- ۲
- Nested logic programs
- ۲

**H** 16

#### LP definitions rely on:

syntax transformations (reduct) + fixpoint constructions

Example: *M* is a stable model [Gelfond & Lifschitz 88] when "*M* is a classical minimal model of  $\Pi^{M}$ "

- A logical style definition: get minimal models inside some (monotonic) logic.
- Advantages:
  - Logically equivalent programs  $\Rightarrow$  same minimal models.
  - Full logical interpretation of connectives.

< 同 > < 回 > .

#### LP definitions rely on:

syntax transformations (reduct) + fixpoint constructions

Example: *M* is a stable model [Gelfond & Lifschitz 88] when "*M* is a classical minimal model of  $\Pi^{M}$ "

- A logical style definition: get minimal models inside some (monotonic) logic.
- Advantages:
  - Logically equivalent programs  $\Rightarrow$  same minimal models.
  - Full logical interpretation of connectives.

< 同 > < 回 > .

### LP definitions rely on:

syntax transformations (reduct) + fixpoint constructions

Example: *M* is a partial stable model [Przymusinski 94] when "*M* is a 3-valued minimal model of  $\Pi^{M}$ "

- A logical style definition: get minimal models inside some (monotonic) logic.
- Advantages:
  - Logically equivalent programs  $\Rightarrow$  same minimal models.
  - Full logical interpretation of connectives.

#### LP definitions rely on:

syntax transformations (reduct) + fixpoint constructions

Example: *M* is a partial stable model [Przymusinski 94] when "*M* is a 3-valued minimal model of  $\Pi^{M}$ "

 A logical style definition: get minimal models inside some (monotonic) logic.

#### Advantages:

- Logically equivalent programs  $\Rightarrow$  same minimal models.
- Full logical interpretation of connectives.

#### LP definitions rely on:

syntax transformations (reduct) + fixpoint constructions

Example: *M* is a partial stable model [Przymusinski 94] when "*M* is a 3-valued minimal model of  $\Pi^{M}$ "

- A logical style definition: get minimal models inside some (monotonic) logic.
- Advantages:
  - Logically equivalent programs  $\Rightarrow$  same minimal models.
  - Full logical interpretation of connectives.

# Stable models successfully identified

- (Monotonic) intermediate logic of *here-and-there* (*HT*) Classical  $\subseteq$  *HT*  $\subseteq$  Intuitionistic
- Pearce's *Equilibrium Logic*: minimal *HT* models Intuition: *t* world is fixed (plays the role of "reduct"), *h* world is minimized

#### Interesting results:

- Equilibrium models = stable models [Pearce 97]
- ► *HT* captures *strong equivalence* [Lifschitz, Pearce & Valverde 01] (we'll see later...)

A (10) > A (10) > A (10)

# Stable models successfully identified

- (Monotonic) intermediate logic of *here-and-there* (*HT*) Classical  $\subseteq$  *HT*  $\subseteq$  Intuitionistic
- Pearce's *Equilibrium Logic*: minimal *HT* models
   Intuition: *t* world is fixed (plays the role of "reduct"), *h* world is minimized

#### Interesting results:

- Equilibrium models = stable models [Pearce 97]
- ► *HT* captures *strong equivalence* [Lifschitz, Pearce & Valverde 01] (we'll see later...)

A (10) > A (10) > A (10)

# Stable models successfully identified

- (Monotonic) intermediate logic of *here-and-there* (*HT*) Classical  $\subseteq$  *HT*  $\subseteq$  Intuitionistic
- Pearce's *Equilibrium Logic*: minimal *HT* models Intuition: *t* world is fixed (plays the role of "reduct"), *h* world is minimized
- Interesting results:
  - Equilibrium models = stable models [Pearce 97]
  - HT captures strong equivalence [Lifschitz, Pearce & Valverde 01] (we'll see later...)

# Outline



#### Introduction

- Logical foundations of Logic Programming
- Partial Equilibrium Logic

#### 2 Contributions

- Correspondence results
- Strong equivalence
- Nested logic programs
- Other results in the paper

# Conclusions

- B

### [Cabalar,Odintsov & Pearce KR'06] Partial Equilibrium Logic

- takes minimal models on monotonic logic HT<sup>2</sup>
- Interpretation of the second secon
- Main idea: each world

h t true ⊆ non-false

#### [Cabalar,Odintsov & Pearce KR'06] Partial Equilibrium Logic

- takes minimal models on monotonic logic HT<sup>2</sup>
- *HT<sup>2</sup>* classified inside [Došen 86] framework N combined with [Routley & Routley 72] (axioms in the paper).
- Main idea: each world

h t true ⊆ non-false

[Cabalar,Odintsov & Pearce KR'06] Partial Equilibrium Logic

- takes minimal models on monotonic logic HT<sup>2</sup>
- Interpretation of the second secon

# Main idea: each world h t

#### true ⊆ non-false

[Cabalar,Odintsov & Pearce KR'06] Partial Equilibrium Logic

- takes minimal models on monotonic logic HT<sup>2</sup>
- Interpretation of the second secon
- Main idea: each world



[Cabalar,Odintsov & Pearce KR'06] Partial Equilibrium Logic

- takes minimal models on monotonic logic HT<sup>2</sup>
- Interpretation of the second secon
- Main idea: each world



[Cabalar,Odintsov & Pearce KR'06] Partial Equilibrium Logic

- takes minimal models on monotonic logic HT<sup>2</sup>
- Interpretation of the second secon
- Main idea: each world

 $\begin{array}{ccc} h & h' & \text{has now a primed version} \\ t & t' & \text{with the intended meaning} \\ \text{true} & \subseteq & \text{non-false} \end{array}$ 

[Cabalar,Odintsov & Pearce KR'06] Partial Equilibrium Logic

- takes minimal models on monotonic logic HT<sup>2</sup>
- Interpretation of the second secon
- Main idea: each world

 $\begin{array}{ccc} h & h' & \text{has now a primed version} \\ t & t' & \text{with the intended meaning} \\ \text{true} & \subseteq & \text{non-false} \end{array}$ 

 $\leq$  Accessibility relation like any intermediate logic ( $w \models p$  and  $w \leq w'$ ) implies  $w' \models p$ 

 $\leq \text{used for implication: } \boldsymbol{w} \models \varphi \rightarrow \psi \text{ when } \\ \forall \boldsymbol{w}' \geq \boldsymbol{w}, \ \boldsymbol{w}' \models \varphi \text{ implies } \boldsymbol{w}' \models \psi \end{cases}$ 

But negation  $\neg \phi$  is no longer defined as  $\phi \rightarrow \bot$ 

$$w \models \neg \varphi$$
 when  $w^* \not\models \varphi$ 





 $\leq$  Accessibility relation like any intermediate logic ( $w \models p$  and  $w \leq w'$ ) implies  $w' \models p$ 

 $\leq \text{ used for implication: } \boldsymbol{w} \models \varphi \rightarrow \psi \text{ when } \\ \forall \boldsymbol{w}' \geq \boldsymbol{w}, \ \boldsymbol{w}' \models \varphi \text{ implies } \boldsymbol{w}' \models \psi \\ \end{cases}$ 

But negation  $\neg \phi$  is no longer defined as  $\phi \rightarrow \bot$ 

$$w \models \neg \varphi$$
 when  $w^* \not\models \varphi$ 





 $\leq$  Accessibility relation like any intermediate logic ( $w \models p$  and  $w \leq w'$ ) implies  $w' \models p$ 

 $\leq \text{ used for implication: } \boldsymbol{w} \models \varphi \rightarrow \psi \text{ when } \\ \forall \boldsymbol{w}' \geq \boldsymbol{w}, \ \boldsymbol{w}' \models \varphi \text{ implies } \boldsymbol{w}' \models \psi \\ \end{cases}$ 

But negation  $\neg \phi$  is no longer defined as  $\phi \rightarrow \bot$ 

$$w \models \neg \varphi$$
 when  $w^* \not\models \varphi$ 







 $\leq$  Accessibility relation like any intermediate logic ( $w \models p$  and  $w \leq w'$ ) implies  $w' \models p$ 

 $\leq \text{ used for implication: } \boldsymbol{w} \models \varphi \rightarrow \psi \text{ when } \\ \forall \boldsymbol{w}' \geq \boldsymbol{w}, \ \boldsymbol{w}' \models \varphi \text{ implies } \boldsymbol{w}' \models \psi \\ \end{cases}$ 

But negation  $\neg \phi$  is no longer defined as  $\phi \rightarrow \bot$ 



$$\mathbf{v}\models 
eg arphi$$
 when  $\mathbf{w}^{*}
eq arphi$ 

 $\leq$  Accessibility relation like any intermediate logic ( $w \models p$  and  $w \leq w'$ ) implies  $w' \models p$ 

 $\leq \text{ used for implication: } \boldsymbol{w} \models \varphi \rightarrow \psi \text{ when } \\ \forall \boldsymbol{w}' \geq \boldsymbol{w}, \ \boldsymbol{w}' \models \varphi \text{ implies } \boldsymbol{w}' \models \psi$ 

But negation  $\neg \phi$  is no longer defined as  $\phi \rightarrow \bot$ 







#### • Let *H*, *H'*, *T*, *T'* denote sets of atoms verified at *h*, *h'*, *t*, *t'*.

 A model can be seen as a pair (H, T) of 3-valued interp. where H = (H, H') and T = (T, T').

# • Define an ordering among models, $\langle H_1, T_1 \rangle \trianglelefteq \langle H_2, T_2 \rangle$ if:

(i)  $\mathbf{T}_1 = \mathbf{T}_2$  (this is fixed)

- (ii)  $H_1$  less truth than  $H_2$  ( $H_1 \subseteq H_2$  and  $H'_1 \subseteq H'_2$ ).
- $\langle \mathbf{H}, \mathbf{T} \rangle$  is said to be *total* if  $\mathbf{H} = \mathbf{T}$ .

#### Definition (Partial equilibrium model)

A model M of theory Π is a *partial equilibrium (PE) model* of Π if it is total and ⊴-minimal.

- Let *H*, *H'*, *T*, *T'* denote sets of atoms verified at *h*, *h'*, *t*, *t'*.
- A model can be seen as a pair (H, T) of 3-valued interp. where H = (H, H') and T = (T, T').
- Define an ordering among models, ⟨H<sub>1</sub>, T<sub>1</sub>⟩ ≤ ⟨H<sub>2</sub>, T<sub>2</sub>⟩ if:
  (i) T<sub>1</sub> = T<sub>2</sub> (this is fixed)
  (ii) H<sub>1</sub> less truth than H<sub>2</sub> (H<sub>1</sub> ⊆ H<sub>2</sub> and H'<sub>1</sub> ⊆ H'<sub>2</sub>).
- $\langle \mathbf{H}, \mathbf{T} \rangle$  is said to be *total* if  $\mathbf{H} = \mathbf{T}$ .

#### Definition (Partial equilibrium model)

A model  $\mathcal{M}$  of theory  $\Pi$  is a *partial equilibrium (PE) model* of  $\Pi$  if it is total and  $\trianglelefteq$ -minimal.

- Let *H*, *H'*, *T*, *T'* denote sets of atoms verified at *h*, *h'*, *t*, *t'*.
- A model can be seen as a pair (H, T) of 3-valued interp. where H = (H, H') and T = (T, T').
- Define an ordering among models, ⟨H<sub>1</sub>, T<sub>1</sub>⟩ ⊴ ⟨H<sub>2</sub>, T<sub>2</sub>⟩ if:
  (i) T<sub>1</sub> = T<sub>2</sub> (this is fixed)
  (ii) H<sub>1</sub> less truth than H<sub>2</sub> (H<sub>1</sub> ⊆ H<sub>2</sub> and H'<sub>1</sub> ⊆ H'<sub>2</sub>).
- $\langle \mathbf{H}, \mathbf{T} \rangle$  is said to be *total* if  $\mathbf{H} = \mathbf{T}$ .

#### Definition (Partial equilibrium model)

A model  $\mathcal{M}$  of theory  $\Pi$  is a *partial equilibrium (PE) model* of  $\Pi$  if it is total and  $\trianglelefteq$ -minimal.

- Let *H*, *H'*, *T*, *T'* denote sets of atoms verified at *h*, *h'*, *t*, *t'*.
- A model can be seen as a pair (H, T) of 3-valued interp. where H = (H, H') and T = (T, T').
- Define an ordering among models, ⟨H<sub>1</sub>, T<sub>1</sub>⟩ ⊴ ⟨H<sub>2</sub>, T<sub>2</sub>⟩ if:
   (i) T<sub>1</sub> = T<sub>2</sub> (this is fixed)
  - (ii)  $\mathbf{H}_1$  less truth than  $\mathbf{H}_2$  ( $H_1 \subseteq H_2$  and  $H'_1 \subseteq H'_2$ ).
- $\langle \mathbf{H}, \mathbf{T} \rangle$  is said to be *total* if  $\mathbf{H} = \mathbf{T}$ .

#### Definition (Partial equilibrium model)

A model  $\mathcal{M}$  of theory  $\Pi$  is a *partial equilibrium (PE) model* of  $\Pi$  if it is total and  $\leq$ -minimal.

- Let *H*, *H'*, *T*, *T'* denote sets of atoms verified at *h*, *h'*, *t*, *t'*.
- A model can be seen as a pair (H, T) of 3-valued interp. where H = (H, H') and T = (T, T').
- Define an ordering among models, (H<sub>1</sub>, T<sub>1</sub>) ≤ (H<sub>2</sub>, T<sub>2</sub>) if:
  (i) T<sub>1</sub> = T<sub>2</sub> (this is fixed)
  (ii) H<sub>1</sub> less truth than H<sub>2</sub> (H<sub>1</sub> ⊆ H<sub>2</sub> and H'<sub>1</sub> ⊆ H'<sub>2</sub>).
- $\langle \mathbf{H}, \mathbf{T} \rangle$  is said to be *total* if  $\mathbf{H} = \mathbf{T}$ .

#### Definition (Partial equilibrium model)

A model M of theory Π is a *partial equilibrium (PE) model* of Π if it is total and ⊴-minimal.

- Let *H*, *H'*, *T*, *T'* denote sets of atoms verified at *h*, *h'*, *t*, *t'*.
- A model can be seen as a pair  $\langle \mathbf{H}, \mathbf{T} \rangle$  of 3-valued interp. where  $\mathbf{H} = (H, H')$  and  $\mathbf{T} = (T, T')$ .
- Define an ordering among models, (H<sub>1</sub>, T<sub>1</sub>) ≤ (H<sub>2</sub>, T<sub>2</sub>) if:
  (i) T<sub>1</sub> = T<sub>2</sub> (this is fixed)
  (ii) H<sub>1</sub> less truth than H<sub>2</sub> (H<sub>1</sub> ⊆ H<sub>2</sub> and H'<sub>1</sub> ⊆ H'<sub>2</sub>).
- $\langle \mathbf{H}, \mathbf{T} \rangle$  is said to be *total* if  $\mathbf{H} = \mathbf{T}$ .

#### Definition (Partial equilibrium model)

A model  $\mathcal{M}$  of theory  $\Pi$  is a *partial equilibrium (PE) model* of  $\Pi$  if it is total and  $\leq$ -minimal.

# Outline

#### Introduction

- Logical foundations of Logic Programming
- Partial Equilibrium Logic

#### **Contributions**

#### Correspondence results

- Strong equivalence
- Nested logic programs
- Other results in the paper

# Conclusions

**H** 16

#### Theorem (Corresp. to Partial Stable Models)

For a normal or disjunctive logic program  $\Pi$ ,  $\langle \mathbf{T}, \mathbf{T} \rangle$  is a partial equilibrium model of  $\Pi$  iff  $\mathbf{T}$  is a partial stable model of  $\Pi$ .

Among PE models of a theory Π we define :

- Well-Founded (WF) model: minimal information
- M-equilibrium model: maximal information
- L-equilibrium model: minimal set of undefined atoms

#### Theorem

For a disjunctive logic program  $\Pi$ , they respectively correspond to well-founded and to M-stable and L-stable models from [Eiter, Leone & Saccà 98].

#### Theorem (Corresp. to Partial Stable Models)

For a normal or disjunctive logic program  $\Pi$ ,  $\langle \mathbf{T}, \mathbf{T} \rangle$  is a partial equilibrium model of  $\Pi$  iff  $\mathbf{T}$  is a partial stable model of  $\Pi$ .

Among PE models of a theory  $\Pi$  we define :

- Well-Founded (WF) model: minimal information
- M-equilibrium model: maximal information
- L-equilibrium model: minimal set of undefined atoms

#### Theorem

For a disjunctive logic program  $\Pi$ , they respectively correspond to well-founded and to M-stable and L-stable models from [Eiter, Leone & Saccà 98].

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### Theorem (Corresp. to Partial Stable Models)

For a normal or disjunctive logic program  $\Pi$ ,  $\langle \mathbf{T}, \mathbf{T} \rangle$  is a partial equilibrium model of  $\Pi$  iff  $\mathbf{T}$  is a partial stable model of  $\Pi$ .

Among PE models of a theory  $\Pi$  we define :

- Well-Founded (WF) model: minimal information
- M-equilibrium model: maximal information
- L-equilibrium model: minimal set of undefined atoms

#### Theorem

For a disjunctive logic program  $\Pi$ , they respectively correspond to well-founded and to M-stable and L-stable models from [Eiter, Leone & Saccà 98].

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Outline

#### Introduction

- Logical foundations of Logic Programming
- Partial Equilibrium Logic

#### Contributions

Correspondence results

#### Strong equivalence

- Nested logic programs
- Other results in the paper

# Conclusions

- B

#### Definition (X strong equivalence)

Two theories  $\Pi_1, \Pi_2$  are said to be *X* strongly equivalent if for any set of formulas  $\Gamma$ ,  $\Pi_1 \cup \Gamma$  and  $\Pi_2 \cup \Gamma$  have the same models of type *X*.

# Theorem (from KR'06 paper)

 $\Pi_1, \Pi_2$  are PEL strongly equivalent iff they are equivalent in  $HT^2$ .

New results: other model classes captured too

#### Theorem

 $\Pi_1, \Pi_2$  are WF (resp. M, L) strongly equivalent iff they are equivalent in  $HT^2$ .

#### Definition (X strong equivalence)

Two theories  $\Pi_1, \Pi_2$  are said to be *X* strongly equivalent if for any set of formulas  $\Gamma$ ,  $\Pi_1 \cup \Gamma$  and  $\Pi_2 \cup \Gamma$  have the same models of type *X*.

# Theorem (from KR'06 paper)

 $\Pi_1, \Pi_2$  are PEL strongly equivalent iff they are equivalent in  $HT^2$ .

New results: other model classes captured too

#### Theorem

 $\Pi_1, \Pi_2$  are WF (resp. M, L) strongly equivalent iff they are equivalent in  $HT^2$ .

#### Definition (X strong equivalence)

Two theories  $\Pi_1, \Pi_2$  are said to be *X* strongly equivalent if for any set of formulas  $\Gamma$ ,  $\Pi_1 \cup \Gamma$  and  $\Pi_2 \cup \Gamma$  have the same models of type *X*.

## Theorem (from KR'06 paper)

 $\Pi_1, \Pi_2$  are PEL strongly equivalent iff they are equivalent in  $HT^2$ .

New results: other model classes captured too

#### Theorem

 $\Pi_1, \Pi_2$  are WF (resp. M, L) strongly equivalent iff they are equivalent in  $HT^2$ .

#### Definition (X strong equivalence)

Two theories  $\Pi_1, \Pi_2$  are said to be *X* strongly equivalent if for any set of formulas  $\Gamma$ ,  $\Pi_1 \cup \Gamma$  and  $\Pi_2 \cup \Gamma$  have the same models of type *X*.

## Theorem (from KR'06 paper)

 $\Pi_1, \Pi_2$  are PEL strongly equivalent iff they are equivalent in  $HT^2$ .

New results: other model classes captured too

#### Theorem

 $\Pi_1, \Pi_2$  are WF (resp. M, L) strongly equivalent iff they are equivalent in  $HT^2$ .

# Outline

#### Introduction

- Logical foundations of Logic Programming
- Partial Equilibrium Logic

#### Contributions

- Correspondence results
- Strong equivalence
- Nested logic programs
- Other results in the paper

# B) Conclusions

**H** 16

#### • Nested expressions: nest $\land, \lor, \top, \bot, \neg$ in rule heads and bodies

- Quite common (for rule bodies) in Prolog. Example: a :- \+ (b; c, \+ (d, \+ e)). in logical notation  $\neg(b \lor c \land \neg(d \land \neg e)) \rightarrow a$
- [Lifschitz,Tang,Turner99] (for stable models) NLP unfolded using 12 transformations, which include:

#### ► Side switching for negation $F \land \neg \neg G \rightarrow H$ becomes $F \rightarrow H \lor \neg G$ $F \rightarrow G \lor \neg \neg H$ becomes $F \land \neg H \rightarrow G$

• What about PEL and WFS? Do they preserve these transformations? Yes, excepting side switching for negation.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Nested expressions: nest  $\land, \lor, \top, \bot, \neg$  in rule heads and bodies
- Quite common (for rule bodies) in Prolog. Example: a :- \+ (b; c, \+ (d, \+ e)). in logical notation  $\neg(b \lor c \land \neg(d \land \neg e)) \rightarrow a$
- [Lifschitz,Tang,Turner99] (for stable models) NLP unfolded using 12 transformations, which include:

#### ► Side switching for negation $F \land \neg \neg G \rightarrow H$ becomes $F \rightarrow H \lor \neg G$ $F \rightarrow G \lor \neg \neg H$ becomes $F \land \neg H \rightarrow G$

• What about PEL and WFS? Do they preserve these transformations? Yes, excepting side switching for negation.

- Nested expressions: nest  $\land, \lor, \top, \bot, \neg$  in rule heads and bodies
- Quite common (for rule bodies) in Prolog. Example: a :- \+ (b; c, \+ (d, \+ e)). in logical notation  $\neg(b \lor c \land \neg(d \land \neg e)) \rightarrow a$
- [Lifschitz,Tang,Turner99] (for stable models) NLP unfolded using 12 transformations, which include:
  - ► Side switching for negation  $F \land \neg \neg G \rightarrow H$  becomes  $F \rightarrow H \lor \neg G$  $F \rightarrow G \lor \neg \neg H$  becomes  $F \land \neg H \rightarrow G$
- What about PEL and WFS? Do they preserve these transformations? Yes, excepting side switching for negation.

- Nested expressions: nest  $\land, \lor, \top, \bot, \neg$  in rule heads and bodies
- Quite common (for rule bodies) in Prolog. Example: a :- \+ (b; c, \+ (d, \+ e)). in logical notation  $\neg(b \lor c \land \neg(d \land \neg e)) \rightarrow a$
- [Lifschitz,Tang,Turner99] (for stable models) NLP unfolded using 12 transformations, which include:

# Side switching for negation F ∧ ¬¬G → H becomes F → H ∨ ¬G F → G ∨ ¬¬H becomes F ∧ ¬H → G

• What about PEL and WFS? Do they preserve these transformations? Yes, excepting side switching for negation.

- Nested expressions: nest  $\land, \lor, \top, \bot, \neg$  in rule heads and bodies
- Quite common (for rule bodies) in Prolog. Example: a :- \+ (b; c, \+ (d, \+ e)). in logical notation  $\neg(b \lor c \land \neg(d \land \neg e)) \rightarrow a$
- [Lifschitz,Tang,Turner99] (for stable models) NLP unfolded using 12 transformations, which include:

#### • Side switching for negation $F \land \neg \neg G \rightarrow H$ becomes $F \rightarrow H \lor \neg G$ $F \rightarrow G \lor \neg \neg H$ becomes $F \land \neg H \rightarrow G$

 What about PEL and WFS? Do they preserve these transformations? Yes, excepting side switching for negation.

- Nested expressions: nest  $\land, \lor, \top, \bot, \neg$  in rule heads and bodies
- Quite common (for rule bodies) in Prolog. Example: a :- \+ (b; c, \+ (d, \+ e)). in logical notation  $\neg(b \lor c \land \neg(d \land \neg e)) \rightarrow a$
- [Lifschitz,Tang,Turner99] (for stable models) NLP unfolded using 12 transformations, which include:

# Side switching for negation F ∧ ¬¬G → H becomes F → H ∨ ¬G F → G ∨ ¬¬H becomes F ∧ ¬H → G

 What about PEL and WFS? Do they preserve these transformations? Yes, excepting side switching for negation.

# Nested LP for WFS

When restricting to nested expr. in bodies, we obtain rules like:

 $p_1 \wedge \cdots \wedge p_n \wedge \neg q_1 \wedge \cdots \wedge \neg q_m \wedge \neg \neg r_1 \wedge \cdots \wedge \neg \neg r_t \to s_1 \vee \cdots \vee s_k$ (1)

That is, disjunctive LP with double negation in the body.

#### Theorem

Let  $\Pi$  be a disjunctive LP with double negation in the body. Let  $\Pi'$  be s.t. we replace each  $\neg \neg c$  by  $\neg \overline{c}$ , plus a rule  $\neg c \rightarrow \overline{c}$  per each new  $\overline{c}$ . Then  $\Pi$  and  $\Pi'$  are strongly equivalent modulo original alphabet.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Nested LP for WFS

When restricting to nested expr. in bodies, we obtain rules like:

$$p_1 \wedge \cdots \wedge p_n \wedge \neg q_1 \wedge \cdots \wedge \neg q_m \wedge \neg \neg r_1 \wedge \cdots \wedge \neg \neg r_t \to s_1 \vee \cdots \vee s_k \quad (1)$$

That is, disjunctive LP with double negation in the body.

#### Theorem

Let  $\Pi$  be a disjunctive LP with double negation in the body. Let  $\Pi'$  be s.t. we replace each  $\neg \neg c$  by  $\neg \overline{c}$ , plus a rule  $\neg c \rightarrow \overline{c}$  per each new  $\overline{c}$ . Then  $\Pi$  and  $\Pi'$  are strongly equivalent modulo original alphabet.

# Outline

#### Introduction

- Logical foundations of Logic Programming
- Partial Equilibrium Logic

#### Contributions

- Correspondence results
- Strong equivalence
- Nested logic programs
- Other results in the paper

# Conclusions

**H** 16

# Properties of PEL inference

#### • Entailment: $\Pi \vdash \varphi$ if either

- $\Pi$  has PEL models and all of them satisfy  $\varphi$  or
- $\Pi$  has not PEL models and  $\varphi$  is an  $HT^2$  tautology

#### Theorem

PEL inference fails cautious monotony, truth by cases, conditionalisation, rationality and weak rationality. PEL inference satisfies reflexivity, cut, ∨ in the antecedent and modus tollens.

# Properties of PEL inference

#### • Entailment: $\Pi \vdash \varphi$ if either

- $\Pi$  has PEL models and all of them satisfy  $\varphi$  or
- Π has not PEL models and φ is an HT<sup>2</sup> tautology

#### Theorem

PEL inference fails cautious monotony, truth by cases, conditionalisation, rationality and weak rationality. PEL inference satisfies reflexivity, cut, ∨ in the antecedent and modutollens.

# Properties of PEL inference

#### • Entailment: $\Pi \vdash \varphi$ if either

- $\Pi$  has PEL models and all of them satisfy  $\varphi$  or
- $\Pi$  has not PEL models and  $\varphi$  is an  $HT^2$  tautology

#### Theorem

PEL inference fails cautious monotony, truth by cases, conditionalisation, rationality and weak rationality. PEL inference satisfies reflexivity, cut,  $\lor$  in the antecedent and modus tollens.

- SAT<sub>HT<sup>2</sup></sub> is NP-complete; VAL<sub>HT<sup>2</sup></sub> is coNP-complete
- Checking strong equivalence in PEL =  $VAL_{HT^2}$  = coNP-complete
- Existence of partial equilibrium models is  $\Sigma_2^P$ -hard
- The decision problem for equilibrium entailment is  $\Pi_2^P$ -hard

- *HT*<sup>2</sup> allows analysing which transformations are strongly equivalent
- We have analysed 8 typical transformations for disjunctive LP (see paper): TAUT, RED<sup>+</sup>, RED<sup>-</sup>, NONMIN, GPPE, WGPPE, CONTRA, S IMP.
- 3 of them are not sound in PEL (*GPPE*, S IMP, *CONTRA*).

#### Theorem

*D-WFS (resp. STATIC) and PEL are non-comparable (neither stronger or weaker).* 

∃ ► < ∃ ►</p>

# Translating PEL into Equilibrium Logic

- [Janhunen et al, ACM TOCL to appear] transformation: obtains partial stable models by translating program (atoms duplicated) and computing stable models
- We generalise this result to translate PEL arbitrary theories into Equilibrium Logic (see paper)

(The resulting translation of nested implications is not polynomial)

# Summary

Partial Equilibrium Logic (PEL):

solid logical foundation for partial stable and well-founded semantics.

- Strong equivalence under several model classes (WF, M-stable, L-stable) captured.
- Pirst interpretation of nested expressions for WFS
- Complexity results similar to Equilibrium Logic
- Translation of PEL into Equilibrium logic
- Properties of PEL inference
- Analysis of transformation rules for disjunctive WFS

A (10) A (10)

# **Open topics**

- Strong equivalence: when it fails, it is not always possible to generate a counterexample in the form of a program yet.
- Study XSB with nested expressions: correct wrt PEL?

# Further reading

- P. Cabalar, S. Odintsov & D. Pearce. Logical Foundations of Well-Founded Semantics. In *Proceedings KR 06*.
- P. Cabalar, S. Odintsov & D. Pearce. Strong Negation in Well-Founded and Partial Stable Semantics for Logic Programs. In *Proceedings of IBERAMIA'06*, (LNCS, to appear).
  - Extensions of PEL with strong negation. Comparison to WFSX.
- P. Cabalar, S. Odintsov, D. Pearce & A. Valverde. On the logic and computation of Partial Equilibrium Models. In *Proceedings of JELIA'06*, (LNCS, to appear).
  - Tableaux proof system
  - Splitting theorem for PEL

Why GPPE (unfolding) is not sound? Example:

 $a \lor b$  $\neg a \rightarrow a$  $a \land b \rightarrow c$ 

We get 2 PEL models, depending on  $a \lor b$ :

• When *a* is true, *b* and *c* become false

• When *b* is true, *a* gets undefined, and *c* too (it depends on *a*) After applying unfolding on atom *b* we get the program:

$$a \lor b$$
  
 $\neg a \rightarrow a$   
 $a \rightarrow a \lor c$  (it's a tautology!)

#### that leaves c false in all PEL models

Cabalar, Odintsov, Pearce, Valverde

Why GPPE (unfolding) is not sound? Example:

 $a \lor b$  $\neg a \rightarrow a$  $a \land b \rightarrow c$ 

#### We get 2 PEL models, depending on $a \lor b$ :

• When *a* is true, *b* and *c* become false

• When *b* is true, *a* gets undefined, and *c* too (it depends on *a*) After applying unfolding on atom *b* we get the program:

$$a \lor b$$
  
 $\neg a \rightarrow a$   
 $a \rightarrow a \lor c$  (it's a tautology!)

#### that leaves c false in all PEL models

Cabalar, Odintsov, Pearce, Valverde

Why GPPE (unfolding) is not sound? Example:

 $a \lor b$  $\neg a \rightarrow a$  $a \land b \rightarrow c$ 

We get 2 PEL models, depending on  $a \lor b$ :

• When *a* is true, *b* and *c* become false

• When *b* is true, *a* gets undefined, and *c* too (it depends on *a*) After applying unfolding on atom *b* we get the program:

$$a \lor b$$
  
 $\neg a \rightarrow a$   
 $a \rightarrow a \lor c$  (it's a tautology!)

#### that leaves c false in all PEL models

Cabalar, Odintsov, Pearce, Valverde

Analysing and extending WFS ....

Why GPPE (unfolding) is not sound? Example:

 $a \lor b$  $\neg a \rightarrow a$  $a \land b \rightarrow c$ 

We get 2 PEL models, depending on  $a \lor b$ :

- When a is true, b and c become false
- When *b* is true, *a* gets undefined, and *c* too (it depends on *a*)

After applying unfolding on atom *b* we get the program:

$$a \lor b$$
  
 $\neg a \rightarrow a$   
 $a \rightarrow a \lor c$  (it's a tautology!)

#### that leaves c false in all PEL models

Cabalar, Odintsov, Pearce, Valverde

Why GPPE (unfolding) is not sound? Example:

 $a \lor b$  $\neg a \rightarrow a$  $a \land b \rightarrow c$ 

We get 2 PEL models, depending on  $a \lor b$ :

• When a is true, b and c become false

• When *b* is true, *a* gets undefined, and *c* too (it depends on *a*) After applying unfolding on atom *b* we get the program:

$$a \lor b$$
  
 $\neg a \rightarrow a$   
 $a \rightarrow a \lor c$  (it's a tautology!)

that leaves c false in all PEL models.

Cabalar, Odintsov, Pearce, Valverde

Analysing and extending WFS ...