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Abstract

In this dissertation, we extend some of the major Logic Program-
ming semantics, so that causal information is included into the mod-
els of a program. Technically, our approach consists in a multivalued
semantics where atoms are associated to their causes instead of just
assigning them a truth value, true or false. These causes are repre-
sented by causal values: sets of pairwise incomparable graphs that
form a completely distributive lattice. Causal values can be useful
for providing justifications explaining why a given atom holds in a
model, but it is perhaps more interesting that they can be inspected
into the body of program rules by a new kind of causal literal, al-
lowing, for instance, to reason with statements of the form “A has
caused B.” In particular, we define causal semantics that are conser-
vative extensions of the least model, the well-founded model, the stable
model and the answer set semantics and show that, for several of the
causal problems we investigate, reasoning under these semantics is
computationally as hard as in their standard counterparts. We also
provide methods and tools for computing reasoning tasks under
these semantics and show how they can be useful for representing
some traditional scenarios of the literature.





Resumen

En esta tesis, extendemos algunas de las principales semánticas de
programación lógica, de manera que la información causal asociada
con un átomo sea incluida en los modelos de cada programa lógico.
Técnicamente, nuestra aproximación consiste en una semántica mul-
tivaluada donde cada átomo está asociado con sus causas en lugar
de con un simple valor de verdad, verdadero o falso. Estas causas
están representadas por valores causales: conjuntos de gráficos in-
comparables entre sı́ que forman un retı́culo completamente dis-
tributivo. Los valores causales pueden ser útiles para proporcionar
justificaciones que expliquen por que un átomo dado es cierto en
un modelo. Sin embargo, la caracterı́stica más interesante es que
estos valores puedan ser inspeccionados en el cuerpo de las reglas
del programa por un nuevo tipo de literal causal, lo que permite,
por ejemplo, razonar con enunciados de la forma “A ha causado
B.” En concreto, definimos semánticas causales que son extensiones
de la least model, la well-founded model, la stable model y la answer set
semantics y demostramos que, para varios de los problemas causales
que investigamos, el razonamiento en estas semánticas no es com-
putacionalmente más costoso que en sus correspondientes versiones
estándar. También proporcionamos métodos y herramientas para el
cálculo de las soluciones de diversas tareas de razonamiento bajo
estas semánticas y mostramos cómo pueden ser útiles para la repre-
sentación de algunos de los ejemplos tradicionales de la literatura.
El apéndice C contiene un resumen extendido en castellano.





Resumo

Nesta tese, ampliamos algunhas das principais semánticas da pro-
gramación lóxica de tal xeito que a información causal asociada
cun átomo sexa incluı́da nos modelos de cada programa. Tecnica-
mente, a nosa aproximación consiste nunha semántica multivaluada,
onde cada átomo está asociado ás súas causas no canto dun simple
valor de verdade, verdadeiro ou falso. Estas causas son represen-
tadas por valores causais: conxuntos de grafos incomparables entre
eles que forman un retı́culo completamente distributivo. Os val-
ores causais poden ser útiles para proporcionar xustificacións que
expliquen por que un átomo dado é certo nun modelo. Sen em-
bargo, a caracterı́stica máis interesante da nosa aproximación é que
estes valores poden ser inspeccionados no corpo das regras do pro-
grama mediante un novo tipo de literal causal, permitindo, por ex-
emplo, razóar con enunciados da forma “A causou B.” En concreto,
definimos semánticas causais que son extensións da least model, a well-
founded model, a stable model e answer set semantics e amosamos que,
para moitos dos problemas causais que temos investigado, as tare-
fas de razoamento nestas semántica non son computacionalmente
máis custosas que nas correspondentes versións estándar. Tamén
proporcionamos métodos e ferramentas para calcular as solucións
de varias tarefas de razoamento sobre estas semánticas e amosamos
como poden ser útiles para representar algúns dos exemplos tradi-
cionais da literatura. O Apéndice D contén un resumo ampliado en
galego.
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Figure 54 Proba do átomo bomb correspondente co Exemplo D.2. . 335

19





L I ST OF EXAMPLES

Example 1.1 Suitcase scenario . . . . . . . . . . . . . . . . . . . . . . . 24

Example 1.2 Ex. 1.1 continued . . . . . . . . . . . . . . . . . . . . . . . 24

Example 1.3 Ex. 1.2 continued . . . . . . . . . . . . . . . . . . . . . . . 25

Example 1.4 Ex. 1.2 continued . . . . . . . . . . . . . . . . . . . . . . . 28

Example 1.5 Rock Throwers . . . . . . . . . . . . . . . . . . . . . . . . 29

Example 1.6 Firing Squad . . . . . . . . . . . . . . . . . . . . . . . . . 30

Example 1.7 Match . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Example 1.8 Desert Traveller . . . . . . . . . . . . . . . . . . . . . . . . 40

Example 2.1 The gear wheel (simplified) . . . . . . . . . . . . . . . . 48

Example 2.2 School bus . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Example 3.1 Alarm circuit . . . . . . . . . . . . . . . . . . . . . . . . . 70

Example 3.2 Ex. 1.2 continued . . . . . . . . . . . . . . . . . . . . . . . 73

Example 5.1 Yale Shooting Scenario . . . . . . . . . . . . . . . . . . . 110

Example 5.2 Two shooters . . . . . . . . . . . . . . . . . . . . . . . . . 112

Example 5.3 Block’s World . . . . . . . . . . . . . . . . . . . . . . . . . 115

Example 5.4 The gear wheel . . . . . . . . . . . . . . . . . . . . . . . . 119

Example 8.1 Dr. Smith . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Example 8.2 Three men Firing Squad . . . . . . . . . . . . . . . . . . 193

Example 8.3 Ex. 8.2 continued . . . . . . . . . . . . . . . . . . . . . . . 194

Example 8.4 Poison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Example 8.5 Water Plant . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Example 8.6 The Engineer . . . . . . . . . . . . . . . . . . . . . . . . . 204





1 INTRODUCT ION

Causality is a concept firmly settled in commonsense reasoning, present in all
kind of human daily scenarios. It has appeared in quite different cultures, both
geographically and temporally distant, and is one of the central aims of many
studies in physical, behavioural, social and biological sciences. However, its
formalisation has proved to be an elusive matter that generates disagreement
among experts from different fields. The importance of a reasonable formali-
sation of causality is revealed by the fact that causal intuitions not only affect
people’s common sense reasoning, but are also implicitly present in science or
in formal reasoning. For instance, as commented by Pearl [2000] in his semi-
nal book “Causality,” Newton’s second law of mechanics describes how a force
applied to an object will change its state of motion:

“The alteration of motion is ever proportional to the motive force impressed; and
is made in the direction of the right line in which that force is impressed.”

Something captured by the well-known mathematical equation:

a =
f
m

(1)

The way in which (1) has been written contains some implicit knowledge about
the cause-effect relation between force f and acceleration a that is not reflected
in the semantics of the equation. In fact, according to the laws of Algebra,
this equation can be equivalently rewritten both as f = m · a and m = f /a. We
say that “the ratio f /a helps us to determine the mass” or, alternatively, that
“the calculated mass explains why a given force has impressed the observed
acceleration,” but not that “it causes the mass.” Similarly, the equation f = m · a
helps us to plan what we have to do in order to impress a desired acceleration
to an object of a given mass, but it does not mean that forces are caused by
accelerations. These cause-effect considerations are usually taken into account
when physicists use (1), but, as explained by Pearl, “such distinctions are not
supported by the equations of physics.” Pearl [1988] has further observed that



1 introduction

something similar happens when we are formalising a wide class of abstract
knowledge in a logical formalism. To illustrate this fact, consider the following
scenario introduced by Lin [1995]:

Example 1.1 (Suitcase scenario). A suitcase has two locks and a spring-loaded mech-
anism that will become open when both locks are in the up position. �

A straightforward representation of this domain could be the implication:

up(a) ∧ up(b) ⊃ open (2)

stating that, when both locks are up, the suitcase will be opened. A classical
theory consisting of the conjunction of the above implication plus the facts that
both locks are moved up:

up(a) ∧ up(b)

will lead us to conclude that the suitcase will be opened. A left-to-right reading
of material implication may mistakenly lead us to recognise some causal informa-
tion in (2). However, as happened with (1), we can also write (2) equivalently
as:

up(a) ∧ ¬open ⊃ ¬up(b) (3)

or

up(b) ∧ ¬open ⊃ ¬up(a) (4)

In these cases, the intuitive reading must change: we can explain that one switch
is up and the suitcase is closed by concluding that the other switch is down,
but we do not consider that up(a) ∧ ¬open will cause ¬up(b).

Furthermore, in some cases, explaining why some event has happened may
be as important as predicting that it will happen. For instance, consider the
following variation of the suitcase scenario.

Example 1.2 (Ex. 1.1 continued). The suitcase is connected to a mechanism that
provokes a bomb explosion when it is open. �

We may represent this scenario by adding an implication of the form:

open ⊃ bomb (5)

24



People are usually interested on assigning responsibility of some occurred
event to some given set of facts, especially in those cases that such event has im-
portant consequences as the explosion of a bomb. When an explanation for the
bomb is required, we may use the formula (5) again in its left-to-right reading to
determine that moving up both locks explains the bomb explosion. Moreover,
if a detailed explanation is required, we can build a deduction proof, like the one
shown in Figure 1.

>
up(a)

>
up(b)

up(a) ∧ up(b)
open

(2)

bomb
(5)

Figure 1: Proof for atom bomb corresponding to Example 1.2.

A judge will not be satisfied with just a physical explanation of the bomb
explosion, but will be more concerned with the application of a legal law that
informally states the following:

Example 1.3 (Ex. 1.2 continued). Whoever causes a bomb explosion will be punished
with imprisonment. �

The formalisation of this sentence is a challenge problem for Knowledge Repre-
sentation (KR) because it talks about “causing an explosion” without explicitly
describing the possible ways in which bomb can be eventually caused. If we
look for an elaboration tolerant solution, the formalisation of this law should not
vary if a new way of causing bomb is included in the theory. A formalism is
elaboration tolerant to the extent that it is convenient to modify a set of facts
expressed in the formalism to take into account new phenomena or changed
circumstances [McCarthy, 1998]. In order to obtain a solution that fulfils this
criterion, we would need a kind of modal predicate “hascaused(A,B)” where A
and B could be formulas in their turn, and then encode the law in Example 1.3
as:

hascaused(up(a), bomb) ⊃ prison (6)

That is, if up(a) is a cause of the bomb, then we may conclude that the agent
performing up(a) should go to prison. The problem obviously comes when

25
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trying to fix a meaning to predicate “hascaused,” since its truth depends on the
formalisation of the rest of the theory. For instance, we can easily derive facts
for this predicate that follow from direct effects by adding formulas like:

up(a) ∧ up(b) ⊃ hascaused(up(a), open) (7)

up(a) ∧ up(b) ⊃ hascaused(up(b), open) (8)

In a similar way we may add a formula of the form:

open ⊃ hascaused(open,bomb) (9)

so that we conclude a cause for the indirect effect bomb. Unfortunately, this
method does not account for the transitive behaviour of causes: up(a) and
up(b) eventually cause bomb. Of course, we could further add:

up(a) ∧ up(b) ⊃ hascaused(up(a), bomb) (10)

up(a) ∧ up(b) ⊃ hascaused(up(b), bomb) (11)

but, in the general case, we may have many indirect steps and even interplay
with the inertia default or with recursive fluents. In other words, we would
need a complete analysis of the theory as a whole in order to conclude the right
axioms for predicate “hascaused.” For instance, under the above representation,
adding a new mechanism that opens the suitcase cannot be accomplished by
just adding new facts, but we also have to include formulas that relates this
mechanism to the bomb explosion, that is, we will be forced to add new direct
effect formulas that causally connect these new ways of opening the suitcase
and the bomb. This is an instance of the so called ramification problem, identified
by Kautz [1986], which consists in being forced to represent the indirect effects
of actions as direct effects.

A second drawback of (2), comes from assigning a left-to-right directional
reading to material implication. It is important to notice that the difference be-
tween (2), (3) and (4) is just in their writing, but they are all equivalent, since
material implication is just a case of disjunction, in this case:

open ∨ ¬up(a) ∨ ¬up(b)

Using the correct causal reading of (2) is now crucial since we fix the truth of
predicate “hascaused” depending on that. To be precise, from (2) we want to
conclude that:

(2) ∧ up(a) ∧ up(b) |= hascaused(up(a),open) (12)

26
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A similar reading for (3) would lead us to conclude:

(3) ∧ up(a) ∧ ¬open |= hascaused(¬open,¬up(b)) (13)

something that should not hold when we replace (3) by (2) in (13): the intended
causal reading of (2) should go from the antecedent (the locks) to the conse-
quent (open) and not the other way around. Unfortunately, both formulas are
classically equivalent, and so, this distinction cannot be made.

Contrarily to classical implication, in Logic Programming (LP), rules are di-
rectional. For instance, (2) would be written as the LP rule:

open ← up(a), up(b) (14)

The implication symbol (⊃) is replaced by an arrow (←), the conjunction sym-
bol (∧) by a comma (,) and the position of antecedent and consequent are
reversed. We may read (14), in a top-down fashion, as “to obtain open we may
move up the two locks” or, in a bottom-up manner, as “moving up both locks
allows deriving that the suitcase will be opened.” We may also assign (14) the
causal reading “moving up both locks will cause the opening of the suitcase.”
On the other hand, following this same rewriting, (3) will lead us to a different
rule of the form:

up(b) ← up(a), open (15)

where classical negation of an atom ¬α is rewritten here as α. Rule (15) would
be read as “to move up lock b we may move up the lock a and close somehow
the suitcase” or “moving up the first lock while closing the suitcase will cause
the second lock to move down,” something clearly wrong with respect to our
causal understanding of Example 1.1. It is clear that the readings of (14) and
(15) are very different, and indeed all LP semantics will treat them as two
very different formulas. This distinction makes LP rules a suitable tool for
representing causal laws.

1.1 historical overview of causality

We started this dissertation saying that causality has appeared in quite different
cultures, both geographically and temporally distant. In particular, in Western
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Philosophy, its roots may be traced back prior to Aristotle1 who defined four
kinds of causes. However, the concept of cause has evolved along time, and the
modern scientific understanding of causality is a more reduced concept that
only refers to Aristotle’s efficient cause. In this dissertation, we will focus on
the study of this modern understanding and, to be precise, on the concept of
sufficient cause. Section 1.1.1 presents an overview of the concept of causality in
Modern Philosophy while Section 1.1.2 overviews the approaches followed in
Artificial Intelligence (AI).

1.1.1 Causality in Modern Philosophy

The roots of one of the more prominent approaches to causality in Philoso-
phy can be traced back to Hume [1748], who defined cause using the idea of
counterfactual:

“we may define a cause to be an event followed by another, [...], where if the first
event hadn’t occur the second wouldn’t have occurred either.”

For instance, continuing with Example 1.1, the counterfactual “had lock a not
been lifted, the suitcase would have not been open” identifies the action of mov-
ing up the lock a as a cause of opening the suitcase. We may reason analogously
to conclude that lifting the second lock is also a cause of opening the suitcase.
However, as Mill [1843] has observed, in general, an event may be counted as
a cause of another event without being necessary. As an example, imagine that
our suitcase has a second independent opening mechanism available.

Example 1.4 (Ex. 1.2 continued). The suitcase has also a second opening mechanism
that works when a key is turned regardless of the locks movements. �

Now, the key is turned after lifting the locks. Then, the suitcase would be
open regardless whether the locks had been lifted or not and, thus, under
Hume’s definition, we would fail to identify the action of lifting any of the
locks as a cause of opening the suitcase. This situation is representative of a
more general set of examples where the following is an usual scenario [Lewis,
2000]:

1 In Phaedo, Plato discusses what cause means and mentions a previous book of Anaxagoras saying
“that it is Mind that directs and is the cause of everything.”
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Example 1.5 (Rock Throwers). Suzy throws a rock at a bottle. The rock hits the
bottle, shattering it. Suzy’s friend, Billy, throws a rock at the bottle a couple of seconds
later. Who has caused the bottle to shatter? �

Intuitively, Suzy is the actual cause of the bottle shattering, whereas Billy is
just a preempted backup that would have shattered the bottle had Suzy not done it.
However, it is clear that the bottle shattering does not depend counterfactually
on any of the throws, “had Suzy not thrown, the bottle would have shattered
anyway because of Billy’s throw” and vice-versa.

Lewis [1973] proposed a new definition of causation: an event will be a cause
of another whenever there is a causal chain leading from the cause to the effect.

“Let c, d, e, . . . be a finite sequence of actual particular events such that d causally
depends on c, e on d, and so on throughout. Then this sequence is a causal chain.”

That is, a causal chain is a finite sequence of actual events where each element
counterfactually depends on its precedent. In this sense, Suzy’s throw is con-
nected to the bottle shattering by a finite sequence of events:

throw · e1 · e2 . . . · en · shattered

in which each one counterfactually depends on the previous. Events e1, e2, . . . ,
en may be the position of the rock in the trajectory, the impact of the rock to the
bottle, the shock wave that propagates over the bottle, and so on. On the other
hand, Billy’s throw is not connected to the shattering by such causal chain,
something that allows distinguishing actual causes from just preempted back-
ups. As a second example of causal chain, consider Example 1.2 in which (7)
allows concluding that up(a) has caused open, and (9) allows concluding that
open has caused bomb. Then, we may build the following causal chain:

up(a) · open · bomb

for concluding that up(a) has caused bomb. In a similar manner, we may also
build the following causal chain:

up(b) · open · bomb

for concluding that up(b) has also caused bomb.

A further refinement of this idea of causality has been introduced by Lewis
[1986]. In that work, he identified as intrinsically alike two processes that obey
the same laws. Consider the following example from [Pearl, 2000, page 207]:
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Example 1.6 (Firing Squad). Suzy and Billy form a two-man firing squad that re-
sponds to the order of the captain. The shot of any of the two riflemen would kill
the prisoner. Indeed, the captain gives the order, both riflemen shoot together and the
prisoner dies. �

In this example, both Suzy and Billy are usually considered contributory
causes of the prisoner’s death. Suzy’s shot (when Billy is shooting) is intrinsi-
cally alike to Suzy’s shot in another scenario where she shoots alone. Therefore,
if Suzy’s shot is a cause in the second scenario it should also be a cause in the
first one. Thus, an event C should be regarded as a cause of an event E if it
is connected by a process (causal chain) which is intrinsically alike to another
process in which C is considered to be a cause of E. Lewis named this crite-
rion as quasi-dependence. A more formal definition of intrinsicness was given by
Hall [2007] as follows:

“Intrinsicness: Let S be a structure of events consisting of event E, together with
all of its causes back to some earlier time t. Let S′ be a structure of events that
intrinsically matches S in relevant respects, and that exists in a world with the
same laws. Let E′ be the event in S′ that corresponds to E in S. Let C be some
event in S distinct from E, and let C′ be the event in S′ that corresponds to C.
Then C′ is a cause of E′.”

Note that, in Example 1.5, Billy’s throw (when Suzy is throwing) is not intrin-
sically alike to the same action in another scenario where he is throwing alone
because, in the former, his rock will not hit the bottle (which is already broken),
whereas, in the latter, it will do so.

Another early attempt of formal definition of contributory cause was devel-
oped by Mackie [1965] who relied on the concept of the so called INUS condi-
tion:

“an Insufficient but Necessary part of a condition which is itself Unnecessary but
Sufficient for the result.”

When Mackie says insufficient and unnecessary, he does not actually mean that
an INUS condition must be insufficient and unnecessary, but rather that it may
actually be. Consequently, Mackie’s sentence may be rephrased just as “a nec-
essary element in a sufficient set of conditions, NESS” as proposed by Wright
[1988].

The basic idea behind the INUS condition consists in writing the laws of the
investigated effect in minimal disjunctive normal form. A Boolean formula is in
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disjunctive normal form iff it is a disjunction of one or more conjunctions of
one or more literals. It is in minimal disjunctive normal form if, in addition,
there does not exist another equivalent formula in disjunctive normal form with
less conjunctions or with less conjuncts in a conjunction. For instance, in our
running example, the condition for the prisoner’s death can be expressed in
minimal disjunctive normal form as:

shoot(suzy) ∨ shoot(billy)

An important observation is that the disjuncts, in our example, can be conjunc-
tions of literals in the general case. To better illustrate this fact, let us consider
a twist of our running example where both riflemen also have to load the gun
before shooting it. In this case, the prisoner’s death can be explained by:

load(suzy) ∧ shoot(suzy) ∨ load(billy) ∧ shoot(billy)

Each conjunction, load(suzy) ∧ shoot(suzy) and load(billy) ∧ shoot(billy), is a
sufficient condition for the prisoner’s death. We may also assign a causal read-
ing to these conditions, so that each of these conjuncts are alternative and in-
dependent sufficient causes for the prisoner’s death. Similarly, the concept of
contributory cause may be defined relying on the idea of INUS condition, that
is, the four conjuncts, load(suzy), shoot(suzy), load(billy) and shoot(billy), are
INUS conditions, and so, contributory causes for the prisoner’s death.

In fact, the idea of contributory cause defined by an INUS condition has
been shared by researches from several disciplines, such as Wright [1988] in
law studies, Rothman [1976] and [Rothman and Greenland, 1998, page 53] in
epidemiology or [Hoover, 1990, page 218] in economics. However, among other
drawbacks that we will see later, this approach does not take into consideration
the influence of default knowledge in the usual understanding of causality. For
instance, we all know that cooling water below 0 degree Celsius will cause it to
freeze but, in fact, this is only true under the default assumption of atmospheric
pressure. At higher pressure, water will freeze at higher temperature, whereas,
at lower pressures, we can have water vapour even below 0°C. Another example
is the asymmetry that people assign to scratching a match and the presence of
oxygen when identifying the causes of a fire.

Example 1.7 (Match). Scratching a match would produce fire. Of course, if there is
not enough oxygen present, the fire cannot be started. �

Hitchcock and Knobe [2009] attribute the asymmetry between match and
oxygen to the fact that the existence of oxygen is assumed to be the norm, or
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default behaviour. In fact, psychological tests have revealed that people tend
to consider as causes those conditions that are somehow “abnormal” in the
system, that is, opposed to what they consider to be its default behaviour. In
particular, Kahneman and Tversky [1982], Mandel et al. [1985], Kahneman and
Miller [1986], Alicke [1992], Roese [1997], Cushman et al. [2008] and Knobe
and Fraser [2008] have run experimental tests that reveal such tendency with
respect to statistical, moral and social abnormalities.

Our understanding of causality will borrow some technical features from
both, Lewis and Mackie’s approach, but, intuitively, it will be closer to that
stated by Maudlin [2004], who considers that causes are those events that divert
a system from following its default behaviour. A second point of agreement with
Maudlin’s approach will be the role played by causal laws, which are prior
knowledge at the basis of causal connections.

“What links causation and counterfactuals [...] is natural law. Laws play one
role in determining which counterfactuals are true, and another role in securing
causal connections.”

Maudlin explains his concept of causality as a generalization of the Newtonian
concepts of force and inertia: forces play the role of causes, in the particular
case that the default behaviour of the system is inertial.

“The structure of Newton’s laws is particularly suited to identify causes. There
is a sense, I think, in which the continuation of inertial motion in a Newtonian
universe is not caused. [...] Or at least, if there is any cause of a body at rest
remaining at rest in a Newtonian universe it is a sort of second-class cause:
The first-class Newtonian causes are forces (or the source of forces), and what
they cause, the first-class form of a Newtonian effect, is a change or deviation
from an inertial state of motion. There is no doubt that for Newton, once the first
law is in place, one can ask what causes the Earth to orbit the Sun (rather than
travel at constant speed in a straight line), and that the cause in this case is the
gravitational force produced on the Earth by the Sun.

[...]

Let us denominate laws quasi-Newtonian if they have this form: There are, on
the one hand, inertial laws that describe how some entities behave when nothing
acts on them, and then there are laws of deviation that specify in what condition,
and in what ways, the behaviour will deviate from the inertial behaviour.”
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It is clear that Maudlin’s concept of inertial laws expressed here is broader than
the Newtonian’s concept of the word. In fact, Maudlin’s concept of inertial
laws covers the whole idea of default knowledge in its usual meaning in KR. Of
course, not all laws have to be quasi-Newtonian. However, as he points out:

“Our natural desire is to think of the world in quasi-Newtonian terms [...] [T]his
is because it is much easier to think in these terms, to make approximate predic-
tions on the basic of scanty data, and so on. And often circumstances allow
us to think in quasi-Newtonian terms even when the underlying laws are not
quasi-Newtonian [...] Indeed, the search for quasi-Newtonian laws does much to
explain the aims of the special sciences.”

As an example of approximate reasoning, we all ignore the fine-grained physi-
cal concepts involved in turning on a light, and just assume that, to do so, we
have to push the switch. Even if the laws that dominate our world are the rules
of quantum physics, we reason in quasi-Newtonian terms, assuming that, if
nothing happens, the light will not start to shine on its own.

1.1.2 Causality in Artificial Intelligence

In the AI literature, causality has been mostly addressed in two different ways
that may be classified as sufficiency-based and (contingent) necessity-based. The
former considers laws as prior knowledge that express a sufficient condition to
cause an effect, and has emerged in the area of Reasoning about Actions and
Change as a successful technical solution for solving some representational
problems. The latter, which follows work by Pearl [2000], focuses on obtaining
the actual causes of an event B by applying Hume’s counterfactual “had A not
happened, B would not have happened” under some possible contingency.

Necessity-based approaches

Pearl [2000] continues the research line followed by the above philosophical
approaches: the study of the concept of actual causation2. As Halpern and Hitch-
cock [2011] write:

2 See [Halpern and Hitchcock, 2011] for a more actualised overview of the state of the art.

33



1 introduction

“Pearl’s account was novel in [...] his use of structural equations as a tool for
modelling causality. In the philosophical literature, causal structures were often
represented using so called neuron diagrams, but these are not (and were never
intended to be) all-purpose representational tools.”

A central concept in Pearl’s approach is the idea of causal beam. A causal beam
is an alternative model where all the variables outside of some sufficient con-
dition are fixed to a value that does not support the current value of the effect.
Then, we may identify the actual and contributory causes of the effect by apply-
ing the Hume counterfactual analysis. Consider again Example 1.5. Halpern
[2014] represents this scenario in the language of structural equations by in-
troducing two extra variables hit(suzy) and hit(billy). The equations defining
these variables are:

Structural Model 1.1.

shattered = hit(suzy) ∨ hit(billy)

hit(billy) = throw(billy) ∧ ¬hit(suzy)

hit(suzy) = throw(suzy)

throw(suzy) = 1

throw(billy) = 1

From this model, we may conclude that Suzy is the responsible for breaking
the bottle by applying the Hume’s counterfactual “had suzy not thrown, the
bottle would have not shattered” under the contingency where Billy does not
throw. In Chapter 8, we will overview Halpern and Pearl’s formal definition
of the concept of actual cause [Halpern and Pearl, 2001, 2005, Halpern, 2008],
and revise in detail this and other traditional problems of the actual causation
literature.

From a KR point of view, this representation is mostly focused on distin-
guishing that Suzy is the actual cause of the shattering without putting too
much attention on other representational problems. For instance, time is not
explicitly represented in these equations, but instead implicitly incorporated in
the equation defining hit(billy) by asserting that billy does not hit the bottle
if Suzy did. In line with this point of view, it is also interesting to separate
knowledge about a given history (who throws the stone first) from the general
knowledge about the system behaviour (which events may or may not cause
an effect). The solution usually adopted in this approach mixes both sources of
knowledge in the same equations. As a result, we may easily face a problem
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of elaboration tolerance. If we have N shooters and they shoot sequentially we
would have to modify the equations for all of them so that the last shooter’s
equation would have the negation of the preceding N-1 and so on. All these
equations would have to be reformulated if we change the shooting order.

Sufficiency-based Approaches

In contrast to necessity-based approaches, the use of causality in the area of Rea-
soning about Actions and Change was mostly focused on solving some prob-
lems of elaboration tolerance rather than answering questions like “A has caused B.”
The roots of causality in this area were settled in work by McCarthy [1959],
who stated that one of the goals of AI was the development of programs capa-
ble of performing common-sense reasoning tasks like prediction, explanation or
planning. This seminal work already included a definition of causal assertions,
which consisted in delays of an unspecified number of situations between the
condition (or cause) and its resulting effect. Most research in the area of Actions
and Change, including the study of causal approaches, was motivated by the
search for a solution to several representational problems, being the most sig-
nificant one, the so called frame problem also identified by McCarthy and Hayes
[1969]. The frame problem, consists in the unfeasibility of explicitly representing
the persistence of all unaffected facts when an action is performed. The usual
solution to this problem is the so called commonsense law of inertia

“A fluent remains unchanged under no evidence of the contrary.”

The commonsense law of inertia expresses a default behaviour, which derives
new information under the lack of information. These new conclusions may be
withdrawn in the presence of further evidence. As we have seen in the previous
section, default knowledge has been recognised as a crucial factor in formalising
causality. The need of default knowledge, and as a result, the need of deriving
new information that may be withdrawn (in the presence of further evidence)
is called non-monotonicity (as opposed to classical logic monotonicity). A logic is
said to be monotonic if the more sentences we add to a theory, the more con-
clusions we obtain. The need of non-monotonicity moved the focus for repre-
senting dynamic domains from classical logic to new non-monotonic formalisms
such as predicate Circumscription [McCarthy, 1980], Default Logic [Reiter, 1980]
and modal non-monotonic logics [McDermott and Doyle, 1980]. Hanks and
McDermott [1987] showed that previous approaches to solve the frame prob-
lem relying on minimal abnormality, were not adequate for representing the
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so called Yale Shooting Scenario. For overcoming this obstacle, Lifschitz [1987]
and Haugh [1987] relied on the concept of causality in the so called causal min-
imisations.

However, the real interest about causality in action theories was raised by
the study of the ramification problem (the unfeasibility of representing the in-
direct effects of the actions as direct effects of them). Lin’s work was the first
solution that successfully dealt with the frame and the ramification problems
in Situation Calculus by incorporating a predicate caused(F,V,S) whose mean-
ing is that fluent F is caused to change its value to V in situation S, and it is
an exception to the inertia [Lin, 1995]. In Lin’s approach, an action domain is
described by a Situation Calculus theory which is circumscribed in such a way
that only those models with a minimal extension of the predicate caused(F,V,S)
are selected. Predicate caused(F,V,S) expresses an exception to inertia, so that,
minimal models are those with less exceptions to it. Then, a selection of those
models that obey the law of inertia gives us the conclusions of the action do-
main.3 For instance, in Lin’s Situation Calculus, (2) would be rephrased as:

up(1,S) ∧ up(2,S) ⊃ caused(open, true,S) (16)

This formula plus the facts4 up(1, s2) and up(2, s2) allow us to conclude the
fact caused(open, true, s2). An additional predicate holds(F,S) is used to capture
that fluent F holds in situation S, which is connected to predicate caused(F,V,S)
by a pair of axioms of the form:

∀F, caused(F, true,S) ⊃ holds(F,S) (17)

∀F, caused(F, f alse,S) ⊃ ¬holds(F,S) (18)

These axioms state that any fluent F must hold value V when it is caused to
do so. The minimisation of the extension of predicate caused(F,V,S) ensures
that no other value is caused in those minimal models. The combination of min-
imising the extension of the predicate caused together with the selection of those
minimal models that satisfy inertia allows concluding that fluents persist unless
caused otherwise. In our running example, we will conclude holds(open, s3),
holds(open, s4), and so on, because open is not caused to change.

3 A further elaboration due to Lin and Soutchanski [2011] adds a second minimisation of the exten-
sion of caused after selecting the minimal models satisfying the inertia axiom in order to rule out
undesired models in theories with positive cycles.

4 Note that we represent here situations as natural numbers deviating from the standard formalisa-
tion of situations in Situation Calculus.
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Looking at the definition of Lin’s law of inertia, we can see that the main role
of predicate caused(F,V,S) is allowing that a fluent F does not follow its default
inertial behaviour. This fits with our understanding of causes as “events that di-
vert a system from following its default behaviour.” In this sense, the default
behaviour of fluents is to remain unchanged, and causes are those events that
break it. On the other hand, despite of the existence of predicate caused(F,V,S),
Lin’s approach does not allow answering the question “which are the causes
that explain why the suitcase is open?” In fact, other solutions to the frame
problem not labelled as “causal”, like those by Gustafsson and Doherty [1996],
Sandewall [1996] or Shanahan [1999], share similar technical constructions. An-
other difference, is that our understanding assumes that all facts must have a
cause. In this sense, we may read the predicate caused(F,V,S) as “fluent F is
caused to have value V in situation S” emphasizing the “in situation S” state-
ment. That is, when caused(F,V,S) does not hold, it does not mean that F
is not caused, but rather than F is following its default behaviour, and so the
causes of its current state are the same of its previous state. This idea that
“all facts must have a cause” is similar to the understanding of causality in the
Causal Explanations Theories approach developed by McCain and Turner [1997].
However, in Causal Explanations Theories no distinction can be made between a
system following its default behaviour from one that has deviated from it.

Another approach to solve the frame and the ramification problem was devel-
oped by Turner [1997], who showed how they could be successfully solved in
Default Logic by making an appropriate use of inference rules to capture causal
direction (see Lifschitz [2015] for an actualised view). For that time, Gelfond
and Lifschitz [1991] had already introduced the answer set semantics for logic
programs and shown that it essentially corresponds to a subset of Default Logic.
This fact immediately allows logic programs to be used as a successful repre-
sentational tool for action domains. In fact, as has been pointed out by Lifschitz
[2002],

“[The] limitations of the language of logic programs play a positive role in this
case by eliminating some of the ‘bad’ representational choices that are available
when properties of actions are described in default logic.”

Nowadays, the answer set semantics is the core of the Answer Set Program-
ming (ASP) paradigm [Marek and Truszczyńki, 1999, Niemelä, 1999] which has
emerged as prominent tool for KR and Non-Monotonic Reasoning (NMR), not
only from a theoretical point of view, but also irrupting in the industrial world
due to the existence of efficient solvers, as those proposed by Niemelä et al.
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[2000], Leone et al. [2006] and Gebser et al. [2011], that can be used for a fast
computation of solutions [Baral, 2003, Brewka et al., 2011]. In this sense, ASP
offers three main features of interest for the purposes of this dissertation:

• the ability for capturing causal directionality, inherited from LP rules,

• the capability for representing and reasoning with general default knowl-
edge due to the default negation operator not,

• the existence of efficient solvers for computation of solutions.

These three features are the main motivations for choosing the answer set se-
mantics as the underlying semantics that will be extended for representing and
reasoning with causal explanations. Focusing on the capability for represent-
ing default knowledge, it is worth to mention that a literal of the form not A
is usually read, in an informal way, as “there is no way of deriving A.” We
will identify later the causes of a literal A with the ways of deriving it, so that
we may also read not A as “there is no cause for A.” For instance, following
with Example 1.5, we may represent the general knowledge about the system
behaviour (which events may or may not cause the shattering) by the following
rules:

shattered(T + 1) ← throw(X, T), not shattered(T)

shattered(T + 1) ← shattered(T)

whereas the knowledge about the given history (who throws the stone first)
may be represented by the following set of facts:

throw(suzy,2)

throw(billy,4)

This separation of behaviour and narrative provides a higher degree of elabo-
ration tolerance: we may add extra shooters or change the shooting order just
by changing the set of facts, without changing the rules capturing the general
knowledge about the system. Unfortunately, the existing LP semantics will
not allow us to obtain an answer for the question: who has caused the bottle
shattering?

Besides the above considerations for choosing the answer set semantics, it is
also worth to mention that many of the works done in the area of Reasoning
about Actions and Change that we have mentioned can be successfully encoded
into ASP. For instance, Lee [2012] identifies a wide class of canonical formulas
in which the stable model semantics and Circumscription coincide and translates,
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into ASP, both Situation Calculus and the Event Calculus of Kowalski and Sergot
[1989]. Similarly, a wide class of action descriptions in the action language C
[Giunchiglia and Lifschitz, 1998] has been encoded in ASP by Lifschitz and
Turner [1999], while Causal Explanation Theories [McCain and Turner, 1997] has
been recently encoded by Ferraris et al. [2012].

1.2 motivation

As we have seen in the previous section, the AI literature has addressed causal-
ity in two different and complementary manners: on the one hand, the necessity-
based approaches have been focused on determining the actual causes of an
event without putting too much attention to problems of elaboration toler-
ance; on the other hand, the sufficiency-based approaches have been focused
on using causality for solving some problems of elaboration tolerance without
putting much attention to conclude facts of the form “A has caused B.” The
core of this dissertation will be focused on representing and reasoning with the
causal explanations for events. As a starting point, we will represent systems as
logic programs, and we will read rules of the form A ← B as “event B causes
effect A.” Causal explanations will consist on minimal disjunctive formulas, in
a similar manner as Makie’s approach, that will be transitively propagated by
rules. We will also borrow Lewis’ causal chains to represent causal ordering
among events, inside the disjunctive normal form. Relying on this idea, we
may provide the following definitions:

Definition 1.1 (Sufficient explanation). Given a formula in minimal disjunctive
normal form F, a conjunction of events C is a sufficient explanation iff C entails
some conjunction of F, that is, iff C |= F. �

Definition 1.2 (Necessary explanation). Given a formula in minimal disjunctive
normal form F, a conjunction of events C is a necessary explanation iff every con-
junction of F entails C, that is, iff F |= C. �

Definition 1.3 (Contributory explanation). Given a formula in minimal disjunc-
tive normal form, a conjunction of events C is a contributory explanation iff some
minimal conjunction D of F entails C. �

Note that, as Pearl [2000, page 314] pointed out: the limitations in the formal-
isation of Mackie’s INUSS condition easily collided with the lack of distinction
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between “A implies B” and “not B implies not A” from classical implication.
Pearl illustrates this problem with the following example.

Example 1.8 (Desert Traveller). A desert traveller has two enemies. The first poisons
his canteen, and the second, unaware of the first, shoots and empties the canteen. A week
later, the traveller is found dead and the two enemies confess to action and intention. A
jury must decide whose actions was the cause of the traveller’s death.

We may capture this scenario, ignoring the intermediate facts, drink and
dehydration, as the following logic program.

Program 1.2.

death ← shoot, poison

death ← shoot

shoot

poison

Intuitively, it was the enemy who shot the canteen, and not the other who poi-
son the water, who has killed the traveller. We may assign a minimal disjunctive
Boolean formula to death by interpreting this logic program as a classical theory,
obtaining the following definition of death in disjunctive normal form:

¬shoot ∧ poison ∨ shoot

This formula is not in minimal disjunctive normal form because it can be rewrit-
ten as:

poison ∨ shoot

Unfortunately, in this rewriting, both actions are symmetric and, hence, both
or none of them must be causes of the death. As we will see later in Chapter 8

(page 190), our approach will assign the value shoot ·death making clear who
actually killed the traveller.

A second drawback of this approach consists in formally capturing interme-
diate events. For instance, applying the same procedure to the suitcase scenario
of Example 1.2 we will obtain the following definition:

up(a) ∧ up(b)

in which we have lost the role of the event open in the explosion of the bomb.
Lewis’ idea of causal chain may help us to explain how lifting the locks is con-
nected to the bomb explosion. In our running example, there are two causal
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chains that explain the bomb: up(a) ·open ·bomb and up(b) ·open ·bomb. How-
ever, Lewis’ causal chains do not allow distinguishing whether either up(a) and
up(b) are joint or alternative causes of the bomb explosion. For instance, these
same causal chains will appear in an example in which rule (14) is replaced by:

open ← up(a) (19)

open ← up(b) (20)

We overcome this issue by formally defining Lewis’ idea of causal chain, which
we combine with the idea of minimal disjunctive normal form, such that, we
may assign the following causal value to the bomb explosion:(

up(a) ∗ up(b)
)
· open · bomb (21)

We use the product (∗) symbol instead of conjunctions (∧) for avoiding the con-
fusion of causal values with logical formulas.5 Furthermore, we use the symbol
(·), which we will call application, for capturing the idea of causal chain. The
algebraic expression (21) can be easily read as the proof depicted in Figure 1,
where application (·) is replaced by a derivation (horizontal line) and product
(∗) separates each subderivation. Finally, we use the sum (+) symbol, instead
of disjunction symbol (∨), for representing alternative, independent causes. To
illustrate the idea of alternative causes consider the variation introduced by Ex-
ample 1.4. Here, there is a second alternative, independent cause for the bomb
explosion that is initiated by the key. This situation will be formally captured
by the following causal value:(

up(a) ∗ up(b)
)
· open · bomb + key · open · bomb (22)

It is easy to apply Definitions 1.1, 1.2 and 1.3 to causal values, so that we can
see that each addend of (22) is a sufficient explanation of the bomb, the fact open
is a necessary one, and each of the literals appearing in (22) is a contributory
explanation.

1.3 goals and structure

Representing causes as causal values is a useful representation, close to the
idea of proof, but still lacks of a formal definition. In particular, the goals of
this dissertation are:

5 As we have seen above, logical equivalences of Boolean formulas lead to undesired outcomes, in
particular causal values will not satisfy the law of excluded middle.

41



1 introduction

i ) Formally defining the concept of causal value and the concepts of suffi-
cient, necessary and contributory causes with respect to it. These three
concepts will be close to their respective concepts of explanations given
before. In particular, the concept of sufficient explanation will be closely re-
lated to the concept of logical proof, while the concept of sufficient cause will
be close to the concept of non-redundant logical proof, that is, causes will be
explanations that do not contain redundant, or unnecessary information.

ii ) Studying the properties of causal values and how they can be manipu-
lated by means of algebraic operations. In particular, we will show that
causal values can be manipulated by means of three algebraic operations
(·), (∗) and (+). Furthermore, causal values can be alternatively described
as either sets of causes or as a elements of a term (or free) algebra with
these three operations.

iii ) Providing a procedure for obtaining the causal information of a system
represented as a logic program. For that purpose we define a causal
semantics for logic programs, and we show that, for positive programs,
causal values can be computed by an extension of the direct consequences
operator for standard LP.

iv ) Incorporating the possibility of obtaining causal information in presence
of default knowledge. As we commented above, default knowledge will be
represented by means of default negation not. We provide a causal se-
mantics that extends the stable model, the answer set and the well-founded
model semantics. We also provide means for computing causal values un-
der these three semantics.

v ) Exploring how these semantics can be applied for obtaining causal infor-
mation in dynamic domains. In particular, we explore some of the usual
benchmark problems for the literature of Reasoning about Actions and
Change.

vi ) Incorporating the capability of, not only deriving causal information from
a given program, but also using it inside the program, so that we can
perform usual reasoning tasks with this information. For instance, solv-
ing the representation of the judge’s statement in Example 1.3. For this
purpose, causal explanations will be represented as a kind of syntactic
expressions that can be manipulated as first class citizens by a new kind
of causal literal.
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vii) Exploring the computational cost of solving the main problems associated
to the above objectives. As usual, this will be accomplished by making a
complexity assessment of the associated decision problems.

viii) Comparing our approach to other closely related approaches in the liter-
ature. In particular, we will focus on literature about explanations and
justifications in logic programming and on literature about actual causa-
tion.

ix ) Providing a prototypical implementation that can handle the kind of sce-
narios and reasoning problems derived from the above goals.

The general methodology of this proposal will be the standard in research on
Computer Science, a cyclic sequence including: review of the state-of-the-art,
problem definition, posing hypotheses, and deriving their formal proof or re-
buttal. In particular, this dissertation has generated the following publications:

Pedro Cabalar and Jorge Fandinno, Enablers and Inhibitors in Causal Justifica-
tions of Logic Programs, In Logic Programming and Nonmonotonic Rea-
soning, 13th International Conference, LPNMR 2015, Lexington, Septem-
ber 27-30, 2015. Proceedings. (to appear)

Jorge Fandinno, Towards deriving conclusions from cause-effect relations, In An-
swer Set Programming and Other Computing Paradigms, 8th Workshop,
ASPOCP2015, Cork, August 31, 2015. Proceedings.

Pedro Cabalar and Jorge Fandinno, Explaining Preferences and Preferring Ex-
planations. In Advances in Knowledge Representation, Logic Program-
ming, and Abstract Argumentation 2014, Essays Dedicated to Gerhard
Brewka on the Occasion of His 60th Birthday. Thomas Eiter, Hannes
Strass, Mirosław Truszczyński and Stefan Woltran (eds). Lecture Notes
in Computer Science, Volume 9060, 2015.

Pedro Cabalar, Jorge Fandinno and Michael Fink. Causal graph justifications
of logic programs. In Theory and Practice of Logic Programming, TPLP
14, (4-5) 603-618, 30th International Conference on Logic Programming,
July 2014.

Pedro Cabalar, Jorge Fandinno and Michael Fink. A complexity assessment
for queries involving sufficient and necessary causes. In Proc. of the 14th
European Conf. on Logis in Artificial Intelligence, JELIA’14, Funchal,
Madeira, Portugal, September 24th-26th, 2014. Lecture Notes in Artifi-
cial Intelligence (8761), pp. 300-310, Springer-Verlag, 2014.

43



1 introduction

Pedro Cabalar and Jorge Fandinno, An algebra of causal chains. In Proc. of
the 6th International Workshop on Answer Set Programming and Other
Computing Paradigms, ASPOCP’13, Istambul, Turkey, August 2013.

Jorge Fandinno, Algebraic Approach to Causal Logic Programs, Theory and Prac-
tice of Logic Programming 13 (4-5), On-line Supplement (Doctoral Con-
sortium), August 2013.

The rest of this dissertation is organised as follows. The next chapter is an
overview of known results that will be required through the text. Chapter 3 is a
first approximation to causal explanations as non-redundant logical proofs. As
a result, we obtain a possible definition of causal explanations, based on graphs
with an order relation, that allow identifying minimality with non-redundancy.
Furthermore, causal explanations will be represented as a kind of algebraic
expressions that can be handled inside the formalism. In particular, these ex-
pressions, called causal values, have the form of elements of a term algebra that
can be manipulated, as usual, by rewriting rules that follows a set of equiva-
lences. Chapter 4 uses the algebra proposed in the previous chapter to provide
several multivalued semantics for logic programs which are a proper extension
of the standard least model, well-founded model, stable model and answer set
semantics.

Chapter 5 shows how the causal answer sets semantics can be used to capture
the causes of any fluent when dynamic domains are represented as a logic
program. Furthermore, it is shown that different representations, that do not
differ when we are restricted to the fluent truth values, lead to different causal
values, which, in its turn, correspond to different intuitions about the causal
behaviour of those fluents.

Chapter 6 introduces causal literals. Causal literals are a new kind of literals
that allow inspecting the causal values of standard literals, formalising, for
instance, the statement of Example 1.3. Chapter 7 introduces different kinds of
queries, besides entailment, that are interesting to ask about causal information.
It also studies their computational cost.

Chapter 8 is a comparison to several approaches for obtaining justifications
for the answer set semantics and to Pearl actual causation. Chapter 9 overviews a
prototypical tool, based on the ASP tool Clingo script API [Gebser et al., 2014],
that allows computing the causal answer sets of a program. Chapter 10 contains
a final conclusion, summarising our results and outlining possible directions
for future work. Appendices A and B respectively contain the formal proofs of
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the results shown along this dissertation and the examples in the language of
the cgraphs tool.
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2 BACKGROUND

2.1 answer set programming

ASP is a major logic programming paradigm rooted in knowledge represen-
tation and reasoning [Marek and Truszczyńki, 1999, Niemelä, 1999], and it
is an emerging approach to modelling and solving search and optimization
problems arising in many applications areas of AI including planing, reason-
ing about actions, diagnosis, abduction and beyond [Baral, 2003, Brewka et al.,
2011]. In ASP, knowledge is represented by a logic program, whose building
block are atoms, literals, and rules. Atoms are elementary propositions (or fac-
tual statements) that may be true or false; literals are atoms or their strong nega-
tion. NAF-literals are literals A, positive NAF-literals, and their negations not A,
negative NAF-literals. Rules are compounded expressions of the form:

A ← B1, . . . , Bm, not C1, . . . , not Cn (23)

where A and all Bi’s and Cj’s are literals. The literal A is usually called the head
of the rule, whereas literals Bi’s and Cj’s are called the body. It is also common-
place to distinguish between the positive body, literals Bi’s, and the negative body,
literals Cj’s. The usual understanding of (23) it that “A is concluded or derived
to be true when all the positive literals and none of the negative literals in its
body are concluded.” One interesting feature of ASP is its versatility: its seman-
tics was defined in many different ways (in fact, Lifschitz [2010] listed thirteen
of them), indicating an intrinsic richness of the concept. For our concerns, (23)
can be understood as “all Bi’s together cause the event A unless some Cj avoids
it.” For instance, the following variation of rule (14):

open ← up(a), not down(b) (24)

may be read as “moving the first lock up, positive literal up(a), causes the
suitcase to open, unless the second lock is down, negative literal down(b).” Rules
may have no body, that is n = m = 0, as for instance:

up(a) ← (25)
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in which case are called facts, in the sense that the head is unconditionally true,
and usually the symbol ← is removed. That is, fact (25) is usually written just
as up(a). A program is a set of rules. If a rule contains no negative literals, that
is m = 0, then we say it is positive. Positive programs are those that only contain
positive rules.

It is important to note that the not operator, called default negation is not
classical negation. For instance, the negative literal not down(b) should be read
as “there is no way to derive down(b)” rather than down(b) is false. In a causal
sense, it should be read as “there is no cause of down(b)” rather than “there
is a cause for down(b) being false.” If we consider the program formed by the
two rules (24) and (25), we will conclude that up(a) has been caused to be true
because of fact (25), while we cannot conclude that down(b) holds because there
is no rule to cause it. This, in its turn, allows us to conclude that the suitcase is
open, despite that there is no cause for down(b) being false. Let us compare the
understanding of (24) with the original rule:

open ← up(a), up(b) (14)

If we consider a program formed by rule (14) plus (25) we cannot conclude that
open holds because there is no cause for up(b) being true. As we commented
in the introduction, the formalisation of the intuitions behind default knowledge
and in particular default negation posed a challenge to the knowledge representa-
tion and logic programming communities for years. Eventually, the stable model
semantics proposed by Gelfond and Lifschitz [1988] was one solution that has
gained acceptance. In order to illustrate the key points of stable models, con-
sider the following a simplification of the gear wheels scenario from McCain
[1997]

Example 2.1 (The gear wheel (simplified)). Consider a gear mechanism with a pair
of wheels such that when one of them turns the other turns too. There is another switch
to connect or disconnect the wheels. �

We may represent an scenario where we press the switch to connect the
wheels by the following logic program:

spinning(1) ← spinning(2), coupled (26)

spinning(2) ← spinning(1), coupled (27)

coupled ← switch (28)

switch (29)
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In this program, we may conclude that we have pressed the switch, which is
asserted by fact (29). In its turn, this fact together with rule (28) caused the
wheels to be coupled. We may think now that couple is also a fact as switch.
Then, in order to derive that the first wheel is spinning, represented by the atom
spinning(1), we must conclude that the second one is spinning in its turn, atom
spinning(2), and that they are coupled. We have that, indeed, they are coupled,
but the fact that the second wheel is spinning we depends on the fact that the
first one is spinning. This “vicious cycle” cannot be broken because there is no
other rule that allows to cause neither the atom spinning(1) nor spinning(2).
Then, we conclude that the set of facts {switch, coupled} are caused to be true
and we assume that atoms spinning(1) and spinning(2) do not hold because
there is no cause for them. This bottom-up procedure was initially formalized,
for positive programs, by van Emden and Kowalski [1976] .

Definition 2.1 (Direct consequences). Given a positive logic program P over a set
of atoms At, the operator of direct consequences is a function TP : 2At −→ 2At such
that:

TP(S)
def= { A | (A← B1, . . . , Bm) ∈ P and Bi ∈ S for 1≤ i ≤ m }

for any set of atoms S ⊆ At. �

Then, for any set S, the iterative procedure we have seen is defined in the
following way:

T0
P(S)

def= S

Ti+1
P (S) def= TP(Ti

P(S))

We can compute the conclusions of a program by applying the iterative pro-
cedure starting with a set with no conclusions, that is the empty set ∅. For
instance, in our running example, we have that

T0
P(∅) = ∅

T1
P(∅) = { switch }

T2
P(∅) = { switch, coupled }

T3
P(∅) = { switch, coupled }

. . .

In fact, it is easy to see that Ti
P(∅) = { switch, coupled } for all integers i ≥ 2.

The set T2
P(∅)is the least fixpoint of the direct consequences operator. In fact, for

49



2 background

every positive program there is always such a least fixpoint which, furthermore,
coincides with the unique classical minimal model of the program when the oper-
ator (←) is understood as the classical implication (⊂) and the (,) is understood
as the conjunction (∧). This bottom-up procedure can be extended to programs
with negation. For instance, if we apply this procedure to the program formed
by the two rules (24) and (25) it follows that:

T0
P(∅) = ∅

T1
P(∅) = { up(a) }

T2
P(∅) = { up(a), open }

T3
P(∅) = { up(a), open }

. . .

However, this procedure does not work properly for every program with nega-
tion. If, for instance, we apply the same procedure to the program formed by
the following pair of rules:

up(a) ← not down(a) (30)

down(a) ← not up(a) (31)

stating that the first lock must be up when it is not down and vice versa, it
would follow:

T0
P(∅) = ∅

T1
P(∅) = { up(a), down(a) }

T2
P(∅) = ∅

T3
P(∅) = { up(a), down(a) }

. . .

and we never will reach a fixpoint, and thus we do not know which atoms we
may conclude and which we may not.

2.1.1 The Stable Model Semantics

A way to overcome this problem was proposed by Gelfond and Lifschitz [1988],
and it consists in starting with the assumption of which atoms would hold and
which atoms would not. For instance we may assume that the conclusions of
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the above program is the set {up(a)}. Since we have assumed that down(a)
would not hold we can use rule (30) to derive that up(a) must hold, and, since
we have assumed that up(a) would hold, we cannot use rule (31) to do the same
with atom down(a). Notice that, by assuming that {up(a)} would be the set of
conclusions, we have derived that {up(a)} is, indeed, the set of conclusions.
The set {up(a)} is said to be stable in the sense that assuming it to be the
set of conclusions of the program we confirm our assumption. In the same
sense, the set {down(a)} is also stable. On the other hand, the sets ∅ and
{up(a), down(a)} are not stable because, if we assume one of them to be the
conclusions of the program, then we will derive that the other must be that set
of conclusions.

Definition 2.2 (Reduct). Given a program P and a set of atoms S, the reduct of P
with respect to S, in symbols PS, is the program obtained from P by:

1. removing every rule of the form (23) such that some Ci ∈ S,

2. removing every negative literal from the remaining rules. �

For instance, the reduct of the program formed by our pair of rules (30)
and (31) with respect to the set {down(b)} is obtained by firstly removing the
rule (30):

(((
((((

(((up(a) ← not down(b) (30)

down(b) ← not up(a) (31)

and then removing the negative literal not up(a) from rule (31):

down(b) ← ���
��not up(a) (31)

The remaining is a positive program formed by the fact down(b), from which
we conclude that {down(b)} is the set of conclusions of the program, that is, it
is stable. On the other hand, the reduct of such program with respect to the
empty set ∅ corresponds to the pair of facts up(a) and down(b), from which we
conclude that {up(a), down(b)} must be the set of concussion of the program.
That is, ∅ is not stable.

Definition 2.3 (Stable Model). Given a program P, a set of atoms S is a stable
model of P, in symbols S |= P, iff S is the least fixpoint of PS. �

The reduct of every program is positive and, thus, there always exists a least
fixpoint of PS. Furthermore, the reduct of a positive program is always itself.
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Then, positive programs always have a unique stable model that coincides with
its unique classical minimal model. In contrast, non-positive programs may have
one, several or no stable models. The stable models of any program are always
minimal classical models. But, perhaps, the most interesting feature is that the
converse does not hold, that is, there may be minimal classical models that are
not stable models. For instance, as we already have seen, the program formed
by the rules (24) and (25):

open ← up(a), not down(b) (24)

up(a) (25)

has a unique stable model {up(a), open}, whereas if we see it as a classical
theory, there is a second minimal classical model, {up(a), down(b)}, which is
not stable. Notice the importance of this fact for representing causality. In the
first case, we conclude that up(a) has caused open because there is not any
cause for down(b) which agrees with our reading of rules. On the contrary,
in the second case, we would have concluded down(b), but which is its cause?
Neither (24) nor (25) has down(b) in the head, so that, none of them could have
caused it.

2.1.2 The Answer Set Semantics

In our running example we are treating the literal down as the opposite of up
and, indeed, this is the case in English, but from a program point of view, up
and down are just two different names with no relation between them. For in-
stance, a program may conclude up(b) and down(b) without being considered
inconsistent. We need a way to represent the complementary of a literal up.
We recall that not up means that there is no cause for up being true, rather
than there is a cause for up being false, or down. What we need is an explicit
negation up, similar to the classical logic negation, which represents that up is
false1. We can now rewrite rule (24) as:

open ← up(a), not up(b) (32)

using the literal up(b) instead of down(b). In order to further illustrate the
difference between default and strong negation consider the following example2

borrowed from Gelfond and Lifschitz [1991]:

1 This kind of negation is usually called classical or strong negation and represented either as ¬up or
∼up. We will use instead up to represent it. Note that up ≡ up.

2 Gelfond and Lifschitz [1991] attributes this example to John McCarthy.

52



2.1 Answer Set Programming

Example 2.2 (School bus). A school bus may cross a railway under the condition that
there is not approaching train. �

This fact can be expressed by the rule:

cross ← not train (33)

However, this representation may be dangerous if the lack of cause for con-
cluding the atom train is interpreted as the absence of an approaching train.
Suppose that the train is coming but the driver’s vision is blocked, so that, she
cannot see it. Then, she would conclude that she may cross but, of course, we
do not want the bus crossing the tracks. Instead, we should use the following
representation to capture this scenario:

cross ← train (34)

In this case, the driver needs a cause to concluding that the train is not coming,
for instance, that she saw that the tracks were empty.

We present here the basis of the answer set semantics that extends the stable
model semantics [Gelfond and Lifschitz, 1991]. A set S of literals is an answer set
of a positive program P (which does not contain the default negation operator
not) iff

1. S is the least model of P when each pair of complementary atoms, a and
a are treated as completely different atoms, and

2. if S contains a pair of complementary atoms, a and a, then S must contain
all atoms and all their complements.

Definition 2.4 (Answer Set). Given a program P, a set of literals S is an answer set
of P, in symbols S |= P, iff S is the unique answer set of PS.

If a program does not contain strong negation its answer sets are exactly its
stable models. It is also worth to mention, that under the stable model semantics,
when we cannot conclude that some atom is true, then it is assumed to be false.
This is what is called the closed world assumption [Reiter, 1987]. However, under
the answer set semantics, we have an explicit way to say that something is false,
and when we cannot conclude that an atom is neither true nor false we consider
that it is just unknown. For instance, in Example 2.2, when the driver cannot
see the tracks, she cannot conclude neither that the train is coming nor that it
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is not coming, but rather that train is just unknown. The closed world assumption
for a given atom a can be restored by explicitly adding a rule of the form:

a ← not a (35)

Moreover, now truth and falsity are treated symmetrically, so we can assert that
an atom a is true by default by adding a rule of the form:

a ← not a (36)

This can be generalised by more complex default statements that do not simply
involve a default value, but rather a default behaviour. For instance, we may
assert that “a is true by default when b holds” by adding the rule:

a ← b, not a (37)

2.1.3 Splitting a Logic Program

Consider now that we have a program formed by the following rules:

open ← up(a), not up(b)

up(a) ← not up(b)

up(b) ← not up(a)

We know that program formed by rules:

up(a) ← not up(a)

up(a) ← not up(a)
(38)

has two answer sets, {up(a)} and {up(a)}. From up(a) and the rule:

open ← up(a), not up(b) (39)

we will conclude that open is true. Therefore, intuitively, it may seem that
the sets {up(a), open} and {up(a)} should be the stable models of the above
program, and, indeed, they are. This intuitive idea was first formalized by
Lifschitz and Turner [1994] relying on the so called splitting sets. We present
here an alternative version due to Gelfond and Zhang [2014].

Theorem 2.1 (Splitting). Let P1 and P2 be a partition of a program P such that no
atom occurring in P1 is a head atom of any rule in P2. Let S′ be a set of atoms containing
all head atoms of P1 but no head atoms of P2. A set S of atoms is an answer set of P if
and only if S ∩ S′ is an answer set of P1 and S is an answer set of (S ∩ S′) ∪ P2. �
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In our running example P1 would correspond to a program containing the
rules in (38), while P2 would just contain the rule (39). Then S′ is the set
{up(a), up(a)}. Picking S = {up(a), open}, it follows that S ∩ S′ = {up(a)} is
an answer set of P1, and as we have seen, S is also an answer set of the program
{up(a)} ∪ P2. Similarly, {up(a)} is an answer set of P1 and it is also an answer
set of {up(a)} ∪ P2, so it is an answer set of P.

2.1.4 Programs with Variables and Grounding

Continuing with the suitcase example (Example 1.1), we may represent the
statement “lifting any of the locks causes it to be up” by adding the following
pair of rules:

up(a) ← li f t(a) (40)

up(b) ← li f t(b) (41)

However, this has the inconvenient of forcing us to write a rule for each possible
lock, and worse, if we later get knowledge of new locks, then we will need to
add further rules for every statement involving locks. The solution is to allow
the use of variables in rules. For instance, rules (40) and (41) can be replaced
by the following single rule:

up(X) ← li f t(X) (42)

where X is a variable which can take the values a or b. The following revisits
the given definitions to accommodate variables.

Definition 2.5 (ASP signature). The signature of a logic program consists of three
sets of objects: variables, function symbols and predicate symbols.

As usual in logic programming, we will write function and predicate symbols
starting by a lowercase letter, while variables are written starting with upper-
case. Function symbols of arity 0 are called constants. A term is then inductively
defined as follows:

1. Variables are terms

2. If f is an n-ary function symbol and t1, . . . , tn are terms then f (t1, . . . , tn) is
a term. Note that if f is 0-ary, that is, a constant, we omit the parentheses
and write just f .
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A term is said to be ground if no variable occurs in it. The Herbrand Universe
denoted by HU is the set of all ground terms which can be formed with the
functions (and constants) of the program signature.

An atom is a formula of the form p(t1, . . . , tn) where p is an n-ary predicate
symbol and each ti is a term. An atom is said to be ground iff every term oc-
curring in it is ground. The Herbrand Base, denoted HB, is the set of all ground
atoms that can be formed with predicates and functions from the program sig-
nature. A literal is either an atom p(t1, . . . , tn) or its complementary p(t1, . . . , tn).
A NAF-literal L is either a literal A (positive NAF-literal) or its default negation
not A (negative NAF-literal). A rule is an expression of the form:

A ← B1, . . . , Bm, not C1, . . . , not Cn (23)

where A, Bi’s and Cj’s are literals. The grounding of a rule with respect to a
program is the set of rules that can be formed by all possible substitutions of
elements of the Herbrand Universe for the variables in the rule. The grounding
of a program is formed by the union of the grounding of all its rules with
respect to that program.

For instance, if we consider the positive program consisting of the single
rule (42), then its grounding would contain no rules, but if we add the facts
li f t(a) and li f t(b), then we would obtain the program formed by rules (40)
and (41) plus these two facts. It is important to notice that both the grounding
and the answer sets of a finite program may be infinite. Consider, for instance,
the program formed by the following pair of rules describing the natural num-
bers:

nat( s(X)) ← nat(X) (43)

nat(0) (44)

whose Herbrand Base and unique answer set is the infinite set

{nat(0), nat(s(0)), nat(s(s(0))), . . .}

It is easy to see that, in the ground program, there is a rule of the form
nat(si+1(0)) ← nat(si(0)) for every natural number i where we write s0(0)
instead of 0 and si+1(0) in place of s(si(0)).

2.1.5 Well-founded Semantics

The well-founded semantics is a closely related semantics for normal logic pro-
grams originally defined by Van Gelder et al. [1988, 1991] relying on the concept
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of unfounded sets. We will focus on an alternative definition based on alternating
fixpoints given by Van Gelder [1989].

Given a program P over a set of atoms At, we denote by ΓP : 2At −→ 2At

an operator that maps each interpretation I to the least model of the positive
program PI . Hence, by definition, the stable models of a program P are ex-
actly the fixpoints of the ΓP operator. The ΓP operator is anti-monotonic, that
is, for interpretations I ≤ J it holds that ΓP(I) ≥ ΓP(J). Hence the Γ2

P operator,
given by Γ2

P(I) = ΓP(ΓP(I)), is monotonic and, by Knaster and Tarski’s theo-
rem [Tarski, 1955], Γ2 has a least and a greatest fixpoint, respectively denoted
by lfp(Γ2

P) and gfp(Γ2
P). The well-founded model of a program P is given by

a pair 〈lfp(Γ2
P), gfp(Γ

2
P)〉.

We say that a program P satisfies an atom A under the well-founded seman-
tics, in symbols P |=w f A, when A ∈ lfp(Γ2

P). On the contrary, P does not
satisfy A, in symbols P 6|=w f A, when A /∈ gfp(Γ2

P). Otherwise, A is said to be
undefined with respect to P.

Proposition 2.1 (Baral [2003]). Given a logic program P, then P |=w f A implies
P |= A and P 6|=w f A implies P 6|= A. �

Proposition 2.1 states that the well-founded semantics is sound with respect
to the stable model semantics.

2.2 abstract algebra

In this section we address some basic notation of abstract algebra, which will
be useful in Chapter 3. Note that, in this chapter, we will push aside the
convention of using letters A, B and C for literals, and we will use them for
representing sets.

2.2.1 Notation

A family (as)s∈S of elements of a set A is a function f : S−→ A such that f (s) =
as. We write (as)s∈S ⊆ A to mean that (as)s∈S is a family of elements of A, we
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write (as)s∈S = A to mean that A is the image of (as)s∈S and we write (as)n
s=1

to mean that (as)s∈{ 1,...,n }.

The Cartesian product
�

s∈S As of the family (As)s∈S is the set of all functions
f : S −→ ⋃

s∈S As such that f (s) ∈ As for all s ∈ S. A projection is a function
pt :
�

s∈S As −→ At such that pt( f ) = f (t) where t ∈ S. When As = A for all
s ∈ S we write AS. As usual we denote

�
s∈S As by A1 × . . . × An when S is

finite and |S| = n and by An when furthermore As = A for all s ∈ S.

The restriction of a function f : A −→ B to a subset A′ ⊆ A is a function
f|A′ : A′ −→ B such that f|A′(a) = f (a) for all a∈ A′. Furthermore, for a superset
A′′ ⊇ A, a function g : A′′ −→ A such that the restriction of g to A is f , in
symbols g|A = f , is called an extension of f .

A binary relation ≤ on a set P is called a partial order if it is:

• reflexive, i.e. a ≤ a,

• transitive, i.e. a ≤ b and b ≤ c implies a ≤ c, and

• anti-symmetric, i.e. a ≤ b and b ≤ a implies a = b.

A partial order set 〈P,≤〉 is a set P together with a partial order relation ≤. Given
a subset S ⊆ P, an element a ∈ P is an upper bound of S if s ≤ a for all s ∈ S, a is
furthermore the least upper bound of S a≤ b iff for any upper bound b. The least
upper bound, when exists, of a set S is denoted by ∑ S. Respectively, a lower
bound of S is an element a s.t. a ≤ s for all s ∈ S and the greatest lower bound
of S is an element a s.t. b ≤ a for all lower bound b, and, when it exists, it is
denoted by ∏ S. If S = {a1, a2, . . . , an} is finite we write a1 + a2 + . . . + an (resp.
a1 ∗ a2 ∗ . . . ∗ an) instead of ∑ S (resp. ∏ S).

For a set S, an S-ary operation (resp. partial operation) on a set A is a function
(resp. partial function) of the form ? : AS −→ A. When S = {1,2}, it is called a
binary operation and we usually write a1 ? a2 instead of ?(as)s∈{1,2}. An algebraic
structure or algebra A= 〈A,?1,?2, . . . ,?m〉 is a set A with one or more operations
?1,?2, . . . ,?m defined in it. Two algebras A and B belong to the same class if they
have the same operations. A function ε : A −→ B such that ε

(
?i (as)s∈Si

)
=

?i
(
ε(as)

)
s∈Si

for all operations ?i with i ∈ {1, . . . ,m} is called an homomorphism.
An injective homomorphism is an embedding or monomorphism, and a surjective
embedding is an isomorphism.

Given two algebras A= 〈A,?1,?2, . . . ,?m〉, and B= 〈B,?′1,?′2, . . . ,?′m〉 such that
B ⊆ A, we say that B is a subalgebra of A if ?′i is the restriction of ?i to B and
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?i
(
(bs)s∈Si

)
∈ B for any family (bs)s∈Si ∈ BSi and any Si-ary operation ?i. When

clear by the context we write ?i instead of ?i|B and B= 〈B,?1,?2, . . . ,?m〉 instead
of B= 〈B,?1|B,?2|B, . . . ,?m|B〉. The smallest subalgebra, when it exists, of A that
contains a set B is called the subalgebra of A generated by B and is denoted by [B].
An algebra A, with domain A, is free if there exists a set B such that

• A is generated by B, i.e. [B] = A

• for any algebra C, with domain C, of the same class as A and any function
f : B −→ C there exists an homomorphism h : A −→ C such that h|B = f .

2.2.2 Partial Lattices

In the following we introduce a generalization of the concept of lattice called
partial lattice from Stumme [1997].

Definition 2.6 (Partial Lattice). A (weak) partial (complete) lattice 〈P,≤,+,∗〉 is
a partially ordered set 〈P,≤〉 together with two families of operations +n and ∗n such
that either +n(a1, . . . , an) is the least upper bound (resp. ∗n(a1, . . . , an) is the greatest
lower bound) of {a1, . . . , an} or it is undefined for any positive integer n ≥ 1 and all
elements a1, . . . , an of P. �

As usual, given a subset A = {a1, . . . , an} ⊆ P we respectively denote by ∑ A
and ∏ A the least upper bound and the greatest lower bound of A, that is
∑ A = +n(a1, . . . , an) (resp. ∏ A = ∗n(a1, . . . , an)). Partial lattices are a generali-
sation of lattices where some least upper bound or greatest lower bound may
be undefined. For instance, every (possible incomplete) lattice or semilattice
are partial lattices.

Definition 2.7 (Upper semilattice). A partial lattice 〈P,≤,+,∗〉 s.t. +2(a1, a2) is
defined for all a1 and a2 in P is an upper (or join) semilattice. An upper semilattice
is said to be bound iff there exists an element 1 such that a ≤ 1 for all a ∈ P. �

Definition 2.8 (Down semilattice). A partial lattice 〈P,≤,+,∗〉 s.t. ∗2(a1, a2) is
defined for all a1 and a2 in P is a down (or meet) semilattice. A down semilattice is
said to be bound iff there exists an element 0 such that 0≤ a for all a ∈ P. �

Definition 2.9 (Lattice). A partial lattice 〈P,≤,+,∗〉 which is an upper and a down
semilattice is a lattice. A lattice is said to be bound iff it is a bound upper and down
semilattice. A lattice is said to be complete iff +n(a1, . . . , an) and ∗n(a1, . . . , an) are
defined for every (possible infinite) subset {a1, . . . , an} ⊆ P. �
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Definition 2.10 (Filter). An upperset or order filter of a partially ordered set 〈P,≤〉
is a subset F ⊆ P with a ∈ F and a ≤ b implying b ∈ F. The set of all order filters of
〈P,≤〉 is denoted by F〈P,≤〉. A filter of a partial lattice 〈P,≤,∑,∏〉 is an order filter
F which is closed under the defined greatest upper bound, that is, if A ⊆ F and ∏ A is
defined, then ∏ A ∈ F. The filter generated by A is denoted by ⇑A. When A = {a},
we write ↑a instead of ⇑A and ↑a is called a principal filter. The set of all filters and all
principal filters are respectively denoted by FP and PFP. �

The definition of ideals is dual:

Definition 2.11 (Ideal). A downset or order ideal of a partially ordered set 〈P,≤〉
is a subset I ⊆ P with b ∈ I and a ≤ b implying a ∈ I. The set of all order ideals of
〈P,≤〉 is denoted by I〈P,≤〉. An ideal of a partial lattice 〈P,≤,∑,∏〉 is an order ideal
I which is closed under the defined least upper bound, that is, if A ⊆ I and ∑ A is
defined, then ∑ A ∈ I. The ideal generated by A is denoted by ⇓A. When A = {a}, we
write ↓a instead of ⇓A and ↓a is called a principal filter. The set of all ideals and all
principal ideals are respectively denoted by IP and PIP. �

Given a set of ideals I ⊆ IP and a set of filters F ⊆ FP, IF and FI respectively
denote the following sets of filters and ideals:

IF =
{

F ∈ FP
∣∣ ∀I ∈ I : F ∩ I 6= ∅

}
FI =

{
I ∈ IP

∣∣ ∀F ∈ F : F ∩ I 6= ∅
}

Definition 2.12 (Concept lattice of a partial lattice). Let 〈P,≤,+,∗〉 be a partial
lattice. Then, its concept lattice BP is a complete lattice 〈BP,≤,+,∗〉 where the
elements of BP are pairs of the form 〈IF, I〉 with I ⊆ IP and IFI = I and meet and join
are respectively defined as:

∏
s∈S

(IF
s , Is) =

(⋂
s∈S

IF
s ,
( ⋃

s∈S
Is

)FI)
∑
s∈S

(IF
s , Is) =

((⋃
s∈S

II
s

)IF
,

⋂
s∈S

Is

)
Furthermore, (IF

1 , I1) ≤ (IF
2 , I2) iff IF

1 ⊆ IF
2 iff I1 ⊇ I2. �

Theorem 2.2 (Stumme [1997, Theorem 9]). Given a partial lattice 〈P,≤,+,∗〉, its
concept lattice BP = 〈BP,≤,+,∗〉 is the free completely distributive (complete) lattice
generated by the image of εP where εP : P −→ BP is given by:

a 7→ 〈 { F ∈ FP | a ∈ F },{ I ∈ IP | a ∈ I } 〉 (45)

That is, for each order-preserving map δ from 〈P,≤〉 to a completely distributive lattice
S, there exists a homomorphism h : BP −→ S such that δ = h ◦ εP. �
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2.3 general annotated logic programs

General Annotated Logic Programs (GAP) were introduced by Kifer and Sub-
rahmanian [1992] as a formal semantics generalising various result and treat-
ments of multivalued logic programming. In GAP, truth values V are assumed
to form a bounded upper (but possible incomplete) semi-lattice with a least
upper bound operator (+) and top element 1.

For each positive integer s ≥ 1, we assume there is a family Fs of total con-
tinuous (hence monotonic) functions of the type Vs −→ V called annotation
functions. Furthermore, F denotes the set of all functions, that is F =

⋃
s≥1 Fs,

and all functions f ∈ F are considered to be computable in the sense that there
exists a uniform procedure f̃ such that if f is n-ary and µ1, . . . ,µs are given
as input to f̃ , then f (µ1, . . . ,µs) is computed by f̃ in a finite amount of time.
Moreover, each Fs is assumed to contain an s-ary function +s derived from the
semi-lattice operator +, which, given inputs µ1, . . . ,µs returns the least upper
bound of {µ1, . . . ,µs}. As done in Section 2.2.1 we will just denote by + any
of the +s functions and by ∑{µ1, . . . ,µs} the least upper bound of {µ1, . . . ,µs}.
Apart from the interpreted annotation functions, the language contains usual
uninterpreted functions, constants and predicate symbols as those introduced
in Section 2.1.4. Two disjoint sets of variables are considered — object variables
and annotation variables.

Definition 2.13 (Annotation). Given a family of annotation functions F1, F2, . . . , a
set of truth values V and a set of atoms At:

• An annotation is either an element of V, a annotation variable or an complex
annotation term of the form f (µ1, . . . ,µm) where f is an m-ary annotation
function f ∈ Fn and µ1, . . . ,µm are annotations.

• An annotated atom is a formula of the form (A : µ) where A ∈ At is an atom
and µ is an annotation. An annotated atom (A : µ) is said to be c-annotated,
v-annotated and t-annotated if µ is respectively an element of V, an annotation
variable or a complex annotation term. �

Definition 2.14 (Annotated clause). Given a GAP signature, an annotated clause
is a formula of the form:

(A : ρ) ← (B1 : µ1) & . . . & (Bm : µm)

where (A : ρ) is an annotated atom and (B1 : µ1), . . . , (Bm : µm) are c-annotated or
v-annotated atoms. Any set of annotated clauses is also called a GAP. �
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Intuitively, the above definition asserts that members of F may occur in the
annotation in the head of a clause, but not in its body. A strictly ground instance
of a clause is obtained by replacing all the object variables and annotated vari-
ables by object constants and c-annotations, respectively. Since all annotated
functions f ∈ F are evaluable, annotation terms of the form f (µ1, . . . ,µm) where
µ1, . . . ,µm are values in V and f ∈ Fm are also considered to be ground and are
identified with the result of the computation of f̃ on (µ1, . . . ,µm).

An r-interpretation I : At −→ V is a mapping from ground atoms into the
set of ideals of the values set V. Since r-interpretations are functions into a
partially order set V, the order relation may be extended over interpretations
such that I ≤ J iff I(A) ≤ J(A) for all A ∈ At.

Definition 2.15 (r-Satisfaction). Given an r-interpretation I : At −→ V, a ground
atom ‘’a” and a c-annotation µ ∈ V, then

1. I |=r (A : µ) iff µ ≤ I(A)

2. I |=r ϕ1 & ϕ2 iff I |=r ϕ1 and I |=r ϕ2

3. I |=r ϕ1← ϕ2 iff I |=r ϕ1 or I 6|=r ϕ2

A r-interpretation I is said to be an r-model of a formula ϕ iff I |=r ϕ. Furthermore, it
is said to be a model of a GAP P iff it is a model of all the formulas in P. �

Definition 2.16 (r-Direct consequences operator). Given a GAP program P, an
r-interpretation I and an atom A, the r-direct consequence operator RP(I)(A) is given
by:

∑{ f (µ1, . . . ,µm) | (A : f (µ1, . . . ,µm))← (B1 : µ1) & . . . & (Bm : µm) in P }

for any r-interpretation I. �

The following results assert when the direct consequences operator RP is well
behaved.

Theorem 2.3 (Kifer and Subrahmanian [1992, Theorem 1]). For any GAP pro-
gram P and r-interpretation Ir, it holds that

i ) Ir is a model of P iff RP(Ir) ≤ Ir, and

ii ) RP is monotonic. �

Theorem 2.4 (Kifer and Li [1988]). Any GAP program P with only v-annotation in
rule bodies satisfies that

i ) RP is continuous,

ii ) Rω
P = lfp(RP) is the least model of P. �
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2.4 complexity: the polynomial hierarchy

Complexity Theory is an approach to classify computational problems by their
requirements on computer resources. In this section, we briefly summarise the
basic notions that we will require in order to classify the problems we will
study in this dissertation. For wider view of Complexity Theory, complex-
ity classes and complete problems in Polynomial Hierarchy see Papadimitriou
[2003], Johnson [1990] and Schaefer and Umans [2002].

A decision problem consists in deciding whether a given input w satisfies a
certain property Q. That is, in set theoretic terms, whether it belongs to the set
S = {w | Q(w)} of the elements that satisfy the property Q. The complementary
of a decision problem consists in deciding whether a given input w does not
satisfy a certain property Q, that is, it belongs to the set S = {w | ¬Q(w)}.

Decision problems are classified into complexity classes by bounding some
computer resources, particularly time and space are the most widely studied.

• DTIME( f (n)) denotes the class of problems decidable by a deterministic
Turing machine in almost f (n) steps where n is the size of the input.

• DSPACE( f (n)) denotes the class of problems decidable by a deterministic
Turing machine using almost f (n) space where n is the size of the input.

A problem is said to be decidable in polynomial time (resp. in polynomial
size) iff it belong to the class DTIME(ni) (resp. DSPACE(ni)) for some non-
negative integer i. The class of problems decidable in polynomial time (resp.
polynomial size) is denoted by P (resp. by PSPACE). Similarly, a problem is
said to be decidable in exponential time (resp. in exponential size) iff it belong
to the class DTIME(2ni

) (resp. DSPACE(2ni
)) for some non-negative integer i.

The class of problems decidable in exponential time (resp. exponential size) is
denoted by EXPTIME (resp. by EXPSPACE). A problem is said to be decidable
in logarithmic time (resp. in logarithmic size) iff it belong to the class DTIME(i ·
log(n)) (resp. DSPACE(i · log(n))) for some non-negative integer i. The class of
problems decidable in logarithmic space is denoted by LOG.

Furthermore, NTIME( f (n)) and NSPACE( f (n)) respectively denote the classes
of problems decidable by a non-deterministic Turning machine in almost f (n)
steps and space. NP and NEXPTIME are respectively the classes of prob-
lems decidable in polynomial and exponential time by a non-deterministic
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Turing machine. It is worth to mention that the classes NPSPACE and NEX-
PSPACE respectively coincide with PSPAPCE and EXPSPACE, that is, adding
non-determinism to the computational model does not make a difference in
these complexity classes.

It is known that every problem decidable in logarithmic space is also decid-
able in polynomial time and so on:

LOG ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE

Furthermore it is known that some of these inclusions are strict, P ⊂ EXPTIME
and LOG ⊂ PSPACE. Other are believed to be different, like P ⊂ NP but remain
unproven.

Given any complexity classes C and O, the class CO is the class of problems
decidable in the class C with the possibility of calling in each step a subroutine,
called oracle, capable of solving problems of class O “for free.” The Polyno-
mial Hierarchy (PH) is recursively defined from the classes P and NP in the
following way: ΣP

0 = ∆P
0 = ΠP

0 = P and

∆P
i+1

def= PΣP
i

ΣP
i+1

def= NPΣP
i

ΠP
i+1

def= coNPΣP
i

where coNP is the complementary of the class NP. The PH class is defined
as the class of problems in ΣP

i for some non-negative integer i. The inclusion
in the direction of the arrow holds between the classes depicted in Figure 2

Furthermore, P ⊆ PH ⊆ PSPACE and, although it is believed that these inclu-
sions are strict, it is still unknown whether this is the case or not.

Given a pair of problems A and B, it is said that A reduces to B when there
exists a transformation g that for every input w of A, produces an input g(w)
of B which has the same answer than w. A transformation g that reduces a
problem A to B is a C-reduction if reduces A to B and can be computed within
the bounds of the complexity class C.

Reductions play a central role in the definition of complete problems. A prob-
lem A in a complexity class C is said to be complete under C’-reductions iff for
every problem B in C there exists a C’-reduction that maps problem instances
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Figure 2: Relations inside the Polynomial Hierarchy.

of B into A. In particular, we will be interested in complete problems under
logspace and polynomial time reductions.

Since we will be dealing with problems in the PH, in the following we enu-
merate some problems that are known to be complete for some of the classes
in the PH.

• Given a positive logic program P, deciding whether P |= A for some literal
A is P-complete [Dantsin et al., 2001].

• Deciding whether a propositional theory T is satisfiable in classical logic,
that is, whether there exists a model M of T, M |= T, is NP-complete [Cook,
1971, Levin, 1973].

• Deciding whether a propositional theory T is unsatisfiable in classical
logic, that is, whether there does not exist a model M of T, M |= T, is
coNP-complete.
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• Deciding whether a quantified Boolean formula of the form

∃x11 . . . x1n1∀x21 . . . x2n2 Qxm1 . . . xmnm . . . ϕ(x11, . . . , x1n1 , . . . , xmnm)

where “Q” stands for “∃” if m is odd and for “∀” if m is even and ϕ is a
Boolean formula with variables x11, . . . , x1n1 , . . . , xmnm , is ΣP

m-complete. It is
complete even if ϕ is a 3-CNF formula, that is ϕ is in disjunction normal
form with only 3 literals per conjunction and m is odd or if ϕ is a 3-DNF
formula, that is ϕ is in disjunctive normal form with only 3 literals per
conjunction and m is even [Wrathall, 1976].

Furthermore, the following problems in LP are known to be complete for some
class in the PH:

• Given a ground, logic program P, deciding whether P |=w f A under the
well-founded semantics is P-complete [Van Gelder, 1989, Van Gelder et al.,
1991, Eiter and Gottlob, 1995].

• Given a ground logic program P, deciding whether P has a stable model
is NP-complete [Marek and Truszczynski, 1991].

• Given a ground logic program P, deciding whether P |= A under the
stable model semantics for some literal A is coNP-complete [Marek and
Truszczynski, 1991, Schlipf, 1995, Kolaitis and Papadimitriou, 1991].

• Given a ground disjunctive logic program P, deciding whether P has a
stable model is ΣP

2 -complete [Eiter and Gottlob, 1995].

• Given a ground disjunctive logic program P, deciding whether P |= A
under the stable model semantics for some literal A is ΠP

2 -complete [Eiter
and Gottlob, 1995].
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As commented in the introduction, this dissertation will be focused on the
study of sufficient causation. Therefore, we will use cause as a shorthand for
sufficient cause and “A has caused B” as a shorthand for “A has been sufficient
to cause B.” We have also commented that a central goal of this dissertation is
representing statements like (6) without falling down in problems of elaboration
tolerance. For instance, we have seen that by formulas (7) and (9) we respectively
conclude that hascaused(up(a), open) and hascaused(open, bomb) hold. For con-
cluding that hascaused(up(a), bomb), we may rely on Lewis’ idea of causal
chain: if up(a) has caused open and open has caused bomb then up(a) · open ·
bomb is a causal chain that explains bomb. Similarly, up(b) · open · bomb is also
a causal chain of bomb. It is also worth to recall that the idea of causal chains
presents some troubles in distinguish between alternative and joint causes. It is
clear that rule (14) has a completely different meaning than rules (19) and (20),
but they lead to the same causal chains. With the aim of differentiating be-
tween both, alternative an joint causes, we combine Lewis’ idea of causal chains
with Mackie’s minimal disjunctive normal form, so that alternative causes will be
represented as:

up(a) · open · bomb + up(b) · open · bomb (46)

while joint causes will be represented as:

up(a) · open · bomb ∗ up(b) · open · bomb (47)

Now it is clear that both up(a) and up(b) form sufficient and alternative causes
of bomb with respect to (46), while they are joint causes of it with respect to (47).

Cabalar [2012] has proposed labelling program rules, representing causes as
graphs whose vertices are those rule labels, and then, using these graphs as the
basis for the “truth values” of a multivalued semantics. We will follow here this
approach. In Chapter 6, we will use these “truth values” for defining a precise
semantics for the predicate hascaused(A, B) as a particular case of a kind of
new literal.



3 sufficient causes

Definition 3.1 (Labelled program). Given a signature 〈At, Lb〉 where At and Lb re-
spectively represent a set of atoms and a set of labels, a labelled rule R is an expression
of the form

lR : A ← B1, . . . , Bm, not C1, . . . , not Cn (48)

where lR is either a label, that is lR ∈ Lb, or the special symbol lR = 1, and where A
and all Bi’s and Cj’s’ are atoms. A labelled program P is a set of labelled rules. �

An unlabelled rule stands for an abbreviation of a rule with lR = 1. We will
see later that 1 corresponds, in fact, to the empty graph. We say that a program
is uniquely labelled when every rule has a different label, and that it is completely
labelled if furthermore it has not unlabelled rules. A program is head labelled if
rules with different heads have different labels, and it is completely head labelled if
furthermore it has not unlabelled rules. We will focus on normal programs, that
is, programs without disjunction in the head. To illustrate these ideas, consider
the scenario of Example 1.4 represented by the following labelled program.

Program 3.1.

b : bomb ← open

o : open ← up(a), up(b)

k : open ← key

u(L) : up(L) ← li f t(L)

li f t(a) : li f t(a)

li f t(b) : li f t(b)

key : key

We will usually label facts with a label with the same name as the fact. For the
readability sake, we will use label ‘$ :’ for indicating that the label of a rule has
the same name than its head. That is, the following facts are equivalent to the
ones in Program 3.1.

$ : li f t(a)

$ : li f t(b)

$ : key

Figure 3 depicts two graphs capturing the two causal chains that have caused
the bomb explosion.
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Figure 3: Graphs G1 and G2 associated to the proofs of bomb in Example 1.2.

Graph G1 corresponds to the first cause initiated by the action of lifting both
locks. Graph G1 contains two causal chains, one initiated by the lift of the first
lock li f t(a) ·u(a) ·o ·b, and the second one initiated, in its turn, by the second
lifting li f t(b)·u(b)·o ·b. On the other hand, graph G2 corresponds to the second
cause initiated by the action of turning the key, which represents itself a causal
chain of the form key · k ·b. The causes of bomb may be then captured by the
following formula in minimal disjunctive normal form.

li f t(a) ·u(a) ·o ·b ∗ li f t(b) ·u(b) ·o ·b + key ·k ·b (49)

Each subterm without sums (+) represents a cause for the fact bomb1.

3.1 causes as graphs

In this section, we study sufficient causes as true graphs, rather than just prod-
ucts of causal chains. This possess the issue of how to define the minimality
criterion to guarantee that causes do not contain unnecessary events for being
sufficient. Notice that we differentiate between a sufficient explanation (an ex-
planation that contains enough events to get the effect) and being a sufficient
cause which we assume that, in addition to contain enough events to get the
effect, it does not contain superfluous ones. When causes are represented as a
product of causal chains, that is a set of chains, the minimality criterion was ba-
sically subset inclusion. Hence, we may think now that the minimality criterion

1 We have preliminary explored this approach in Cabalar and Fandinno [2013]. However, a subse-
quent complexity analysis revealed that identifying sufficient causes with this representation was
surprisingly harder than intuitively expected. This fact has led us to the refinement presented in
this dissertation.
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should coincide with subgraph minimality, and this will be, in fact, the basis
of our definition. However, taking this idea in a naive manner produces some
troubles, which we illustrate with the following example taken from Cabalar
et al. [2014b].

Example 3.1 (Alarm circuit). An alarm is connected to three switches as depicted in
Figure 4. Each switch is operated by a different person and, at a given moment, they all
accidentally close the switches. We want to analyse the responsibility for firing a false
alarm. �

sw1

sw3

sw2
sw4

b

c

d

alarm

Figure 4: A circuit connecting four switches and an alarm.

A possible representation of this scenario could be as follows:
Program 3.2.

a : alarm ← sw3, current(d)

b : current(b) ← sw1

b : current(b) ← sw4, current(c)

c : current(c) ← sw2

c : current(c) ← sw4, current(b)

d : current(d) ← current(b)

d : current(d) ← current(c)

$ : sw1

$ : sw2

$ : sw3

$ : sw4

In this program, we have used a same label for all rules defining the current at
some circuit point. This reflects the idea that they are part of a same component:
points in the circuit where two wires join represent OR gates. For instance, rules
with label d may be read as a logical formula of the form:

d : current(d) ← current(b) ∨ current(c)

Figure 5 depicts three graphs that one could cite among the explanations of
alarm. The sufficient causes of alarm will be those explanations which do not
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Figure 5: Sufficient explanations for the alarm firing in Example 3.1.

contain redundant events (those unnecessary for being sufficient). Notice that,
neither switch 4 nor the current going through b are actually necessary for G2
to be sufficient for alarm. Furthermore, graph G3 is like G2 but with vertex b
placed between vertices c and d. The edges c→ b→ d just show the existence of
a redundant path between c and d which depends on closing switch 4. Hence, it
seems clear that G3 is redundant with respect to G2, and thus it should not be a
sufficient cause of alarm. Despite of that, neither graph G1 nor G2 are subgraphs
of G3, and thus G3 is subgraph minimal. Indeed, G2 is not a subgraph of G3
because edge c→ d does not belong to graph G3, although, it belongs to its
transitive closure. This fact points out that, in order to compare causes in
programs where some rules share the same label, we should appeal to the
edges of their transitive closures.

Furthermore, it is also worth to represent causes as reflexively closed graphs.
This will allow ignoring the number of steps that a recursive definition has
been applied. For instance, the natural numbers can be defined with the set of
rules:

z : nat(0) s : nat(X + 1) ← nat(X)

where the last rule is an abbreviation for all rules obtained by replacing X for
all natural number n. The graph obtained from the proof of atom nat(n) will
be of the form:

z
n︷ ︸︸ ︷

→ s→ . . .→ s

Note that this graph is just the same as z→ s→ s since actually s always cor-
responds to the same vertex. By assuming that causal graphs are reflexively
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closed, graph z→ s and graph z→ s→ s actually stand for the same causal
graph depicted in Figure 6. If we want to keep track of each of the applica-

z

��

��

sDD

.

Figure 6: Causal graph corresponding to graphs z→ s and z→ s→ s.

tions of the recursive definition, it is only necessary to change label s to include
variable X, writing s(X). In this case, we will obtain z→ s(0)→ . . .→ s(n).
A fortunate side effect of reflexivity is that every vertex has at least one edge
(the reflexive one) which allows treating graphs just as sets of edges, and the
subgraph relation to be just the subset ⊆ relation.

Definition 3.2 (Causal graph). Given a set of labels Lb, a causal graph (c-graph)
G⊆ Lb× Lb is set of edges transitively and reflexively closed. The set of causal graphs
is denoted by CLb. A c-graph is said to be cyclic if contains a (non-reflexive) cycle,
acyclic otherwise. �

sw1
��

��

//

��
sw3

||

��

b

��

dd

d

--

dd

aDD

Figure 7: Causal graph corresponding to graph G1 in Figure 5.

Although, for mathematical treatment, it is worth to define causal graphs as
transitively and reflexively closed structures, for readability sake, it is clearer to
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3.2 Causal Graphs and Logical Proofs

depict them as their transitive and reflexive reductions2. In this way, for instance
graph G1 in Figure 5 will implicitly stand for that in Figure 7.

3.2 causal graphs and logical proofs

We proceed next to formalize the idea we had sketched in the introduction,
where we considered building explanations by going from the causes to their
final events passing through the causal laws that connect them. This type of
explanations can be captured by proofs in their usual logical meaning.

Definition 3.3 (Proof). Given a positive program P, a proof π(A) of an atom A is
recursively defined as a derivation:

π(A) def=
π(B1) . . . π(Bm)

A
R, (50)

where R ∈ P is a rule with head A and body(R) = {B1, . . . , Bm}. When m = 0, the
derivation antecedent π(B1) . . . π(Bm) is replaced by > (corresponding to the empty
body). �

For each proof of the form (50), we say that π(B1), . . . , π(Bm) are the direct
subproofs of π(A). The subproofs of π(A) are recursively defined to be itself
plus the subproofs of all its direct subproofs. Figure 8 depicts one of the proofs
for bomb in Program 3.1. It is easy to see that, by joining with an edge the label
of the rule of each direct subproof with the label of its parent we will obtain
graph G1 in Figure 3.

This intuitive relation between graphs and logical proofs provides us with a
new tool for formalising the notion of minimality or non-redundant explanation.
Consider the following example:

Example 3.2 (Ex. 1.2 continued). Our suitcase has now a wireless mechanism that
flip both locks remotely. The wireless mechanism is activate by two different remote
controls (s and y) simultaneously. �

2 Recall from graph theory that the transitive and reflexive reduction of a graph G is a minimal graph
whose transitive and reflexive closure the same as the closure of G.
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>
li f t(a)

li f t(a)

up(a)
u(a)

>
li f t(b)

li f t(b)

up(b)
u(a)

open
o

bomb
b

Figure 8: Proof for atom bomb corresponding to Program 3.1.

Program 3.3.

b : bomb ← open

u : open ← up(a), up(b)

l(L) : up(L) ← wireless

s : wireless

y : wireless

where L ∈ {a,b}. The two labelled facts for wireless stand for the two different
controls that activate this mechanism. Figure 9 depicts the four ⊆-minimal
causal graphs corresponding to the proofs of the literal bomb. Notice that

s
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l(b)

ttu
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u
��

u
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b b b b

G1 G2 G3 G4

Figure 9: Causal graphs associated to the proofs of the literal bomb in Example 3.2.

graph G3 represents that the first lock has been moved up by the first wire-
less mechanism s whereas the second one has been lifted by the second one y.
On the other hand, in graph G1, both locks have been lifted by the same mecha-
nism s. In this sense, the causal relations represented by graphs G1 and G3 are
not comparable. However, the second mechanism y is not necessary to explain
why the bomb has exploded and, thus, G3 should be considered redundant
with respect to G1, i.e. G3 should not be considered a cause of bomb. The
same reasoning can be applied to pairs G2-G3, G1-G4 and G2-G4. Furthermore,
note that we can represent G1 and G3 respectively as the proofs depicted in
Figures 10 and 11. It is easy to see that subproofs of the proof depicted in
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>
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Figure 10: Proof for atom bomb corresponding to graph G1 w.r.t. Program 3.3

Figure 10 are a strictly subset of the proofs of the one depicted in Figure 11.
Therefore, we may state the following definition of non-redundant proof.

>
wireless

s

up(a)
u(a)

>
wireless

y

up(b)
u(a)

open
o

bomb
b

Figure 11: Proof for atom bomb corresponding to graph G3 w.r.t. Program 3.3

Definition 3.4 (Redundant proof). Given a positive program P, a proof π = π(A)
is said to be redundant iff there exists a another proof π′ = π(A) of the same literal A
with a strict subset of subproofs, that is, subproo f s(π′) ⊂ subproo f s(π). Proofs are
non-redundant otherwise. �

We may incorporate this notion of non-redundant proof into the graph repre-
sentation by means of a function δ : Lit −→ Lb ∪ {1}. Using function δ we can
assign a graph to every proof π in the following way:

Definition 3.5 (Proof graph). Given a proof π and a function δ : Lit−→ Lb∪{1}, by
graph(π) we denote the graph which, for each direct subproof π′ of π of the form (50),
contains edges (lB1 , lR), . . . , (lBm , lR), (lR, lA) where lR is the label of rule R in subproof
π′ and lB1 , . . . , lBm and lA are the labels assigned by δ to the atoms B1, . . . , Bm and
A respectively. In addition, graph(π) recursively contains graph(π′) for all direct
subproof π′ of π. By cgraph(π) we denote the causal graph generated by graph(π),
that is, its transitive and reflexive closure. �

In other words, cgraph(π) is the transitive and reflexive closure of a graph
obtained by adding an edge from the consequent of each subproof (which cor-
responds to an atom in the body of the rule) to the label of the proof and
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another edge from its label to the label of its consequent. For instance, if we
assume that δ maps each atom to a different label, with the same name as the
atom, and which, furthermore, is different from all the labels in the program
rules, the graphs corresponding to the proofs of bomb become those depicted
in Figure 12. It is easy to see that graphs in Figure 12 correspond somehow to
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Figure 12: Causal graphs associated to the proofs of the literal bomb in Example 3.2 with
δ(A) a different label for each atom A.

those depicted in Figure 9. In fact, graphs G1 and G2 in Figure 9 are the result
of removing the vertices associated to atoms by the function δ, and contracting
their adjacent edges, in the corresponding graphs G′1 and G′2 depicted in Fig-
ure 12. Graph G′34 corresponds to both G3 and G4. Note that, the result from
adding the edges (s,wireless), (y,wireless), (wireless, l(a)) and (wireless, l(b))
to graphs G3 and G4 leads to the same graph. More importantly, note that G′34
is a strict superset of G′1 and G′2, and so, it is not ⊆-minimal. Hence, G′34 will
not be considered to be a cause of the fact bomb, whereas G3 and G4, which
are ⊆-minimal, will be. We will see later, in Chapter 4, that causal graphs in
Figure 9 can be obtained in the same way as those in Figure 12, by just selecting
a function δ that maps each literal A to 1.

Definition 3.6 (Atom labelling). Given a program P, we say that a function δ which
assigns a different label lA to each literal A and different from any label in P is a
unique atom labelling. A function δ assigning 1 to each literal in P is an empty
atom labelling. �
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For most of the examples in this dissertation there will be a one-to-one corre-
spondence between the causes obtained under a unique atom labelling and an
empty one. For the sake of simplicity, in all cases that both atom labelling agree,
we will choose an empty one. However, as we have seen with Example 3.2,
some examples are sensitive to the atom labelling chosen. As a consequence,
some formal results will depend on the assumption that δ assigns a different
label to each literal, and different from any label in the program. Results that
depend on this assumption will be explicitly indicated.

Definition 3.7 (Graph redundant proof). Given a positive program P, a proof π =
π(A) is said to be graph redundant iff there exists a another proof π′ = π(A) of the
same literal A such that cgraph(π)⊂ cgraph(π′). Proofs are graph non-redundant
otherwise. �

Proposition 3.1. Given a positive completely labelled program P and a unique atom
mapping δ : Lit −→ Lb, a proof π(A) of an atom A is non-redundant if and only if
it is graph non-redundant. �

Proof . The proof can be found in Appendix A on page 240. �

Proposition 3.1 shows that, in the particular case that the program is la-
belled with a different label for each rule and each literal, the concept of non-
redundant proof coincides with the concept of subgraph minimality among
causal graphs. In Chapter 4 we will show that, in this particular case, the
causes of a literal, obtained from our semantics, are exactly the causal graphs
corresponding to the non-redundant proofs of that literal. This result does not
necessary hold if δ is chosen to be an empty atom labelling as can be seen in
Example 1.4.

3.3 causal values: representing alternative
causes

As commented in the introduction, one of the goals of this dissertation is rep-
resenting causes as manipulable expressions. In particular, we have seen that
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causal graphs G1 and G2 depicted in the Figure 3 will be respectively repre-
sented by the following expressions:

li f t(a) ·u(a) ·o ·b ∗ li f t(b) ·u(b) ·o ·b (51)

key · k · b (52)

Recall that products (∗) capture the idea of causes that need to work together
to produce an effect, while application (·) captures the idea of causal chain.
Furthermore, in general, we will be interested not only in expressions that
represent single causes, but also expressions that allows representing several
alternative causes. We will use the sum (+) for separating alternative causes:

li f t(a) ·u(a) ·o ·b ∗ li f t(b) ·u(b) ·o ·b + key ·k ·b (49)

Furthermore, we will see that (51) is equivalent to the following expression:(
li f t(a) ·u(a) ∗ li f t(b) ·u(b)

)
· o · b (53)

which is more compact and closer to the graph representation of graph G1. For
this reason, we will usually prefer writing (53) rather than (51). Consequently,
we will rephrase (49) as:(

li f t(a) ·u(a) ∗ li f t(b) ·u(b)
)
· o · b + key ·k ·b (54)

In the following we formally define causal values as the means to capture alter-
native causes.

Definition 3.8 (Causal term). A (causal) term, t, over a set of labels Lb, is recur-
sively defined as one of the following expressions:

t ::= l | ∏S | ∑S | t1 · t2

where l ∈ Lb is a label, t1 and t2 are in their turn causal terms and S is a (possibly
empty and possible infinite) set of causal terms. �

When the set S is finite and non-empty, S = {t1, . . . , tn} we write ∏ S simply
as t1 ∗ · · · ∗ tn and ∑ S as t1 + · · ·+ tn. When S = ∅, as usual, ∏ ∅ is the product
identity which we denote by 1. Similarly, ∑ ∅ is the sum identity which we
denote by 0. We also assume that (·) has higher priority than (∗), and, in its
turn, the last has higher priority than (+).

Definition 3.9 (Causal value). Causal value are the classes of equivalence of causal
terms under the equations of Figures 13, 14 and 15. We denote by VLb the set of causal
values. �
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Associativity
t · (u·w) = (t·u) · w

Addition distributivity
t · (u+w) = (t·u) + (t·w)
(t + u) · w = (t·w) + (u·w)

Absorption
t = t + u · t · w

u · t · w = t ∗ u · t · w

Identity
t = 1 · t
t = t · 1

Annihilator
0 = t · 0
0 = 0 · t

Figure 13: Equations of the (·) operator (t, u, w are arbitrary causal terms).

Idempotence
l · l = l

Product distributivity
c · (d ∗ e) = (c · d) ∗ (c · e)
(c ∗ d) · e = (c · e) ∗ (d · e)

Transitivity
c · d · e = (c · d) ∗ (d · e) with d 6= 1

Figure 14: Equations of the (·) operator (c,d, e terms without ‘+’ and l is a label).

Associativity
t + (u+w) = (t+u) + w
t ∗ (u ∗w) = (t ∗ u) ∗ w

Commutativity
t + u = u + t
t ∗ u = u ∗ t

Absorption
t = t + (t ∗ u)
t = t ∗ (t+u)

Distributive
t + (u ∗w) = (t+u) ∗ (t+w)
t ∗ (u+w) = (t ∗ u) + (t ∗w)

Identity
t = t + 0
t = t ∗ 1

Idempotence
t = t + t
t = t ∗ t

Annihilator
1 = 1 + t
0 = 0 ∗ t

Figure 15: Equations of a completely distributive lattice.
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Besides these equations, it is also worth to introduce some extra derived from
them, as those shown in Figure 16.

Absorption (der)
d ∗ c·d = c·d
d ∗ d·e = d·e

Transitivity (der)
c ·d ∗ d ·e = c ·d ∗ d ·e ∗ c ·e

Figure 16: Derived properties of the (·) and (∗) operations over causal graphs.

Proposition 3.2. Equivalences in Figure 16 follows from those in Figures 13, 14
and 15. �

Proof . The proof can be found in Appendix A on page 240. �

Definition 3.10 (Term associated to graphs). The function term : CLb −→ VLb
given by:

term(G) def= ∏{ v1 ·v2 | (v1,v2) ∈ G } (55)

associates a causal term (without sums) to every causal graph G ∈ CLb. �

For instance, causal graph G1 in Figure 3 can be represented as a term
term(G1) = α ∗ β ∗ γ where:

α = li f t(a) ·u(a) ∗ li f t(b) ·u(b) ∗ u(a) ·o ∗ u(b) ·o ∗ o ·b
β = li f t(a) · li f t(a) ∗ li f t(b) · li f t(b) ∗ u(a) ·u(a) ∗ u(b) ·u(b) ∗ o ·o ∗ b ·b
γ = li f t(a) ·o ∗ li f t(a) ·b ∗ li f t(b) ·o ∗ li f t(b) ·b ∗ u(a) ·b ∗ u(b) ·b

Note that α corresponds to the product of the depicted edges of G1. In their
turn, β and γ respectively correspond to the edges in the reflexive and transitive
closure of G1. We will see that, by successive application of the equivalences
shown in Figures 13, 14 and 15, it holds that G1 = α ∗ β ∗ γ can be simplified
first to G1 = α, then to the expression in (51), and finally to (53) First, note that
by applying the label idempotence equation we can rewrite β just as:

β = li f t(a) ∗ li f t(b) ∗ u(a) ∗ u(b) ∗ o ∗ b
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Furthermore, applying the associative and commutative equations of the prod-
uct, α ∗ β can be rearranged as follows:

α ∗ β = li f t(a) ·u(a) ∗ li f t(a) ∗
li f t(b) ·u(b) ∗ li f t(a) ∗

u(a) ·o ∗ u(a) ∗
u(b) ·o ∗ u(b) ∗

o ·b ∗ o ∗
b

and then, by applying the (derived) absorption equation, it follows that:

α ∗ β = li f t(a) ·u(a) ∗
li f t(b) ·u(b) ∗

u(a) ·o ∗
u(b) ·o ∗

o ·b ∗
b

Applying the same procedure to o ·b ∗ b it follows that α ∗ β = α. We can follow
a similar procedure in order to show that α ∗ γ = α. Furthermore, applying
transitivity equation, it follows that:

α =
(
li f t(a) ·u(a) ∗ u(a) ·o ∗ o ·b

)
∗
(
li f t(b) ·u(b) ∗ u(b) ·o ∗ o ·b

)
= li f t(a) ·u(a) ·o ·b ∗ li f t(b) ·u(b) ·o ·b

which is the expression in (51). Applying the distributivity of application over
products:

α = li f t(a) ·u(a) ·o ·b ∗ li f t(b) ·u(b) ·o ·b
=
(
li f t(a) ·u(a) ∗ li f t(b) ·u(b)

)
· o ·b

Notice that G1 = α ∗ β ∗ γ = α =
(
li f t(a) ·u(a) ∗ li f t(b) ·u(b)

)
· o · b which is

exactly the same expression we have seen in (53). Although the form of this
last expression is more readable, it has the drawback of not being a normal
form, and hence, we will be forced, sometimes, to rely on the more verbose
expression of the form α ∗ β ∗ γ.

By abuse of notation, we usually will omit term() and just write G instead
of term(G). Hence, we may just rewrite (54) as G1 + G2. Furthermore note
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that, at first sight, the equations of Figures 13, 14 and 15 may seem arbitrarily
chosen. However, these equations derive from a semantic structure (ideals of
causal graphs) which captures the intuitive idea that causal values are the set
⊆-minimal causal graphs. We will address the details of the structure behind
causal values in the next section. In particular, the following result (whose
formal proof is also addressed in the next section) reflects the relation between
causal values and causal graphs.

Theorem 3.1. Given a set of labels Lb, the structure 〈VLb,+,∗〉 is isomorphic to the
free completely distributive (complete) lattice, with meet (∗) and join (+), generated by
the set of causal graphs CLb. The function term : CLb −→ VLb is an embedding. �

As usual in lattices, we say that a causal value t is smaller than other u:

t ≤ u iff t ∗ u = t iff t + u = u

An important observation that should be made is that, for any pair of causal
graphs G1 and G2 it holds that G1 ⊆ G2 iff term(G1) ≥ term(G2). Note that, by
our convention of omitting term(), this may be rewriting as G1 ⊆ G2 iff G1 ≥ G2.
Saying that G1 is stronger than G2, in symbols G1 ≥ G2, intuitively means that
G2 contains enough information to yield the same effect than G1, but perhaps
more than needed (this explains G1 ⊆ G2). This implies that causes, which are
⊆-minimal causal graphs, will be ≤-maximal causal values. An interesting side
effect of switching ≤ with respect to the subgraph relation ⊆ is that, as usual,
the semantics of logic programs will coincide with selecting ≤-minimal models.

For a better characterization of the intuition that causal values intuitively
represent sets of ⊆-minimal causal graphs, we introduce the following normal
forms.

Definition 3.11 (Disjunctive normal form). A causal term t is in (minimal) dis-
junctive normal form iff sums are not in the scope of applications and products, and
all addends in a sum are pairwise incomparable. It is in (minimal) chain normal form
iff furthermore application is not in the scope of products, and all chains of applications
are pairwise incomparable. Moreover, it is in graph normal form iff application is
only applied to labels and all terms of products are pairwise incomparable. �

For instance, in Example 3.1, we may associate with alarm the following
causal term in non-minimal disjunctive normal form:

(sw1 ·b ·d ∗ sw3) ·a + (sw2 ·c ·d ∗ sw3) ·a
+ ((sw2 ·c ∗ sw4) · b ·d ∗ sw3) ·a

(56)
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Each addend respectively correspond to the causal graphs G1, G2 and G3 de-
picted in Figure 5. Since G2 ⊆ G3, it follows that G2 ≥ G3, that is:

(sw2 ·c ·d ∗ sw3) ·a ≥ ((sw2 ·c ∗ sw4) · b ·d ∗ sw3) ·a

Therefore the causal term (56) is not in minimal disjunctive normal form and
may be rewritten as the equivalent causal term:

(sw1 ·b ·d ∗ sw3) ·a + (sw2 ·c ·d ∗ sw3) ·a (57)

in which each addend respectively correspond to the causal graphs G1 and G2.
That is, each addend corresponds to a ⊆-minimal causal graph, and thus to a
cause. We may also apply the distributivity of application over products, so
that we obtain a causal term in chain normal form:

sw1 ·b ·d ·a ∗ sw3 ·a + sw2 ·c ·d ·a ∗ sw3 ·a (58)

Finally, we may apply transitivity to obtain a causal term in graph normal form:

sw1 ·b ∗ b ·d ∗ d ·a ∗ sw3 ·a + sw2 ·c ∗ c ·d ∗ d ·a ∗ sw3 ·a (59)

Note that, in each addend, each causal chain of the form v1 ·v2 respectively
correspond to an edge (v1,v2) in the causal graphs G1 and G2.

3.4 algebraic properties of causal values

In the previous section, we have seen that we will represent alternative causes
by means of causal values. In this section, we will derive the axiomatization
given by equations of Figures 13, 14 and 15 from basic operations on causal
graphs. We use standard algebraic notation that has been collected in the Back-
ground (Section 2.2). Furthermore, we represent the reflexive and transitive
closure of a graph G as G∗, and its reflexive and transitive reduction as Gr.
Recall that causal graphs are transitively and reflexively closed set of edges.
We write (v,v′) ∈ G to state that the (v,v′) is an edge of G and v ∈ G as a
shorthand of (v,v) ∈ G, that is, v is a vertex of G. By abuse of notation we
will also use v to represent a causal graph with a unique reflexive edge corre-
sponding to the vertex v, that is the set { (v,v) }. We also introduce a concate-
nation operation G� G′ on causal graphs corresponding to a graph with edges
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G ∪ G′ ∪ {(v,v′) | v ∈ G,v′ ∈ G′}. Notice that G ∪ G′ ⊆ G� G′, that is, the con-
catenation extends the union of causal graphs by adding all possible edges that
go from some node in G to some node in G′. By using this operations we can
split any graph as an algebraic expression formed by atomic graphs which just
contain a single vertex. For instance, the graph G1 in Figure 3 corresponds to
the expression:((

li f t(a)� u(a)
)
∪
(
li f t(b)� u(b)

))
� o� b (60)

The graph resulting from (60) is transitively closed but not reflexively. Hence,
the causal graph corresponding to G1 in Figure 3 will be the reflexive closure
of (60). However, in general, operations (∪) and (�), on causal graphs, do not
guarantee that the result will be even transitively closed. In order to deal with
internal operations inside the set of causal graphs we define two of the three
operations mentioned in the previous section: product (∗) and application (·)
are respectively the transitive and reflexive closure of operations (∪) and (�).
That is, G1 ∗ G2

def= (G1 ∪ G2)
∗ and G1 · G2

def= (G1 � G2)
∗. In this sense, the

causal graph G1 and G2 in Figure 3 respectively correspond to the expressions:(
li f t(a) ·u(a) ∗ li f t(b) ·u(b)

)
·o ·b (53)

key ·k ·b (52)

Proposition 3.3. Product and application are associative and they have the empty
graph as their identity. Furthermore, product is also commutative and idempotent.
Application is idempotent but only with respect to atomic causal graphs. Both are also
monotonic with respect to the subgraph relation. �

Proof . The proof can be found in Appendix A on page 241. �

Since product is associative and commutative, we can extend their applica-
tion, not only two a pair of causal graphs, but also to any set of them. Thus, for
any (possibly infinite) set of causal graphs S, by ∏G∈S G or just ∏ S we denote
the product of all causal graphs in S.

Proposition 3.4. Application distributes over (possible infinity) products, and they
hold the absorption and transitivity laws as shown in Figures 13 and 14. �

Proof . The proof can be found in Appendix A on page 242. �

Notice the importance of the distributive law for connecting causal graphs
with the concept of causal chain: its application to (53) leads to (51).
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Definition 3.12 (Causal graph term). A (causal) graph term or cg-term, t is a
causal term without sums. By Ct

Lb ⊆ VLb we denote the set of causal values which
have some cg-term as representative. �

Theorem 3.2 (Causal graphs isomorphism). The algebraic structures 〈CLb,∗, ·〉
and 〈Ct

Lb,∗, ·〉 are isomorphic, and the function term : CLb −→Ct
Lb (Definition 3.10)

is an isomorphism. �

Proof . The proof can be found in Appendix A on page 249. �

Theorem 3.2 formally settle the intuitive correspondence between causal graphs
and causal terms without sums that we have introduce in the previous section,
and justify our convention of omit term() and write just G instead of term(G).

Proposition 3.5. Given a labelled program P, any proof π(A) satisfies that:

cgraph(π) =
(
cgraph(π1) ∗ . . . ∗ cgraph(πm)

)
· lR · lA

where π1, . . . , πm are the direct sub-proofs of π, lR is the label of its rule R and lA is a
label associated to the atom in the consequent A. �

Proof . The proof can be found in Appendix A on page 244. �

Proposition 3.5 formalises the intuition that product captures causes that
need to work together whereas, in its turn, application captures the idea of
a sequence of events that connect a cause to its final effect.

Definition 3.13 (Stronger Cause). A causal graph G is said to be stronger than
another causal graph G′, written G ≤ G′, when G ⊇ G′. �

The following result, which establishes the relation between product (∗) and
application (·) operations and the ≤ order relations, will be useful through the
dissertation.

Proposition 3.6. The following statements hold:

i ) product is the greatest lower bound of the sufficient ≤ relation,

ii ) for every pair of causal graphs G and G′ it holds that G ≤ G′ iff G ∗ G′ = G.

iii ) both product and application are monotonic operations with respect to sufficient
≤ relation,

iv ) for every pair of causal graphs G and G′ it holds that G · G′ ≤ G ∗ G′. �

Proof . The proof can be found in Appendix A on page 245. �
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Definition 3.14 (Ideal). Given any poset 〈A,≤〉, an ideal3 S is any set S ⊆ A satis-
fying that: if x ∈ S and y ≤ x then y ∈ S. �

When any subset S ⊆ A has a set of maximal elements (that is ≤ is an up-
wards well-founded relation), a compact way of representing an ideal S is
by using its set of maximals elements U, since the rest of S contains all ele-
ments below U. The principal ideal of an individual element x ∈ A is denoted as
↓x def= {y ∈ A | y ≤ x}, and we extend this notion for any set of elements U so
that:

⇓U def=
⋃
{ ↓x | x ∈U } = { y ∈ A | y ≤ x, for some x ∈U } (61)

For the sake of compactness, when an ideal S has a set U of maximal elements,
we will represent it by ⇓U. For instance, going back to the firing alarm of
Example 3.1 we may represent the causal value corresponding to the atom
current(d) by the following expression:

sw1 ·b ·d + sw2 ·c ·d + (sw1 ·b ∗ sw4) · c ·d + (sw2 ·c ∗ sw4) · b ·d (62)

Let G′1, G′2, G′3 and G′4 be respectively the causal graphs corresponding to each
of the addends of (62). Then, if we interpret each addend in (62) as a principal
ideal and sums (+) as set unions, we may rephrase (62) as:

↓G′1 ∪ ↓G′2 ∪ ↓G′3 ∪ ↓G′4 (63)

Furthermore, since G′3 ≤ G′1 and G′4 ≤ G′2 it follows ↓G′3 ⊆ ↓G′1 and ↓G′4 ⊆ ↓G′2.
Hence:

↓G′1 ∪ ↓G′3 = ↓G′1
↓G′2 ∪ ↓G′4 = ↓G′2

Consequently (63) is simply equivalent to:

↓G′1 ∪ ↓G′2 = ⇓{ G′1, G′2 } (64)

That is, we just obtain two expressions corresponding to the two causes of the
presence of current at point d. In addition, from the rules:

a : alarm ← down(sw3), current(c) $ : sw3

3 We use terminology from Stumme [1997]. In some texts this is known as semi-ideal or down-set to
differentiate this definition from the stronger case in which ideals are applied on a (full) lattice
rather than a partial lattice.
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it follows that:

I(alarm) = ⇓{ G′1 · a, G′2 · a } (65)

which is the ⊆-minimal ideal containing the two causes, G1 and G2 depicted in
Figure 5.

Notice that, as we have seen in the above example, the relevant information
of the ideal corresponds to its set of maximal elements, while keeping all other
elements is convenient for simplicity of algebraic treatment (but we do not
assign a particular meaning to them). The next result shows that every ideal in
the partial order set of causal graphs has maximal elements.

Proposition 3.7. Given any (possible infinite) ideal (down set) S ⊆ CLb from the
partial order set 〈CLb,≤〉 there exists a subset U ⊆ S such that ⇓U = S and no pair of
elements of U are ≤-comparable. �

Proof . If such subset U does not exist, then there must be an infinite increasing
chain of causal graphs G1 ≤ G2 ≤ . . . in S. However, just recall that, by defi-
nition, G1 ≤ G2 holds if and only if G1 ⊇ G2 where ⊇ stands for the superset
relation (causal graphs are represented by the set of their edges). Then there
exists a infinite decreasing chain of sets G1 ⊇ G2 ⊇ . . . which is a contradiction
with the fact that the subset relation is well-founded. �

Definition 3.15 (Causal Ideals). Given a set of labels Lb, by ILb we denote the set of
ideals of the partially ordered set 〈CLb,≤〉. �

It is worth to mention that the set of causal graphs CLb and the set of principal
ideals, that we denote by ⇓CLb, are isomorphic. Furthermore, the function
↓ : CLb −→ ⇓CLb is an isomorphism that maps products to set intersections and
the ≤ relation to the subset ⊆ relation.

Proposition 3.8. The function ↓: CLb −→⇓CLb is an isomorphism between structures
〈CLb,≤,∗,1〉 and 〈⇓CLb,⊆,∩,CLb〉. �

Proof . The proof can be found in Appendix A on page 245. �

In order to keep notation, we will still use the product to represent set in-
tersection and ≤ to represent the subset relation. In addition, we use the sum
operator to represent set unions. As usual, we also denote by 0 the bottom ele-
ment of the ≤ relation, that is the empty set ∅, and by 1 its top element which
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is the principal ideal formed by the empty graph, also represented by 1, and is
equal to the set CLb. We also define the application over ideals in the following
preserving way:

U ·U′ def= ⇓{ G · G′ | G ∈U and G′ ∈U′ } (66)

Proposition 3.9. Application is associative, distributes over sums and holds the ab-
sorption, identity and annihilator properties reflected in Figure 13. �

Proof . The proof can be found in Appendix A on page 88. �

Proposition 3.10. The function ↓: CLb −→ ⇓CLb is an isomorphism between struc-
tures 〈CLb,≤,∗, ·,1〉 and 〈⇓CLb,≤,∗, ·,1〉. �

Proof . The proof can be found in Appendix A on page 247. �

Proposition 3.10 means that all equivalences that hold for causal graphs also
hold for their principal ideals. Figure 14 shows those equations that hold for
causal graphs (and so for principal ideals or causal terms without sums) but
do not apply to all causal values in general.

It is also worth to recall that, since sum and product are defined respectively
as set union and intersection, they hold the usual properties of these operations,
that is, the equivalences of completely distributive (complete) lattices shown in
Figure 15. It is important to mention that the result of adding the sum operator
does not force any new equivalence between principal ideals that does not hold
for causal graphs. The following results asserts this fact.

Theorem 3.3 (Cabalar et al. [2014a, Theorem 1]). Given a set of labels Lb, the
structure 〈ILb,+,∗〉 is isomorphic to the free completely distributive (complete) lattice
generated by the principal ideals of causal graphs ⇓CLb. �

Proof . The proof can be found in Appendix A on page 256. �

Theorem 3.4 (Causal values isomorphism). The algebras 〈VLb,+,∗, ·,1,0〉 and
〈ILb,+,∗, ·,1,0〉 are isomorphic, and

term(U) 7→∑{ term(G) | G ∈U } (67)

where term(G) refers to the mapping Definition 3.10, is an isomorphism. �

Proof . The proof can be found in Appendix A on page 257. �
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Theorem 3.4 shows that in order to represent the idea of alternative sufficient
causes, we can use causal values or causal terms interchangeably by means
of the isomorphism (67). Notice also that Theorem 3.4 also means that every
causal value (or causal term) can be rewritten in a causal graph normal form
(Definition 3.11). Now the proof of Theorem 3.1 follows straightforwardly from
Theorems 3.3 and 3.4.

Proof of Theorem 3.1. Note that, from Theorem 3.3, 〈ILb,+,∗〉 is isomorphic
to the free completely distributive lattice generated by the principal ideals of
causal graphs ⇓CLb. Furthermore, the sets of causal graphs CLb and the set of
ideals of causal graphs ⇓CLb are also isomorphic. Hence, 〈ILb,+,∗〉 is isomor-
phic to the free completely distributive lattice generated by the set of causal
graphs CLb. Moreover, from Theorem 3.4, the algebras 〈VLb,+,∗, ·,1,0〉 and
〈ILb,+,∗, ·,1,0〉 are isomorphic, and so 〈VLb,+,∗〉 and 〈ILb,+,∗〉 are isomorphic
too. Consequently 〈VLb,+,∗〉 is isomorphic to the free completely distributive
lattice generated by the set of causal graphs CLb. �

The following result establishes the relation between operations and the suf-
ficient ≤ order relation extending the results of Proposition 3.6 from causal
graphs to causal values.

Proposition 3.11. The following statements hold.

i ) product (∗) and sum (+) are respectively the greatest lower bound and the least
upper bound of the sufficient ≤ relation,

ii ) for every pair of causal values u and u′ it holds that u ≤ u′ iff u ∗ u′ = u iff
u + u′ = u.

iii ) product (∗), application (·) and sums (+) are monotonic and continuous opera-
tions with respect to the sufficient ≤ relation,

iv ) u · u′ ≤ u ∗ u′ ≤ u + u′ for every pair of causal values u and u′. �

Proof . The proof can be found in Appendix A on page 258. �
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4 CAUSAL SEMANT ICS FOR
LABELLED LOG IC PROGRAMS

In this section we define several semantics for labelled logic programs which
are conservative extensions of the stable model, the well-founded model and the
answer set semantics. As usual, we give the semantics for ground programs;
programs with variables are understood as abbreviations of all their ground
instances.

4.1 causal semantics for positive programs

Definition 4.1 (Interpretation). A (causal) interpretation I : At −→ VLb is a map-
ping assigning a causal value to each literal. We denote by Iσ the set of all possible
interpretations over a signature σ. We say that an interpretation I satisfies an atom A,
in symbols I |= A iff I(A) 6= 0. �

We will see later that satisfaction, that is I(A) 6= 0, is equivalent to say that
there is some cause for A. Note also that the order relation ≤ among causal
values is extend over interpretations that, for interpretations I and J, we say that
I ≤ J when I(A) ≤ J(A) for all atom A ∈ At. Hence, there is a ≤-bottom (resp.
≤-top) interpretation 0 (resp. 1) that stands for the interpretation mapping each
literal A to 0 (resp. 1). An interpretation is two-valued if it maps all atoms
into {0,1}. Furthermore, for any causal interpretation, its corresponding two-
valued interpretation, written Icl , is defined so that for any literal A: Icl(A) def= 0
if I(A) = 0; and Icl(A) def= 1 otherwise.

Definition 4.2 (Least causal model). Given a positive labelled rule R of the form (48)
(with m = 0) and mapping δ : At −→ Lb ∪ {1}, we say that a causal interpretation I
satisfies R iff the following condition holds:(

I(B1) ∗ . . . ∗ I(Bm)
)
· lR · δ(A) ≤ I(A) (68)

Given a positive program P, we say that an interpretation I is a causal model of P, in
symbols I |= P, iff I is a ≤-minimal causal model of all rules R in P. �
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Note that if all rules are unlabelled, that is lR = 1 for all rule R and δ is an
empty atom labelling (maps each literal into 1), then, since 1 is the identity of
application, condition (68) becomes:

I(B1) ∗ . . . ∗ I(Bm) ≤ I(A) (69)

Note that, if we further have two-valued interpretations, this is just the least
model definition for standard logic programs. In this sense, a standard (logic)
program is just a labelled program with an empty atom labelling which contains
only unlabelled rules. As it is the case for standard logic programs, positive
programs have a ≤-least model that can be computed by iterating an extension
of the well-known direct consequences operator van Emden and Kowalski [1976].

Definition 4.3 (Direct consequences). Given a positive program P, the operator of
direct consequences TP : Iσ −→ Iσ is a function such that TP(I)(A) is given by:

∑
{ (

I(B1) ∗ . . . ∗ I(Bm)
)
· lR · δ(A)

∣∣ R ∈ P and head(R) = A
}

for any interpretation I and any atom A ∈ At. �

The iterative application of the direct consequences operator can be used
analogously as in standard logic programming (see page 49) to get the least
model from its least fixpoint lfp(TP).

Theorem 4.1 (Direct consequences). Let P be a (possibly infinite) positive labelled
program. Then,

i ) lfp(TP) is the least model of P, and

ii ) lfp(TP) = Tω
P (0).

Furthermore, if P is finite and has n rules, then

iii ) lfp(TP) = Tn
P(0). �

The proof of Theorem 4.1 will rely on an encoding of causal logic programs
into Generalized Annotated Logic Programming (GAP) [Kifer and Subrahmanian,
1992] and applying existing results for that general multivalued LP framework.
This encoding will be discussed in Chapter 6 and, in particular, we will see that
Theorem 4.1 is a particular case of Theorem 6.2 on that chapter.

To illustrate how the iterative procedure of the TP operator works we appeal
to the circuit in Example 3.1. The following tables depict each iteration until
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we reach the least fixpoint. In particular, the next table shows the iterative
computation of the TP operator for literals current(b) and current(c).

i current(b) current(c)

1 0 0
2 sw1 ·b sw2 ·c
3 sw1 ·b + (sw2 ·c ∗ sw4) ·b sw2 ·c + (sw1 ·b ∗ sw4) ·c
4 sw1 ·b + (sw2 ·c ∗ sw4) ·b sw2 ·c + (sw1 ·b ∗ sw4) ·c
5 sw1 ·b + (sw2 ·c ∗ sw4) ·b sw2 ·c + (sw1 ·b ∗ sw4) ·c

Figure 17: Iterative application Ti
P(current(b)) and Ti

P(current(c)).

Note that T0
P(0)(A) = 0 for any literal A, and furthermore Ti

P(0)(swj) = swj
for all i ≥ 1 and j ∈ {1,2,3,4}. Hence we omit the values for these cases. Note
also that, for the sake of simplicity, we have assumed that δ is an empty atom
labelling (that is δ(A) = 1 for a literal A). Otherwise, a label corresponding to
the head of each rule should be added. For instance, if δ(A) = lA for any atom
A, then T5

P( current(b)) would be:

sw1 · lsw1 ·b · lcurrent(b) + (sw2 · lsw2 ·c · lcurrent(c) ∗ sw4 · lsw4) ·b · lcurrent(b)

The following table shows the corresponding iterations for current(d).

i current(d)

1 0
2 0
3 sw1 ·b ·d + sw2 ·c ·d
4 sw1 ·b ·d + sw2 ·c ·d + (sw2 ·c ∗ sw4) ·b ·d + (sw1 ·b ∗ sw4) ·c ·d
5 sw1 ·b ·d + sw2 ·c ·d + (sw2 ·c ∗ sw4) ·b ·d + (sw1 ·b ∗ sw4) ·c ·d

Figure 18: Iterative application Ti
P(d). No simplification has been performed.
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It is worth to mention that, according to the algebraic properties of causal
values, it holds that:

sw1 ·b ·d < sw1 ·b ∗ sw4 ·c ·d
sw2 ·c ·d < sw2 ·c ∗ sw4 ·b ·d

and, since α ≤ β iff α + β = β, it follows that T2
P(0)( current(d)) is equal to

Ti
P(0)( current(d)) for all i≥ 2. The following table shows the value of current(d),

after being simplified, together with the value for alarm:

i current(d) alarm

1 0 0
2 0 0
3 sw1 ·b ·d + sw2 ·c ·d 0
4 sw1 ·b ·d + sw2 ·c ·d (sw1 ·b ·d ∗ sw3) ·a + (sw2 ·c ·d ∗ sw3) ·a
5 sw1 ·b ·d + sw2 ·c ·d (sw1 ·b ·d ∗ sw3) ·a + (sw2 ·c ·d ∗ sw3) ·a

Figure 19: Iterative application Ti
P(d) and Ti

P(alarm). Simplification has been per-
formed.

Terms (sw1 ·b ·d ∗ sw3) · a and (sw2 · c ·d ∗ sw3) · a respectively correspond to
graphs G1 and G2 in Figure 5 representing the causes of alarm in Program 3.2.
Furthermore, that the term (sw2 · c ∗ sw4) · b ·d appearing in Figure 18 would
produce the term ((sw2 ·c ∗ sw4) ·b ·d ∗ sw3) · a for alarm, which corresponds to
the graph G3 in Figure 5. As we discussed in Chapter 3, we reasonably obtain
that G3 was not a cause of alarm, while G1 and G2 were. As we have just seen,
algebraic equivalences allow selecting causes, those ⊆-minimal (≤-maximal)
causal graphs, by computing the minimal disjunctive normal form of the causal
term associated to each literal. It is also worth to recall that 0 is the bottom
element of the ≤-relation, thus, the value that every literal will take by default
when there is not cause for it. That is, 0 corresponds to be false.

Notice that Theorem 4.1 ensures that this iterative procedure ends after a
finite number of steps for finite programs. This may seem surprising for pro-
grams with positive cycles given that the TP operator is accumulating labels in
each step. However, every explanation derived from a cycle will be not min-
imal because there is another explanation that does not involve the cycle. To
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illustrate this we appeal to the simplified gear wheel scenario of Example 2.1
represented by the following labelled program:

Program 4.1.

t1 : spinning(1) ← spinning(2), coupled

t2 : spinning(2) ← spinning(1), coupled

c : coupled

s : spinning(1)

Then, the iteration Ti
P(0) yields the following steps:

i coupled spinning(1) spinning(2)

1 c s 0
2 c s (s ∗ c) · t2
3 c s + ((s ∗ c) · t2 ∗ c) · t1 (s ∗ c) · t2
4 c s + ((s ∗ c) · t2 ∗ c) · t1 (s ∗ c) · t2(((s ∗ c) · t2 ∗ c) · t1 ∗ c) · t2

. . . . . . . . .

Figure 20: Iterative application Ti
P(spinning(1)) and Ti

P(spinning(2)).

By the equations of causal terms, it holds that s + ((s ∗ c) · t2 ∗ c) · t1 = s.
Similarly, (s ∗ c) · t2 + (((s ∗ c) · t2 ∗ c) · t1 ∗ c) · t2 = (s ∗ c) · t2. Consequently, it
follows that T2

P(0) = T3
P(0) = T4

P(0) = lfp(TP). Following the ideas shown in
these examples, we may now formally define the concept of sufficient cause by
relying on the causal value associated to a literal.

Definition 4.4 (Sufficient Cause). Given an interpretation I, a causal graph G is
(sufficient) cause of an atom A, in symbols G ≤max I(A), iff it is a ⊆-minimal
(≤-maximal) causal graph G such that G ≤ I(A). �

For instance, according to Definition 4.4, causal graphs G1 and G2 in Figure 5

are the only sufficient causes of the literal alarm. Similarly, s and s · t2 are re-
spectively the only sufficient causes of the literals spinning(1) and spinning(2)
in the gear wheels scenario above.
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Observation 1. Let SA be the set of sufficient causes of some literal A with respect to
some interpretation I. Then ∑G∈SA

G = I(A). �

We address now the relation between the syntactic notion of non-redundant
proofs and the sufficient causes of a literal.

Theorem 4.2 (Proof-cause correspondence (positive programs)). Given a positive,
completely labelled program P with a unique atom labelling δ, a proof π is a non-
redundant proof of a literal A iff cgraph(π) is a sufficient cause of A w.r.t. its least
model. �

Theorem 4.2 shows that causes, obtained by purely semantic methods, ex-
actly correspond to the syntactic notion of non-redundant proofs in completely
labelled programs. The proof of this result is actually postponed to Chapter 6

where Theorem 6.1 generalizes it. The following result states the correspon-
dence between our causal semantics and the standard least model semantics
for positive programs.

Theorem 4.3 (Correspondence to non-causal least model semantics). Let P be
a positive labelled program and P′ its standard unlabelled version. Furthermore, let I
be the least causal model of P and I′ the standard least two-valued model of P′. Then,
they satisfy I′ = Icl . �

Proof . The proof can be found in Appendix A on page 260. �

In the above theorem, I′ denotes the standard least model of P. That is, I′

assigns 1 to a literal A if A is a consequence of P and 0 otherwise. Recall
that Icl is a two-valued interpretation which replaces by 1 each value different
from 0. Then, Theorem 4.3 shows that every literal has a cause — that is, a
value different from 0 — if and only if it holds in the standard least model of
the program. We may also define the entailment of a program in the usual way:

Definition 4.5 (Entailment). Given a positive program P, we say that P satisfy A, in
symbols P |= A, when the least model I of P satisfies A, that is I |= A. �

which leads to the following more friendly rewriting of Theorem 4.3.

Corollary 4.1. Let P be a positive program and P′ its standard unlabelled version.
Then P |= A if and only if P′ |= A. �
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Notice that, in previous work, Cabalar et al. [2014a,b] defined a causal model
in the following way:

Definition 4.6 (Least causal model Cabalar et al. [2014a]). Given a positive rule R
of the form (48) (with m = 0), and an interpretation I, I is said to satisfy R iff:(

I(B1) ∗ . . . ∗ I(Bm)
)
· lR ≤ I(A) (70)

Given a positive program P, I is the least causal model of P if and only if I is the
≤-minimal causal model such that R |= I for all rules R in P. �

It is easy to see that this definition corresponds to our current definition
(Definition 4.2) when δ is an empty atom labelling (δ(A) = 1 for every literal A).
Note that, since 1 is the application identity, it follows that α·lR ·δ(A) = α·lR ·1=
α·lR for all literal A. As introduced in Chapter 3 and we have just showed above
in Theorem 4.2, a unique atom labelling δ allows to better capture the notion of
non-redundant proof.

4.2 causal answer set semantics

A usual way of informally reading a NAF-literal of the form not A is as “there
is no way to derive A.” As we commented in the introduction, we will give a
causal meaning to it, so that, not A may be read as “there is no cause for A.”
Recall that the causal value 0 stands, according to our interpretation, for the ab-
sence of cause. Hence, we may define the value assigned by an interpretation I
to a negative NAF-literal not A, in symbols I(not A), as:

I(not A) def=

{
1 if I(A) = 0
0 otherwise

According to this evaluation, default negation does not propagate any causal
value. In order to illustrate how this definition may be useful for representing
default knowledge reconsider the match-oxygen asymmetry of Example 1.7.

Program 4.2.

f : f ire ← match, oxygen $ : match

$ : oxygen
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It is easy to see that the least model I of this program must satisfy:

I( f ire) = (match ∗ oxygen) · f

That is, both, the match and the oxygen, form part of the cause of the f ire as
equal partners. We may now add a rule stating that oxygen is present by default
as follows.

Program 4.3.

f : f ire ← match, oxygen

oxygen ← not oxygen

$ : match

$ : oxygen

If we consider now the Program 4.3 it is easy to see that there is no rule with
oxygen in the head, and therefore I(oxygen) = 0. Hence, the valuation of the
literal not oxygen by I will correspond to I(not oxygen) = 1. Notice further-
more that, since unlabelled rules are syntactic sugar for rules labelled with the
application identity value 1, it follows that:

I(oxygen) = oxygen + 1 ·1 = oxygen + 1 = 1

Then, I must also satisfy that:

I( f ire) = (match ∗ 1) · f = match · f

That is, including the unlabelled rule, which states that oxygen is present by
default, makes the effect of removing it from every cause that would require it
otherwise. It is easy to see that this behaviour agrees with the principle stated
in the Introduction that causes do not need to incorporate those conditions that
hold by default. Another approach to represent this example is by considering
the absence of oxygen to be an exception to the rule f in the following way:

Program 4.4.

f : f ire ← match, not ab

ab : ab ← oxygen

$ : match

$ : oxygen

Note that in Program 4.4 there is not any rule with oxygen in the head either.
Therefore I(oxygen) = 0. Hence, I(ab) = 0 ·ab = 0 and, thus, I( f ire) = match · f
as in the previous case.

In the rest of the section we formalise causal semantics for normal programs
that follows the principles of the stable model semantics. We may define a causal
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semantics for normal programs by appealing to a straightforward extension of
the traditional program reduct defined by [Gelfond and Lifschitz, 1988].

Definition 4.7 (Causal stable model). The reduct of program P with respect to an
interpretation I, in symbols PI , is the result of:

i ) removing from P all rules R, such that I(Ci) 6= 0 for some negative literal not Ci
in the body of R;

ii ) removing all negative literals from the remaining rules of P.

An interpretation I is a causal stable model of a program P iff I is the least causal
model (Definition 4.2) of the positive program PI . �

It is easy to see that Program 4.5 below is the reduct of Program 4.4 with
respect to any causal interpretation I holding I(ab) = 0. It is also easy to see
that it least model I holds I( f ire) = match · f .

Program 4.5.

f : f ire ← match

ab : ab ← oxygen

$ : match

$ : oxygen

Theorem 4.4 (Correspondence to non-causal stable models). Let P be a labelled
logic program and P′ its standard unlabelled version. Then:

i ) If I is a causal stable model of P, then Icl is a stable model of P′.

ii ) If I′ is a stable model of P′ then there is a unique causal stable model I of P such
that I′ = Icl . �

Proof . The proof can be found in Appendix A on page 261. �

Theorem 4.4 shows a one-to-one correspondence between the causal stable
models of a program and the standard stable models when labels are ignored.
In other words, the causal stable models of a program are exactly the standard
stable models of such program but containing causal information.

Furthermore, since Icl maps any non-zero causal value to 1 (true), and so,
Icl(A) = 0 iff I(A) = 0, the reduct of a program with respect to I and Icl is
the same. Combining this observation with the result of Theorem 4.4 we im-
mediately get a method for obtaining the causal stable models of a labelled
program P:
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4 causal semantics for labelled logic programs

1. obtain a standard stable model I′ of P (ignoring labels),

2. compute the reduct of PI′ , and

3. compute the least model I of the positive program PI′ .

Hence, from Theorem 4.4, it holds that I′ = Icl . Then PI′ = PI and, conse-
quently, interpretation I is a causal stable model of P. As an example, consider
a program formed by the cycle:

Program 4.6.

a : p ← not q

b : q ← not p

This program has two standard stable models I′1 = {p} and I′2 = {q}. Further-
more, it is easy to see that the reduct of the above program with respect to I′1
corresponds to the positive program:

a : p ←

whose least causal model is I1(p) = a and I1(q) = 0. Note that after removing
the causal information from I1 it follows that Icl

1 (p) = 1 and Icl
1 (q) = 0. Note

also that I′1 = {p} is just the set representation of Icl
1 where the elements of the

set correspond to those literals with value 1. By a similar reasoning, we may
obtain the second causal stable model corresponding to I2(p) = 0 and I2(q) = b.

We may also replicate the standard answer set semantics of Gelfond and
Lifschitz [1991]. A literal A is either an atom A ∈ At or its strong negationA
with A ∈ At. Note that A = A.

Definition 4.8 (Causal Answer Set). Given a positive program P, an interpretation
I is a (consistent) answer set of P iff it is the ≤-minimum interpretation such that I
satisfies all rules in P and1

i ) I(A) = 0 or I(A) = 0 for all literal A ∈ Lit.

Given a normal program P, an interpretation I is an answer set of P iff I is an answer
set of the positive program PI .

1 We restrict the definition to consistent answer sets. Inconsistent answer sets can be considered by
allowing I to satisfy either i) or ii) I(A) = 1 and I(A) = 1 for all literal a ∈ Lit. A third alternative,
that we left for future work, is allowing paraconsistent models in which the causal values will allow
us to distinguish which literals are involved in an inconsistency and which do not.
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Theorem 4.5 (Correspondence to non-causal answer sets). Let P be a causal logic
program and P′ its unlabelled version. Then:

i ) If I is causal answer set of P, then Icl is a answer set of P′.

ii ) If I′ is a answer set of P′ then there is a unique causal answer set I of P such
that I′ = Icl . �

Proof . The proof can be found in Appendix A on page 261. �

Theorem 4.5 shows a one-to-one correspondence between the causal answer
sets of a program and the answer sets of its unlabelled version in a similar
manner as Theorem 4.4 did for stable models. We may as well extend the
notion of proof for normal programs in the following way:

Definition 4.9 (Proof (stable model)). Given a normal program P and a stable model
(resp. answer set) I, a proof π(A) of an atom A is recursively defined as a derivation:

π(A) def=
π(B1) . . . π(Bm)

A
(R), (50)

where R∈ P is a rule with head A, body+(R) = {B1, . . . , Bm} and such that I |= body−(R).
When m = 0, the derivation antecedent π(B1) . . . π(Bm) is replaced by > (correspond-
ing to the empty body). �

Theorem 4.6 (Proof-cause correspondence (stable models)). Given a completely
labelled program P and a stable model (resp. answer set) I, π is a non-redundant proof
of A iff cgraph(π) is a cause of A w.r.t. I. �

Proof . The proof can be found in Appendix A on page 262. �

Theorem 4.6 extends the result of Theorem 4.2 to normal programs under
the stable model and the answer set semantics, showing that causes exactly
correspond to the notion of non-redundant proofs in completely labelled pro-
grams. Note however that Theorem 4.6 says nothing about the causal values
obtained from programs that are not completely labelled. In order to show
the behaviour of unlabelled rules consider the following completely labelled
program obtained by labelling the unlabelled rule in Program 4.3.

Program 4.7.

f : f ire ← match, oxygen

d : oxygen ← not oxygen

$ : match

$ : oxygen
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The causal stable model I of Program 4.7 satisfies that:

I( f ire) = (match ∗ oxygen) · f + (match ∗ d) · f

As unlabelled rules are just syntactic sugar for rules labelled with the special
label ‘1 :’ one would expects that replacing a label by another in a program rule
should produce the same effect in the causes that previously contained such
label. The following definition formalises this intuition.

Definition 4.10 (Label replacement). Given a program P, the replacement of a
label l ∈ Lb by t ∈ Lb∪ {1}, in symbols P[l 7→ t] is the program obtained by replacing
each occurrence of the label l by t. �

Following with our running example, the result of replacing the label d by 1
in the above program corresponds to Program 4.3 whose unique causal model
J satisfies:

J( f ire) = I( f ire)[d 7→ 1] = (match ∗ oxygen) · f + (match ∗ 1) · f
= (match ∗ oxygen) · f + match · f

Note that (match ∗ oxygen) · f < match · f and hence:

I( f ire)[d 7→ 1] = match · f

That is, the only cause of the fire corresponds to the value match · f that we had
in the beginning of this chapter. We may extend the notion of replacement to
causal values and interpretations in the following way:

Definition 4.11 (Graph replacement). Given a causal graph G, the replacing of a
label l ∈ Lb by a label l′, in symbols G[l 7→ l′], is the result of replacing l by l′ in
every edge of G. The removing of a label l ∈ Lb, in symbols G[l 7→ 1], is the result of
removing every edge of the form (v, l) or (l,v) from G. �

Definition 4.12 (Value and interpretation replacement). Given a causal value u,
a label l and a term t ∈ Lb ∪ {1}, by u[l 7→ t] we denote the causal value

∑{G[l 7→ t] | G ∈U}

Similarly, given an interpretation I, by I[l 7→ t] we denote an interpretation such that
I[l 7→ t](A) = I(A)[l 7→ t] for every literal A. �
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Theorem 4.7 (Replacement). Let P be a head labelled program with a unique atom
labelling δ. Let l ∈ Lb be a label and t ∈ Lb ∪ {1} not in the image of δ.

i ) If I is a stable model (resp. answer set) of P, then I[l 7→ t] is a stable model (resp.
answer set) of the program P[l 7→ t].

ii ) If I′ is a stable model (resp. answer set) of P[l 7→ t′], then there is a unique stable
model (resp. answer set) I of P such that I′ = I[l 7→ t].

Proof . The proof can be found in Appendix A on page 267. �

It is worth to mention that unlabelled rules are not only useful for represent-
ing defaults, but also for representing parts of a program that we do not want
to assign a causal meaning. Suppose, for instance, we want to represent a pro-
gram with a fact for each natural number and a causal rule stating that each
natural number causes p. That is:

l(0) : nat(0)

l(1) : nat(1)

. . .

a : p← nat(X)

In the least model of this infinite program there are infinitely many causes
of p, each one corresponding to one of the addends of the infinite sum I(p) =
l(0) ·a + l(1) ·a + . . . .

In standard LP, a finite representation of this program can be achieved by
defining the predicate nat with a Peano-like representation. Unfortunately, if
we assign labels to the rules for nat as follows:

l(0) : nat(0)

l(X + 1) : nat(X + 1) ← nat(X)

we will obtain for every natural number n that:

I(nat(n) = l(0) · l(1) · . . . · l(n)

instead of l(n) as we have in the original infinite representation. That is, every
natural number n causally depends on nat(0). Hence l(0) ≥ l(0) · l(1) · . . . · l(n)
and it follows now that I(p) = l(0). That is, l(0) is the only cause of p because
any other explanation depends on it.
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A way to overcome this issue is by an unlabelled recursive definition using
an auxiliary atom q as follows:

q(0)

q(X + 1) ← q(X)

l(X) : nat(X) ← q(X)

Note that now the rules with q in the head do not represent any causal depen-
dence. That is I( q(n)) = 1 for all natural number n. Therefore it holds that
I( nat(n)) = l(n) as we intend with in the original infinite representation.

Note furthermore that Theorem 4.7 does not hold in general if δ is not a
unique atom labelling. Consider, for instance, the following program.

Program 4.8.

a : p

b : p

c : q ← p

d : r ← q

e : s ← q

f : t ← t, s

whose least model assign the term u = ((a + b) · c ·d ∗ (a + b) · c · e) · f to the
atom t. We may rewrite u in disjunctive normal form as

u = a ·c ·d · f ∗ a ·c ·e · f + b ·c ·d · f ∗ b ·c ·e · f

If we remove the label c by u, it follows that

u[l 7→ 1] = a ·d · f ∗ a ·e · f + b ·d · f ∗ b ·e · f

On the other hand, if we unlabelled rule c in Program 4.8, we obtain:

Program 4.9.

a : p

b : p

q ← p

d : r ← q

e : s ← q

f : t ← t, s

whose least model assigns the term u′ = ((a+ b)·d ∗ (a+ b)·e)· f to the literal t.
We may as well rewrite u′ in disjunctive normal form as:

u′ = a ·d · f ∗ a ·e · f + b ·d · f ∗ b ·e · f +

a ·d · f ∗ b ·e · f + b ·d · f ∗ a ·e · f

Note that u[c 7→ 1] 6= u′. In fact, u′ corresponds to the sum of the four causal
graphs depicted in Figure 21, while u[c 7→ 1] corresponds to the sum of the
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Figure 21: Sufficient causes of t in Program 4.9.

two leftmost graphs. Note that these graphs share the same basic structure
than those depicted in Figure 9, with which we illustrate the importance of
mapping each literal to a different label.

It is also worth to mention that, according to Theorem 4.7, replacing a label
by another label has the effect of collapsing both vertices in all causes. This
last effect is useful for representing component that requires several rules to
capture its behaviour. For instance, in Program 3.2, representing the circuit of
Example 3.1 we have the following pair of rules sharing the same label:

d : current(d) ← current(b)

d : current(d) ← current(c)

As we commented in Chapter 3, these rules are used to represent a disjunction
of the form:

d : current(d) ← current(b) ∨ current(c)

However, it is important to notice that an arbitrary use of shared labels can be
problematic. For instance, in the least model of the following program:

a : p

b : q ← p

c : r ← q

it holds that I(r) = a ·b ·c. However, if label c is replaced by a, then I(r) = a ·b ·a.
That is, the obtained cause contains a cycle between vertices a and b. At the
moment, we do not have any intuition for causes with cycles. They apparently
point out an ill causal representation. For instance, in the above program, p
and r are considered to be part of the same component a, but q is not, despite
of being a causal event in between. Acyclic causes are somehow intuitively
expected. Theorem 4.8 below asserts that this intuition holds for any program
where rules with different heads have different labels. Of course, this includes
programs where each rule has a different label.
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Theorem 4.8 (Acyclic causes). Let P be a head labelled program with a unique atom
labelling δ. Then every cause G of any literal A is acyclic, that is, it does not contain
(non-reflexive) cycles. �

Proof . The proof can be found in Appendix A on page 268. �

4.3 causal well-founded semantics

We may define the causal counterpart of the well-founded semantics [Van Gelder
et al., 1991] for normal programs by mimicking the alternating fixpoint defini-
tion given by Van Gelder [1989]. Given a program P, we denote by ΓP : Iσ −→ Iσ

an operator that maps each interpretation I to the least model of the positive
program PI . It is easy to see that, as it happened with the standard stable mod-
els, the causal stable models of a program P are exactly the fixpoints of the ΓP
operator. It is interesting to note that the ΓP operator is anti-monotonic, that is,
for interpretations I and J such that I ≤ J we have that ΓP(I)≥ ΓP(J). Hence the
Γ2

P operator, given by Γ2
P(I) = ΓP(ΓP(I)), is monotonic and, from Knaster and

Tarski’s theorem [Tarski, 1955], it has a least and a greatest fixpoint, respectively
denoted by lfp(Γ2

P) and gfp(Γ2
P).

Definition 4.13 (Causal well-founded model). Given a labelled program P, its
causal well-founded model is given by the pair 〈lfp(Γ2

P), gfp(Γ
2
P)〉. �

The following result states the relation between the causal well-founded
model and the causal stable model in a similar manner as it has happen with
the standard well-founded semantics and the stable model semantics.

Proposition 4.1. Given a labelled program P and a causal stable model I of P, it holds
that lfp(Γ2

P) ≤ I ≤ gfp(Γ2
P). �

Proof . The proof can be found in Appendix A on page 268. �

Theorem 4.9 (Correspondence to non-causal well-founded). Let P be a labelled
program and P′ its standard unlabelled version. Then lfp(Γ2

P′) = lfp(Γ2
P)

cl and
gfp(Γ2

P′) = gfp(Γ2
P)

cl . Moreover, 〈ΓP(gfp(Γ2
P′)),ΓP(lfp(Γ2

P′))〉 is the causal well-
founded model of P. �

Proof . The proof can be found in Appendix A on page 269. �
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Theorem 4.9 shows that, as it happened with the stable model semantics, the
causal well-founded semantics agrees with the standard well-founded seman-
tics when the causal information is ignored. Note, furthermore, that the causal
well-founded model can be obtained just by a single application of the ΓP oper-
ator over its standard well-founded model. Next, we define the entailment of a
program in the following way:

Definition 4.14 (Well-founded satisfaction). A program P satisfies an atom A
under the well-founded semantics, in symbols P |=w f A, when lfp(Γ2

P) |= A. On
the contrary, P does not satisfy A, in symbols P |=w f not A, when gfp(Γ2

P) 6|= A.
Otherwise, gfp(Γ2

P) |= A but lfp(Γ2
P) 6|= A, the atom A is said to be undefined with

respect to P. �

Definition 4.14 allows rewriting the statement of Theorem 4.9 in the following
more friendly way.

Corollary 4.2. Let P be a normal program, P′ its standard unlabelled version. Then,
P |=w f L iff P′ |=w f L for all L ∈ {A, not A} and any atom A.

We may also define the sufficient causes under the well-founded semantics
in the following way:

Definition 4.15 (Well-founded sufficient cause). Given a normal program P, a
causal graph G is a (sufficient) cause of a literal A under the well-founded semantics
iff it is a sufficient cause w.r.t. lfp(Γ2

P), in symbols G ≤max lfp(Γ2
P)(A). �

Theorem 4.10 (Proof-cause correspondence (well-founded)). Given a com-
pletely labelled program P with a unique atom labelling δ, a proof π is a non-redundant
proof of A with respect to gfp(Γ2

P) and P (Definition 4.9) iff cgraph(π) is a cause of A
under the well-founded semantics. �

Proof . The proof can be found in Appendix A on page 269. �

Theorem 4.10 shows the correspondence between causes and syntactic proofs
under the well-founded semantics.

Note that from Proposition 4.1 and Definition 4.15 it follows that if G is not
a cause of some literal A under the well-founded semantics, then G is not a
cause of A w.r.t. to any stable model of the program. However, if G is a cause
of some literal A under the well-founded semantics, this does not imply that G
is a cause of A w.r.t. to any stable model of the program. Consider, for instance,
the following program:
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Program 4.10.

a : p

q← not r

r← not q

p← q

p← r

whose well-founded causal model corresponds to a pair 〈lfp(Γ2
P), gfp(Γ

2
P)〉

such that lfp(Γ2)(p) = a and gfp(Γ2)(p) = 1 and whose two causal stable mod-
els hold I(p) = 1. Then a is a cause of p under the well-founded semantics, but
it is not with respect any of the stable models of the program because a is not
≤-maximal with respect to any of them. This example shows that we can use
the causal well-founded semantics to rule out some possible causes, but we may
only assert that a causal graph is a cause w.r.t to any/some causal stable model
if it is a cause w.r.t. both lfp(Γ2

P) and gfp(Γ2
P) components of the well-founded

causal model.
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Previous chapters have formalised causal semantics for normal programs that
are conservative extensions of the stable model, the well-founded model and the
answer set semantics. These semantics allow us to capture, not only the truth of
each literal, but also the causes for those truth values. The (standard) answer
set semantics has arisen as suitable tool for representing and reasoning about
actions in dynamic domains which, in its turn, has been one of the central
areas in knowledge representation. Research in this area has been focused
on two interesting topics from the perspective of this thesis. First, the use of
inertia, a commonsense law that provides an example of dynamic default, i.e., a
default whose behaviour is not just fixed by a single value, but depends on time.
Representing inertia has been a crucial feature for solving the frame problem.
Second, the interplay between inertia and direct or indirect effects of actions,
which gave rise to different causal approaches used in AI and mentioned in
the introduction. This chapter will show that the causal answer set semantics can
be used for representing some of the traditional examples of reasoning about
actions. For that purpose the common sense law of inertia needs to propagate
not only the truth value of the fluents but also the causes explaining it.

As usual for action domains, we will distinguish three sorts of logic object:
fluents, actions and situations. We will represent situations as non-negative inte-
gers 0,1,2, . . . Situation 0 represents the initial situation. Every fluent F has an
associated set of values called the domain of F, in symbols Dom(F). A fluent
literal is an expression of the form F = v where F is a fluent and v is a value in
the domain of F. When Dom(F) = {t, f} we say that F is Boolean and we usually
write F and F instead of F = t and F = f respectively. We will write Fs = v to
represent that a fluent F holds the value v in the situation s and As to represent
that the action A occurs at s. When a fluent is Boolean we will write Fs and Fs.
Note also that the fact that the action A does not occur at s will be represented
by the absence of As instead of a literal As. Furthermore, for a simpler reading
we will use a high level representation of causal laws similar to the one used
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in action language A [Gelfond and Lifschitz, 1993]. In our case, causal laws are
written as formulas of the form:

lR : B1, . . . , Bm causes A unless C1, . . . ,Cn (71)

where A, Bi’s and Cj’s are literals. We will assume that A and all Cj’s are fluent
literals, while Bi’s may be either fluent literals or actions. A causal law like (71)
in which all Bi’s are fluent literals is called an state constraint. Otherwise, it is
called a effect axiom. A causal law of the form (71) may be read as “B1, . . . , Bm
together causes A to occur unless some abnormality among C1, . . . ,Cn occur.”
Thus, a causal law like (71) has the following natural translation into a logic
program rule:

lR,s : As+1 ← B1,s , . . . , Bm,s , not C1,s, . . . , not Cn,s (48)

for each situation s. However, it is interesting to keep this high level represen-
tation for observing how slightly different translations of the same causal laws
(and different implementations of the commonsense law of inertia) lead to dif-
ferent derived causal information, in spite of sharing the same behaviour with
respect to the standard truth values. In addition, we will state that a fluent F is
respectively true or false in the initial situation by formulas of the form:

initially F (72)

initially F (73)

In the rest of the chapter, we revisit some traditional examples in the litera-
ture of reasoning about actions in dynamic domains.

5.1 yale shooting scenario: three possible
representations

Consider, as a first example, the Yale Shooting scenario introduced by Hanks
and McDermott [1987]:

Example 5.1 (Yale Shooting Scenario). There is a turkey called Fred that we try to
kill. Shooting a loaded gun will kill it. We load the gun, wait a situation and then
shoot. �
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We may capture this scenario by a pair of causal laws of the form:

l : load causes loaded (74)

d : loaded, shoot causes dead (75)

together with the sequence of actions: load1, wait2, shoot3 stating that, first, the
gun is loaded and, after waiting a transition, it is shot. We also use laws of the
form:

initially loaded (76)

initially dead (77)

to represent that, initially, the gun is unloaded and Fred is alive.

In order to represent these causal laws as a logic program, on the one hand,
causal laws (74) and (75) are respectively translated as:

ls+1 : loadeds+1 ← loads

ds+1 : deads+1 ← loadeds, shoots

On the other hand, initial conditions are represented by labelled facts at situa-
tion 0. For instance, (76) and (77) are represented by:

$ : loaded0

$ : dead0

Finally, inertia is represented as the pattern:

Fs+1 ← Fs, not Fs+1 (78)

for each fluent literal F ∈ {loaded, dead, loaded, dead}. Recall that F denotes the
strong negation of F and that F = F. The scenario in the example consists of the
above program plus the following labelled facts representing the actions that
have been performed:

$ : load1

$ : wait2

$ : shoot3

With respect to Lifschitz [2002], we have just added labels to all facts describing
the initial situation and the actions occurrences, and a label per each causal law.
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Furthermore, it is easy to see that, when we ignore the labels, this program
has a unique standard answer set. As seen in Chapter 4, this implies that it also
has a unique causal answer set I. It is also easy to see that the causal values as-
sociated to literals representing the initial situation and actions just correspond
to the labels of their corresponding facts. For instance, for atom load1, we have
I(load1) = load1. Then, the application of rule l2 implies that:

I(loaded2) = load1 · l2

That is, loading the gun in the first situation has caused the gun to be loaded
at the second situation by means of the causal law l applied at step 2.

As in standard answer set semantics, the inertia axiom:

loadeds+1 ← loadeds, not loadeds+1 (79)

propagates the fact that the gun is loaded from situation 2 to situation 3. In a
similar manner, in the causal answer set semantics, (79) will also propagate the
causes explaining why the gun is loaded. By the application of (79) with s = 2,
it follows that:

I(loaded3) = load1 · l2 ·1

Recall that unlabelled rules are syntactic sugar for rules with label ‘1 :’ and that
causal value 1 is the application identity. Therefore, for the atom loaded3, it
follows that I(loaded3) = load1 · l2. Finally, the application of rule d3 similarly
implies:

I(shoot4) = (load1 · l2 ∗ shoot3) ·d4

That is, shooting the gun together with loading it has been the cause of Fred’s
death by means of causal laws l and d respectively applied at steps 2 and 4.
The causal value I(shoot4) = (load1 · l2 ∗ shoot3) ·d4 corresponds to the graph
depicted in Figure 22.

Consider now the following variation of the Yale Shooting scenario which
incorporates a second shooter that acts after the first one.

Example 5.2 (Two shooters). There is a turkey called Fred that we try to kill. Shoot-
ing a loaded gun will kill it. There are also two shooters, Suzy and Billy, who load
the gun, wait a situation and then shoot. However, Billy performs all his actions one
situation later than Suzy. �
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load1

��

shoot3

ww

l2

** d4

Figure 22: Sufficient cause of dead in the Yale Shooting scenario.

In order to incorporate a second shooter we need a slight modification of the
causal laws (74) and (75) by incorporating a variable A representing the agent
— the shooter —- that performs the actions:

l(A) : load(A) causes loaded(A) (80)

d : loaded(A), shoot(A) causes dead (81)

Furthermore, we will have the following narrative of actions:

load(suzy)1 load(billy)2 shoot(suzy)3 shoot(billy)4

Note that we just omit the wait actions because they are irrelevant in the for-
malisations that we are analysing. The translation of these causal laws is the
following one::

l(A)s+1 : loaded(A)s+1 ← load(A)s

ds+1 : deads+1 ← loaded(A)s, shoot(A)s

plus the corresponding inertia axioms. As happened in the example with a
single shooter, the unique causal model of this program satisfies that:

I(dead4) = (load(suzy)1 · l(suzy)2 ∗ s(suzy)3) ·d4 (82)

We have just added the agent constant suzy to the corresponding labels, that
is, we write load(suzy)1, l(suzy)1 and s(suzy)3 instead of load1, l1 and s3. Fur-
thermore, by the actions of Billy and the causal law ds, a model I must also
satisfy:

I(dead5) = (load(suzy)1 · l(suzy)2 ∗ s(suzy)3) ·d4

+ (load(billy)2 ·o(billy)3 ∗ s(billy)4) ·d5

As we have seen in Chapter 3, causal values can be represented as sums (or
sets) of graphs. In our running example, I(dead5) corresponds to the causal
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Figure 23: Sufficient causes G1 and G2 of the dead in the Yale Shooting scenario with
two shooters.

graphs G1 and G2 depicted in Figure 23. Hence, we may rewrite the value
corresponding to dead5 as G1 +G2. That is, both shooters are considered equally
responsible of killing Fred.

Examples involving death, like many others in the causal literature, share a
dependence with respect to time: once the effect has been caused — in this case
the death of Fred — it cannot be caused again. In our running example, this
idea can be captured by replacing rule ds by:

ds : deads+1 ← loaded(A)s, shoot(A)s, not deads (83)

Since dead4 holds, this rule is not applicable to the actions performed by any
second shooter. Hence, the only cause of dead, in this variation, is G1, that is
I(dead) = G1. Furthermore, (83) is the direct translation of a causal law of the
form:

loaded, shoot causes dead unless dead (84)

However, we prefer retain the same high lever representation (that is, causal
law (84)) and assign different behaviours to fluents. In this sense, we may
classify the possible ways in which a previous cause can be propagated by into
three main categories characterised as which, the causal laws or the inertia,
takes preference:

1. Symmetric: explanations coming from inertia and from causal laws at the
current situation are equally “valid” causes.

2. Inertial preference: Explanations coming from inertia are preferred to those
that could potentially come from causal laws at that situation.

3. Causal preference: Explanation coming from causal laws are preferred to
those that could potentially come from inertia.

114



5.2 The Block’s World Scenario

In order to represent the third behaviour, causal preference, we introduce
a new predicate noninertial(F) that means that fluent F does not follow the
inertia law1. Hence, for representing the causal preference behaviour we will
add the following to rules two our representation:

noninertial(loaded)s+1 ← loads

noninertial(dead)s+1 ← loadeds, shoots

and replace the previous inertia axioms in the following way:

Fs+1 ← Fs, not noninertial(F)s+1 (85)

In the same way as has happen in the symmetric and inertial preference be-
haviour representations, the unique causal stable model I must hold (82) and

I(dead5) ≥ (load(billy)2 · l(billy)3 ∗ s(billy)4) ·d5 = G2

However, since I(noninertial(dead5)) 6= 0 the inertia axiom with dead5 in the
head is not in the reduct of the program. Therefore I(dead5) = G2, which
coincides with the idea that explanations coming from causal laws are preferred
over inertial ones.

5.2 the block’s world scenario

Consider the block world scenario from Lifschitz [2002]. This scenario illus-
trates the importance of using the notation on(B) = L, instead of on(B, L), to
clearly distinguish that the location L is a function of the block B and not the
other way around.

Example 5.3 (Block’s World). Imagine that blocks are moved by a robot with several
grippers, so that a few blocks can be moved simultaneously. However, the robot is
unable to move a block onto a block that is being moved at the same time. As usual in
blocks world planning, we assume that a block can be moved only if there are not blocks
on top of it.

1 Technically, this predicate is not different from Lin’s caused or Shanahan’s occluded predicate [Lin,
1995, Shanahan, 1999]. For the sake of clarity, we have preferred not to overload the word “caused”
in the current contest and use the word “noninertial” as it better reflects the technical purpose of
this predicate: prevent the application of inertia for that fluent at that situation.
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We may represent Example 5.3 by the following causal law:

m(B, L) : move(B, L) causes on(B) = L (86)

We will also assume that fluent on(B) follows the inertial preference behaviour,
so that a block cannot newly be caused to be in the same position in which it
already is. Then (86) will be translated as the following pair of rules:

m(B, L)s+1 : on(B, L)s+1 ← move(B, L)s, not on(B, L)s

noninertial( on(B))s+1 ← move(B, L)s, not on(B, L)s

plus the following rules to represent the inertia axiom:

on(B, L)s+1 ← on(B, L)s, not noninertial( on(B))s+1

The notation on(B) = L is important to differentiate the fluent value L from the
rest of arguments (in this case B) so that inertia can be properly formalised. In
this way, noninertial(on((B))s+1 is used to disable the application of all inertial
laws for each possible value of fluent on(B).

Domain constraints can be stated as usual in ASP:

← on(B1, B)s, on(B2, B)s, B1 6= B2, block(B)

states that two blocks cannot be on the same block,

← move(B1, L)s, on(B2, B1)s

states that a block B1 cannot be moved when another block is on it, and

← move(B1, B2)s, move(B2, L)s

states that a block cannot be moved onto a block that is being moved also.

Then, the causal information can be obtained in a similar manner as in the
Yale Shooting Scenario. If we suppose that there are three blocks a, b and c
which are initially on the table, that is, we add the following facts

on(a, table)0

on(b, table)0

on(c, table)0
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and then we move the block b on top of a, wait and move the block c on top of
b, that is we add the actions

$ : move(b, a)0

$ : move(c,b)2

we will obtain that block b is on top of a because of:

I( on(b, a)1) = move(b, a)0 ·m(b, a)1

and that block c is on top of b because of:

I( on(c,b)3) = move(c,b)2 ·m(c,b)3

We may also define a predicate over(B1, B2)s as follows:

o(B1, B2) : on(B1, B2) causes over(B1, B2)

p(B1, B3) : over(B1, B2), over(B2, B3) causes over(B1, B3)

Hence, we will conduce that:

I( over(c, a)3) =
(
move(b, a)0 ·m(b, a)1 · o(b, a)1∗

move(c,b)2 ·m(c,b)3 · o(c,b)3
)
· p(a, c)3

That is, the block c is over the block a because we have move the block b on top
of a and the block c on top of b.

5.3 lin’s suitcase scenario and the indirect
effects of actions

Another interesting example is the suitcase scenario of Example 1.1 in the in-
troduction. We may represent this scenario by the following causal laws:

o : up(a), up(b) causes open (87)

u(L) : li f t(L) causes up(L) (88)

The interest of this example relies on the presence of the indirect effect ex-
pressed by causal law (87). Representing the indirect effects of actions is the
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core of the so called ramification problem [Kautz, 1986]. We may represent the
indirect effects of actions in a similar manner as we did with direct effects. Sup-
pose that all fluents follow the symmetric behaviour. In such case, causal laws (87)
and (88) will be simply written as:

os : opens ← up(a)s, up(b)s

u(L)s+1 : up(L)s+1 ← li f t(L)s, not up(L)s

It is perhaps worth to mention that, as in most action domains representations,
direct effects are located in the next state after the action execution, whereas
indirect effects are located in the same state than their preconditions. Suppose
that both locks are lifted with a waiting situation in between. That is, we add
the following labelled facts to the above rules:

$ : li f t(a)1

$ : li f t(b)3

Similarly to the Yale Shooting Scenario, it can be checked that the following
equations holds: I(up(a)4) = li f t(a)1 ·u(a)2 and I(up(b)4) = li f t(b)3 ·u(b)4.
Consequently, we obtain that:

I(open4) =
(
li f t(a)1 ·u(a)2 ∗ li f t(b)3 ·u(b)4

)
· o4 = G1

which corresponds to the graph G1 depicted in Figure 24.

li f t(a)1

��

li f t(b)3

��

u(a)2

++

u(b)4

sso4

Figure 24: Sufficient cause G1 of open in the suitcase scenario.

Consider now the variation of this example stated by Example 1.4. This
variation introduces a second opening mechanism activated by a key. That is,
we add a causal law of the form:

k : key causes open (89)

to (87) and (88). We will use this example to illustrate how the inertial and
causal preference behaviours work with indirect effects. Suppose that we try
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to open the suitcase with the key after the second lock is lifted, that is, we add
the labelled fact ($ : key4). Under the inertial preference behaviour, the causal
law (89) is translated as:

ks+1 : opens+1 ← keys, not opens

As we have seen above I( open4) = G1 6= 0, therefore rule k4 is not in the
reduct of the program and, consequently, open5 only inherits its causal value
from open4 by the inertia axiom. That is I( open5) = I( open4) = G1. In other
words, using the key does not yield a new cause for open, because the suitcase
was already open.

On the other hand, under the causal preference behaviour, the causal law (89)
is translated as:

ks+1 : opens+1 ← keys

noninertial(open)s+1 ← keys

While inertia for open has now the form:

opens+1 ← opens, not noninertial( open)s+1

Since I(noninertial(open)5) 6= 0, the inertia axiom is disabled, and conse-
quently I( open5) = key4 ·k5. In other words, we have preferred the explanation
provided by the last action, even though the suitcase was already open.

Finally, in the case where indirect effects (like open in this scenario) follow
the symmetrical behaviour we will require a further elaboration which is left
for future work and will be briefly commented in Chapter 6.

5.4 the gear wheels scenario

The gear wheels scenario introduced by McCain [1997] is one of the benchmark
problems for analysing how causal cycles behave in different action representa-
tions.

Example 5.4 (The gear wheel). Consider a gear mechanism with a pair of wheels,
each one powered by a separate motor. Each motor has a switch to start and stop it.
There is another switch to connect or disconnect the wheels. �
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A static version of this scenario was studied in Chapter 4. We will represent
now the dynamic counterpart by the following set of direct effect causal laws:

m(W) : start(W) causes motor(W)

m(W) : stop(W) causes motor(W)

p : couple causes coupled

p : uncouple causes coupled

plus the following set of indirect effect causal laws:

r(W) : motor(W) causes spinning(W)

t(a) : spinning(b) causes spinning(a) unless coupled

t(b) : spinning(a) causes spinning(b) unless coupled

t(a) : spinning(b) causes spinning(a) unless coupled

t(b) : spinning(a) causes spinning(b) unless coupled

Suppose that, initially, both motors are off, the wheels are not spinning and
uncoupled. Assume also that all fluents follow the inertial preference behaviour.
Initial conditions will be represented by the following labelled facts:

$ : motor(a)0

$ : motor(b)0

$ : spinning(a)0

$ : spinning(b)0

$ : coupled0

We also assume the following narrative of actions:

$ : start(a)1

$ : couple3

$ : uncouple5

That is, motor(a) is started at situation 1 leading the first wheel to spin at
situation 2, that is I( spinning(a)2) = start(a)1 · r(a)2. Since the wheels are
uncoupled, the second one is still by inertia, that is, it keeps its initial value
I( spinning(b)2) = spinning(b)0. At situation 3, both wheels are coupled, lead-
ing to:

I( spinning(b)4) = start(a)1 · r(a)2 · t(b)4 = G1

where G1 is the graph depicted in Figure 25. Then, at situation 5 the wheels are
uncoupled again. The second wheel will still spin forever by inertia and, there-
fore, its causal value does not change. That is, I must satisfy I( spinning(2)s) =
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Figure 25: Sufficient causes of spinning(b) in the two variation of the gear wheel sce-
nario.

I( spinning(2)4) = G1 for all s ≥ 4. Notice that we have considered coupled to
be an exception to rules t(X) and t(X) with X ∈ {a,b} and, then, coupled is
not reflected in the cause of spinning(2). If we considered that coupled is a
precondition of those rules, that is, we replace them by:

r(W) : motor(W) causes spinning(W)

t(a) : spinning(b) causes spinning(a), coupled

t(b) : spinning(a) causes spinning(b), coupled

t(a) : spinning(b) causes spinning(a), coupled

t(b) : spinning(a) causes spinning(b), coupled

we will obtain instead that:

I( spinning(b)4) =
(
start(a)1 · r(a)2 ∗ couple3 · p4

)
· t(b)4 = G2

where G2 is the graph depicted in Figure 25. That is, coupled is now part of the
cause of spinning(2)4.

An interesting variation of this example is incorporating some mechanic
device that allows stopping the wheels [Van Belleghem et al., 1998, Lin and
Soutchanski, 2011]. This can be achieved by adding the following causal laws:

b(W) : brake(W) causes braked(W)

b(W) : unbrake(W) causes braked(W)

r(W) : braked(W) causes spinning(W)

If the second wheel is braked at s5, we will get instead that spinning(b)6 is false.
The cause of spinning(b)s in any future situation s ≥ 6 is:

brake(b)5 ·b(b)6 ·r(b)6

Since both wheels are uncoupled, the first wheel will go on spinning.
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The previous chapter has shown how to derive causal information from ac-
tion scenarios. A natural question is whether this information can be used,
in its turn, to derive new conclusions. To put an example, take a statement
like “whoever causes a bomb explosion will be punished with imprisonment”
(Example 1.3). As commented in the introduction, representing this kind of
knowledge requires a new kind of literal of the form hascaused(A, B) that cap-
tures the idea that “event A has been sufficient to cause event B.” We may
define the precise semantics of this new kind of literal by inspecting the causal
value of B to check whether A is one of its sufficient causes or not. If this kind
of literal is available, we may represent the above statement by a causal law of
the form:

p : hascaused(A,bomb) causes prison(A)

For a proper representation, we add an argument A to action lift to represent
the agent performing the action:

u : li f t(A, L) causes up(L) (90)

and actions are now represented by the labelled facts:

$ : li f t(billy, a)1

$ : li f t(billy,b)3

and we also add the law:

b : open causes bomb

If we assume that all fluents follow the inertia preference behaviour, these
causal laws will be translated into the following program:
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Program 6.1.

ps : prison(A) ← hascaused(A,bomb)

bs : bombs ← opens, not bombs−1

os : opens ← up(a)s, up(b)s not opens−1

u(L)s+1 : up(L)s+1 ← li f t(L)s, not up(L)s

$ : li f t(billy, a)1

$ : li f t(billy,b)3

Then, the causal value of bomb5 corresponds to:

I(bomb5) =
(
li f t(billy, a)1 ·u(a)2 ∗ li f t(billy,b)3 ·u(b)4

)
· o4 ·b4

which, in its turn, corresponds to the graph G1 depicted in Figure 26.
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Figure 26: Sufficient cause G1 of bomb in the suitcase scenario.

Intuitively hascaused(billy,bomb) will hold when all actions which are the
source of every causal chain in the graph have been performed by Billy. In fact,
this is the case in our running example.

6.1 formalization of causal literals

Definition 6.1 (Causal literal). A (causal) literal is a formula of the form:

(ψ :: A) (91)

where A ∈ At is a standard atom and ψ : CLb −→ {0,1} is a monotonic function. �
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Intuitively ψ is a function that acts as a query over the causes of the standard
atom A: it is evaluated to 1 if a cause G is an answer of ψ and to 0 otherwise. In
other words, a causal literal of the form (ψ :: A) would be satisfied iff there was
some cause G of A which is an answer of ψ. By selecting an appropriate query
function ψ we may use causal literals in order to define particular kinds of liter-
als. For instance, let A⊆ Lb be a set of actions labels and ψA : CLb −→ CLb be a
function such that ψA(G) is the result of removing all labels non corresponding
to an action in A. Formally:

ψA(G) def= G[l1 7→ 1, . . . , ln 7→ 1]

where Lb\A = {l1, . . . , ln} and G[l1 7→ 1, . . . , ln 7→ 1] is label replacement (Defini-
tion 4.10).

Definition 6.2 (Hascaused predicate). Given a pair of sets of action labels A and
Aa such that Aa ⊆ A ⊆ Lb, and a standard atom A, by “hascaused(Aa, A)” we
denote a causal literal of the form (ψAa :: A) such that ψAa(G) def= 1 iff

∏Aa ≤ ψA(G)

and ψAa(G) def= 0 otherwise. �

Intuitively, the set Aa represents the actions performed by an agent a. For
instance, in the suitcase-bomb scenario, the literal hascaused(billy,bomb) can
be captured by a set of label actions:

billy def= { li f t(billy, a)1, li f t(billy,b)3 }

capturing all actions performed by Billy. Then, it is easy to see now that
∏ billy = li f t(billy, a)1 ∗ li f t(billy,b)3. Furthermore, it can be shown that:

ψA(G1) =
(
li f t(billy, a)1 ·1 ∗ li f t(billy,b)3 ·1

)
·1 ·1

= li f t(billy, a)1 ∗ li f t(billy,b)3

and, thus:

∏billy ≤ ψA(G1)

That is, ψbilly(G1) = 1 and the unique causal stable model I satisfies the causal
literal hascaused(billy,bomb). If we are now told that Suzy has lifted both
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locks in the first situation, that is, the following pair of labelled facts are added
to the program:

$ : li f t(suzy, a)1

$ : li f t(suzy,b)1

and we assume that the fluent bomb follows the inertial preference behaviour,
then the cause of bomb5 corresponds now to the graph G2 in Figure 27. In
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u(a)2
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u(b)2
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b2

Figure 27: Sufficient cause G1 of bomb in the suitcase scenario.

this modified scenario, ψAbilly(G2) = 0, and so, in the presence of the new evi-
dence, we obtain that Billy was not who has caused the bomb explosion. If fact,
ψsuzy(G2) = 1 points out that it was Suzy who has caused it.

Definition 6.3 (Causal literal valuation). The valuation of a causal literal of the
form (ψ :: A) is given by:

I(ψ :: A) def= ∑
{

G ∈ CLb
∣∣ G ≤ I(A) and ψ(G) = 1

}
for any interpretation I : At−→VLb. We say that I satisfy a causal literal (ψ :: A), in
symbols I |= (ψ :: A), iff I(ψ :: A) 6= 0. �

A causal literal, as a standard one, is evaluated to a causal term that cap-
tures the causes explaining why it holds. In the same way, a causal literal
holds when there is some cause that justifies it. For instance, going on with
our former example in which Suzy did nothing and, thus, atom bomb5 was
caused by G1 in Figure 27. The unique causal stable model I of the pro-
gram satisfies that I |= hascausedA(billy,bomb). It is interesting to note that
I(hascausedA(billy,bomb)) = G1, and hence I( prison(billy)) = G1 ·p. In words,
Billy is in prison because it has performed the actions that have lead to the bomb
explosion and besides the law p has been applied to him. In general, we may
state that a causal literal is satisfied when there is some sufficient cause that is
an answer to the query ψ.
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Proposition 6.1. An interpretation I satisfies a causal literal of the form (ψ :: A),
in symbols I |= (ψ :: A), if and only if there is some sufficient cause G of A w.r.t. I
(Definition 4.4) that is an answer to ψ, that is ψ(G) = 1. �

Proof . The proof can be found in Appendix A on page 270. �

Although this result shows that the evaluation of causal literals matches the
above intuition, it does not give us much information about the precise form
of the obtained causes for causal literals. To cover this aspect, we extend the
notion of proof (Definition 3.3) and its correspondence to sufficient causes (The-
orem 4.2) to programs with causal literals.

Definition 6.4 (Causal program). Given a signature 〈At, Lb,Ψ〉 where At, Lb and Ψ
respectively represent sets of atoms, labels and functions ψ : CLb −→ {0,1}, a (causal)
rule R is an expression of the form:

lR : A ← B1, . . . , Bm, not C1, . . . , not Cn (92)

where lR is either a label, lR ∈ Lb, or the special symbol lR = 1, and where A is a
standard atom and all Bi’s and Ci’s are causal literals or terms. A (causal) program
P is a set of rules. �

We assume that the signature of every program contains a query function
ψ1 ∈ Ψ mapping every causal graph to 1. It is important to notice that any
standard atom A satisfies I(ψ1 :: A) = I(A). Hence, we just use standard atoms
of the form A as a shorthand for causal literals whose query function is ψ1.
With this observation in mind it is easy to see that a labelled program (Defini-
tion 3.1) is just a particular case of a causal program where Ψ = {ψ1}. We may
also extend the notion of proof in the following way:

Definition 6.5 (Proof (causal program)). Given a positive program P and a stable
model (resp. answer set) I, a proof π(A) of a standard atom (resp. literal) A is
recursively defined as a derivation:

π(A) def=
π(ψ1 :: B1) . . . π(ψm :: Bm)

A
(R), (93)

where R ∈ P is a rule with head A, body+(R) = {(ψ1 :: B1), . . . , (ψ1 :: Bm)} and
I |= body−(R) and each π(ψi :: Bi) is, in its turn, a proof π(Bi) of Bi such that
ψi(graph(π(Bi))) = 1. When the positive body is empty, that is m = 0, the derivation
antecedent π(ψ1 :: B1) . . . π(ψm :: Bm) is replaced by >. �

127



6 causal literals

Theorem 6.1 (Proof-cause correspondence (causal program)). Given any com-
pletely labelled program P with a unique atom labelling δ and a stable model (resp.
answer set) I of P, a proof π = π(A) is a non-redundant proof of A iff cgraph(π) is
a cause of A w.r.t. I. �

Proof . The proof can be found in Appendix A on page 252. �

We recall that in Chapters 4 we had not provided the proofs of Theorems 4.2
and 4.6. By the relation I(ψ1 :: A) = I(A), these theorems are just particular
cases of Theorem 6.1.

6.2 encoding in general annotated logic pro-
grams

In this section, we will show that positive causal programs may be encoded into
the General Annotated Logic Program (GAP) framework [Kifer and Subrahma-
nian, 1992]. GAP provides a general semantics for multivalued logic programs
where the set of truth values V is assumed to be a bounded upper (but possi-
bly incomplete) semi-lattice. In our case, we have in fact a complete lattice and,
thus, bounded with top element 1 and bottom element 0. The main definitions
for GAPs were explained in the Background (Section 2.3). The encoding of a
causal program into a GAP relies on a program where every positive rule R of
the form:

lR : A ← B1, . . . , Bm (94)

is encoded as a GAP rule:

A : fR(µ1, . . . ,µm) ← (B1 : µ1) & . . . & (Bm : µm) (95)

where each body literal is v-annotated and the head is annotated with a com-
plex annotation term that captures the meaning of the rule. In the following, we
define the function fR, starting by defining a function fψ for each test function
ψ ∈ Ψ.

Definition 6.6 (Literal annotation function). For every query function ψ ∈ Ψ, its
annotation function fψ : VLb −→ VLb is given by:

fψ(u)
def= ∑

{
G ∈ CLb

∣∣ G ≤ u and ψ(G) = 1
}
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6.2 Encoding in General Annotated Logic Programs

Proposition 6.2. For every causal literal of the form (ψ :: A), its annotation function
fψ : VLb −→ VLb is monotonic and continuous and, for every standard atom A and
interpretation I, it holds that I(ψ :: A) = fψ(I(A)). �

Proof . The proof can be found in Appendix A on page 270. �

Once we have defined an annotated function for each test function ψ ∈ Ψ we
may define an annotation function for each rule in a program.

Definition 6.7 (Rule annotation function). For every positive rule R of the form
(94), its annotation function fR : Vm

Lb −→ VLb is given by:

fR(u1, . . . ,um)
def=

(
f1(u1) ∗ . . . ∗ fm(um)

)
· lR ·δ(A)

where each fi : VLb −→ VLb is the annotation function corresponding to the query ψi
of the causal literal (ψi :: Bi), lR is the label of the rule R and δ(A) is the label assigned
to the head A of the rule. �

Proposition 6.3. For every positive rule R of the form (94), its annotation function
fR : Vm

Lb −→ VLb is monotonic and continuous. �

Proof . The proof relies on the results of Proposition 6.2 plus the fact that product
and applications are also continuous (Proposition 3.11). �

Since any interpretation I and any causal literal of the form (ψ :: A) satisfies
that I(ψ :: A) = fψ(I(A)) we can easily verify the following relation between a
rule annotation function and the fact that an interpretation satisfies that rule.

Proposition 6.4. An interpretation I satisfies a positive rule R (94), in symbols I |= R,
if and only if:

fR
(

I(B1), . . . , I(Bm)
)
≤ I(A)

where fR : Vm
Lb −→ VLb is the annotation function of R. �

Proof . The proof can be found in Appendix A on page 271. �

Definition 6.8 (GAP encoding). For any positive rule R of the form (94), we denote
by GAP(R) a rule of the form (95) where each µi is an annotation variable and fR is
the annotation function of rule R. Given a positive program P, we denote by GAP(P)
a set containing a rule GAP(R) for each rule R in P. �
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Proposition 6.5. An interpretation I satisfies a positive rule R of the form (94), in
symbols I |= R, iff I satisfies of GAP(R) according to the GAP restricted semantics, in
symbols I |=r R. �

Proof . The proof can be found in Appendix A on page 271. �

An immediate corollary of the above result is that:

Corollary 6.1. An interpretation I is a model of a positive program P, in symbols
I |= P, iff I is a model of GAP(P) according to the GAP restricted semantics, in
symbols I |=r GAP(P). �

It is interesting to notice that the definition of the direct consequences opera-
tor TP (Definition 4.3) may be now rewritten relying on the annotation function
of a rule in the following way:

TP(I)(A) = ∑
{

fR
(

I(B1), . . . , I(Bm)
) ∣∣ R ∈ P and head(R) = A

}
Since the function fR is continuous, this definition matches the definition of the
restricted direct consequences operator RP (Definition 2.16).

Proposition 6.6. For any interpretation I, TP(I) = RP(I) where RP is the restricted
direct consequences operator (Definition 2.16). �

Proof . The proof can be found in Appendix A on page 272. �

Hence, from the results of Theorems 2.3 and 2.4 plus Corollary 6.1, it imme-
diately follows that:

Corollary 6.2. The immediate consequences operator TP is monotonic, continuous and
Tω

P = lfp(TP) is the least model of P. �

We can use the result of Corollary 6.2 to prove the first half of Theorem 4.1,
but it remains to prove that the TP operator ends in a finite number of steps
when P is finite.

Definition 6.9 (Causal graph height). Given a set of labels Lb, some literal labelling
δ : Lit −→ Lb ∪ {1} and a causal graph G, we denote by height(G) the length of the
longest simple (no repeated vertices) path in G formed by rule labels (that is, not in the
image of δ). �
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6.2 Encoding in General Annotated Logic Programs

Proposition 6.7. Let P be a positive causal program, A be an atom, k ∈ {0, . . . ,ω} be
an ordinal and G be a causal graph. Let λ be the number of unlabelled rules in P. If
G ≤max Tk

P(A) and h = height(G) + λ ≤ k then G ≤ Th
P(A). �

Proof . The proof can be found in Appendix A on page 273. �

Theorem 6.2 (Direct consequences (causal literals)). Let P be a (possibly infinite)
positive causal program. Then,

i ) lfp(TP) is the least model of P, and

ii ) lfp(TP) = Tω
P (0).

If furthermore P is finite and has n rules, then

iii ) lfp(TP) = Tn
P(0). �

Proof . By Corollary 6.2 it follows that Tω
P is the least fixpoint of the TP operator

and the least model of the positive program P.

Furthermore, as we have seen in Section 3.4, for every literal A, we can write
the value of Tω

P (A) as ∑G∈U G for some set of ≤-maximal causal graphs U, that
is, each G ∈U is a sufficient cause of A.

By Proposition 6.7, for every literal A and cause G ≤max Tω
P (A) such that h =

height(G) + λ with λ the number of unlabelled rules in P it holds that G ≤
Th

P(A). Note furthermore that height(G) is the length of the longest single path
in G, that is no repeated labels, so that h = height(G)+λ≤ n with n the number
of rules in the program. Hence Tn

P(A) = Tω
P (A) for every atom A, and therefore

Tn
P = Tω

P . �

As happened with above results, Theorem 4.1 is a particular case of Theo-
rem 6.2 in the case that all causal literals are also standard atoms.
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6 causal literals

6.3 non-monotonic causal literals for action
domains

In Chapter 5 we have used a predicate noninertial(F)s to capture that flu-
ent F does not follow its inertial behaviour in situation s. There, predicate
noninertial(F)s was syntactically defined by adding a rule of the form:

noninertial(F)s+1 ← B1, . . . , Bm, not C1, . . . , not Cn

for each causal law (71). A more elegant way of defining the semantics of
the predicate noninertial(F)s is by relying on causal literals. Under the causal
behaviour, a fluent is an exception to the inertia when it is caused to have some
value in the current situation (even if this value is the same that held in the
previous situation). Hence, we may define a semantics for noninertial(F)s as
follows:

Definition 6.10 (NonInertial valuation). For any interpretation I : At−→VLb, the
valuation of a causal literal of the form noninertial(F)s is given by:

I(noninertial(F)s)
def= ∑

{
G ∈ CLb

∣∣ G ≤max I(Fs) and ψs(G) = 1
}

where ψs(G) = 1 iff there is some label ls in G whose timestamp situation is s, and
where G ≤max I(Fs) means that G ≤ I(Fs) and there not exists any G′ such that
G < G′ ≤ I(Fs). �

Going back to the two shooters version of the Yale Shooting scenario, we
have seen that I(dead5) ≥ G2 where G2 is the causal graph depicted in Fig-
ure 23. Furthermore, it is easy to see that G2 contains the label d5. Hence
I(noninertial(dead)5) 6= 0, and consequently the inertia rule is not in the reduct.
Thus, I(dead5) = G2, in the same way as we have seen with the syntactic defini-
tion.

Another point we have left open in Chapter 5 was analysing the symmetric
behaviour when we have indirect effects. Recall that we had our suitcase (Exam-
ple 1.4) which is open by lifting both locks and then turning the key. If open
follows the symmetric behaviour, then (89) would be translated as:

ks+1 : opens+1 ← keys
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plus the following inertia axiom:

opens+1 ← opens, not opens+1

Now open5 does not hold, and therefore, from the inertia axiom, it follows:

I(open5) ≥ G1

Furthermore, from the causal law ks+1 it also follows that:

I(open5) ≥ key4 · k5

But we must also include more explanations. This is because I(up(L)5)) =
I(up(L)4)) with L ∈ {a,b} and, from causal law os+1, it follows that:

I(open5) ≥
(
li f t(a)1 ·u(a)2 ∗ li f t(b)3 ·u(b)4

)
· o5 (96)

As a matter of fact, (96) is equal to G1 but replacing the application of o4 by
o5. Let Gs

1 be a cause like G1 but replacing the application of o4 by os. Using
this notation, I(open5) = key4 · k4 + G1 + G5

1 . Moreover, if we do not perform
any action after situation 5, then I(opens) = key4 ·k5 + G1 + G5

1 + . . . + Gs
1 for all

s ≥ 5. That is, for each situation that has passed, we accumulate a new cause
corresponding to the application of rule os without the intervention of any
action. This kind of explanation are against the intuition that a cause should
point out some “new relevant event has happened.” However, with the current
representation the causal rule is fired every time, even though its condition
is only fulfilled by inertia. A possible way of avoiding this behaviour is by
translating causal law (87) as:

os : opens ← now(up(a), up(b))s

where now(α)s holds if and only if formula α is “fired” by some action in the
current situation s. We may define the semantics of now(F)s as follows:

Definition 6.11 (Now valuation). For any interpretation I : At −→ VLb, the valua-
tion of a causal literal of the form now(α)s is given by:

I(now(α)s)
def= ∑

{
G ∈ CLb

∣∣ G ≤max I(αs) and ψs(G) = 1
}

where ψs(G) = 1 iff there is some label ls in G corresponding to an action and whose
timestamp is s− 1. �
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Note that, I(now(up(a), up(b))4) = li f t(a)1 ·u(a)2 ∗ li f t(b)3 ·u(b)4 because
of the action li f t(b)3. Hence, I(open4) = G1 where G1 is the causal graph de-
picted in Figure 24. On the other hand, I(now(up(a), up(b))5) = 0 because
I(up(a)5, up(b)5) = I(up(a)4, up(b)4) and no action has the timestamp 4. Con-
sequently, I(open5) = G1 + key4 ·k5 which is the desired result.

Unfortunately, both causal literals discussed in this section (now(α)s and
noninertial(F)s) are non-monotonic and, thus, they do not fit in our current
framework. Extending the definition of causal literals (Definition 6.1) to cover
non-monotonic query functions is left for future work.

134



7 QUER IES AND COMPLEX I TY
ASSESSMENT

In this chapter, we consider how difficult is to compute the answer of some
queries involving causal information. In LP, the most usual query is entailment,
that is, deciding whether a given atom is satisfied by all models of a given
program. For instance, given a program consisting of the following rules:

r1 : a← b

r2 : a← c

r3 : b← not c

r4 : c← not b

and whose two causal stable models correspond to:

I1(a) = r3 ·r1

I1(b) = r3

I1(c) = 0

I2(a) = r4 ·r2

I2(b) = 0

I2(c) = r4

a is entailed, while b and c are not. In our case, entailment needs to be con-
sidered not only for standard, but also for causal literals. For instance, Pro-
gram 6.1 entails the causal literal hascaused(billy,bomb5). Besides computing
entailment, it is also worth to ask whether a causal graph G is a sufficient cause
of an atom (Definition 4.4), or to find the essential conditions without which a
literal would not hold, that is, its necessary causes.

Definition 7.1 (Necessary cause). Given an interpretation I and an atom A, we say
that a causal graph G is a necessary cause of A iff G is a subgraph of all sufficient
causes of A and I(A) 6= 0. �

For instance, causal graph G1 in Figure 26 is a sufficient and necessary cause
of bomb5 with respect to Program 6.1. If we add the rules:

ks+1 : opens+1 ← keys

$ : key3
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to Program 6.1, G1 is still a sufficient cause, but not a necessary one, because
key3 ·k4 ·b4 is also a sufficient cause. Now, the only necessary cause amounts to
rule b4 because this rule is required for both sufficient causes.

The most obvious way of answering these questions is by computing a model
and then used it for deciding the answer. Unfortunately, causal values are sets
of maximal causal graphs or, alternatively, causal terms in minimal disjunctive
normal form and so, their direct representation may easily require an exponen-
tial amount of space. Fortunately, the obtained causal terms contain a great
degree of redundancy that can be captured by a more compact (polynomial
size), although less readable, representation. This representation comes with
the undesired side effect that deciding whether a causal literal holds or not,
and deciding whether a causal graph is a sufficient cause of a literal are not
trivial task any more. Therefore, we also study the complexity of deciding
these questions. Figure 28 shows completeness results for deciding different
types of queries in programs that are only contain standard literals and causal
literals of the form “hascaused(agent, A).”

positive well answer set
founded (brave) (cautions)

entailment P P NP coNP
sufficient P P NP coNP
sufficient∗ coNP coNP ΣP

2 coNP
necessary coNP coNP ΣP

2 coNP

Figure 28: Completeness results for deciding different types of causation in causal logic
programs. ∗The third row refers to deciding sufficient cause w.r.t. programs
which are not head labelled.

Entailment and sufficient-cause queries under the different causal semantics
are as hard as entailment under the their standard counterparts, although de-
ciding whether a causal graph is a sufficient cause is harder if the program is
not head labelled or does not have a unique atom labelling δ. Although, in
this case, complexity for deciding sufficient causes rises for positive programs
and normal programs under the well-founded semantics and brave reasoning
under the stable model semantics, cautious reasoning under the stable model
semantics is not affected by this assumption. This is because cautious reason-
ing (“for all models ...”) and necessary causation (“for all sufficient causes...”),
are universal properties and, while these two sources of complexity are not
independent, a witnessing (polynomially checkable) counter-example to their
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7.1 Representing Causal Values

conjunction can be found. Assuming that programs are head labelled programs
is reasonable since, as far as this dissertation covers, all practical examples rep-
resenting causal scenarios fall into this category.

The second assumption is that programs only contain standard literals and
causal literals of the form “hascaused(agent, A).” In general, programs may
contain causal literals of the form (ψ :: A) where ψ : CLb−→{0,1} is an arbitrary
function. The computational cost of all types of queries will depend on the
complexity of evaluating those query functions ψ for causal literals. As we
will see, deciding whether a causal literal of the form “hascaused(agent, A)”
holds is feasible in polynomial time. This fact allows us to obtain the results in
Figure 28, without relying on external oracles for computing each function ψ.
All these results can be extended to any program in which the valuation of all
causal literals can be computed in polynomial time.

In the rest of the chapter we go through these results in detail. Section 7.1
presents a polynomial size representation of causal values and shows that this
representation is useful to compute the least model of a positive program
in polynomial time. Section 7.2 places the different queries into complexity
classes relying on an external oracle OΨ to compute the test functions. Then,
Section 7.3 uses the results of the previous section to specify complete char-
acterizations for the case that all the test functions can be computed in poly-
nomial time. Finally, Section 7.4 shows that, in fact, causal literals of the
form “hascaused(agent, A)” can be computed in polynomial time, obtaining
the above complexity results in Figure 28 as a corollary.

7.1 representing causal values

As said above, comparing two arbitrary causal terms t and t′ is not an easy
task (in fact it is coNP-hard). A naive approach for making such comparison
would be rewriting the causal terms t and t′ in a minimal complete disjunctive
normal form (Definition 3.11). In this normal form, each causal term t is of
the form ∑ ti where each ti, in its turn, represents a causal graph. Then, the
comparison is more or less straightforward, ∑ ti ≤ ∑ t′j iff for each term ti there
is some t′j ≥ ti. Since ti and t′j represent causal graphs Gi, and G′j and t′j ≥ ti iff
G′j is a subgraph of Gi, this task can be computed in polynomial time. However,
applying distributivity may easily blow up complexity. In order to illustrate
this fact, consider the following positive program:
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7 queries and complexity assessment

Program 7.1.

mi : pi ← pi−1, qi−1 for i ∈ { 2, . . . ,n }
ni : qi ← pi−1, qi−1 for i ∈ { 2, . . . ,n }

a : p1

b : p1

c : q1

d : q1

It is easy to see that the least causal model I of this program satisfies that
I(p1) = a + b and I(q1) = c + d. Then, the interpretation for p2 must satisfy:

I(p2) = (I(p1) ∗ I(q1)) ·m2

= ((a + b) ∗ (c + d)) ·m2

= (a ∗ c) ·m2 + (a ∗ d) ·m2 + (b ∗ c) ·m2 + (b ∗ d) ·m2

This addition cannot be further simplified. The four addends above correspond
to the four sufficient causes of p2. Analogously, I(q2) can be also expressed as
a sum of four sufficient causes: we just replace m2 by n2 in the above expres-
sion for I(p2). But then, I(p3) corresponds to (I(p2) ∗ I(q2)) ·m3 and, applying
distributivity, this yields a sum of 4× 4 sufficient causes. In the general case,
each atom pn or qn has 22n−1

sufficient causes. That is, expanding the complete
causal value into this disjunctive normal form becomes intractable.

This program also reveals another issue. Even if distributivity is not applied,
the causal terms directly obtained by the direct consequences operator TP for
p2 and q2 require 4 operators, the causal terms for p3 and q3 require 10, I(p3) =
((a + b) ∗ (c + d)) · m2 ∗ ((a + b) ∗ (c + d)) · n2

)
· m3 and, in general, the terms

for pn or qn would require 2n + 2n−1 − 2 operators. However, an interesting
observation is that subterm (a + b) ∗ (c + d) occurs twice in I(p3), and the same
happens for I(q3). This subterm will occur four times in the causal terms for
atoms p4 and q4. Avoiding repetitions will allow computing the least model
of the program in polynomial time (and thus, using a polynomial number of
operators to represent it).

Definition 7.2 (Term and interpretation graph). Given a set of labels Lb, a term
graph (t-graph) T̃ = 〈V, E, fV , fE,vr〉 is a rooted, connected and labelled directed graph
with a set of vertices V, edges E, root vr ∈ V, a vertices label function

fV : V −→ Lb ∪ {0,1,+,∗, ·}

and a partial label function fE : E −→ {le f t, right} for edges such that:
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i ) all leaves are labelled with unitary values (a label in Lb, 1 or 0),

ii ) all non-leaf nodes are labelled with operators (+, ∗ or ·)
iii ) for any vertex labelled with the application operator (·) there are exactly two

outgoing edges labelled ‘le f t’ and ‘right’ being the target for the latter a leaf node.
The rest of edges in the graph are unlabelled, that is fE is undefined.

The set of t-graphs is denoted by ṼLb. �

Each vertex in a t-graph T̃ represents a term given as follows:

term(T̃,v) def= fV(v) for any leaf v in T̃

term(T̃,v) def= ∑{ term(T̃,v′) | (v,v′) ∈ E } if fV(v) = (+)

term(T̃,v) def= ∏{ term(T̃,v′)| (v,v′) ∈ E } if fV(v) = (∗)
term(T̃,v) def= term(T̃,u) · term(T̃,w) if fV(v) = (·)

fE(v,u) = le f t and

fE(v,w) = right

The term represented by t-graph T̃ is the term represented by its root vr. In this
case we just write T̃ instead of term(T̃,vr). As an example, Figure 29 depicts
the t-graph corresponding to I(p3) in our running example.

·
le f ttt right **∗

tt **

m3

· le f t
**

right
tt

·le f t
tt

right
**m2 ∗

uu ))

n2

+
zz $$

+
zz $$

a b c d

Figure 29: The t-graph associated to I(p3) in Program 7.1.

A term graph is just a graph representation of a term using pointers to avoid
repeated subexpressions as can be done in any programming language or with
Prolog terms. In order to avoid writing down the label functions fV and fE
we use superindices to denote the labels of vertices and edges. That is, v∗, v+,
v� and vl respectively denote a vertex v such that fV(v) = (∗), fV(v) = (+),
fV(v) = (·) and fV(v) = l. Furthermore an edge (v1,v2)

r and (v1,v2)
l respec-

tively denote an edge (v1,v2) such that fE(v1,v2) = right and fE(v1,v2) = le f t.
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An edge without superindex denotes an unlabelled edge. We also define some
abbreviations that work as constructors building new t-graphs. We denote by
T̃0 the empty t-graph and by T̃1 and T̃l the t-graphs with only one vertex v re-
spectively labelled by 1 and l ∈ Lb. Given a t-graph T̃ and a label l, we denote
by T̃ · l the t-graph with root v�r , set of vertices V = V′ ∪ {v�r ,wl

r} and set of
edges E = E′ ∪ {(v�r ,v′r)l , (v�r ,wl

r)
r} where V′, E′ and v′r are respectively the set

of vertices, edges and the root of T̃. Note that every vertex and edge belonging
to T̃ keeps the label that it has in T̃. It is easy to see that, if T̃ represents a causal
term t, then T̃ · l represents the causal term t · l. Similarly, given a set S ⊆ ṼLb
of t-graphs, we denote by ∑ S and ∏ S respectively the t-graph T̃ whose roots
are v+r and v∗r and whose sets of vertices and edges correspond to:

V def=
⋃{

V(T̃)
∣∣ T̃′ ∈ S

}
∪
{

vr
}

E def=
⋃{

E(T̃)
∣∣ T̃′ ∈ S

}
∪
{
(vr,v′r)

∣∣ 1≤ i ≤ m
}

Note that V(T̃), E(T̃) and v′r respectively denote the set of vertices, edges and
the root of T̃ ∈ S. It is easy to see that, if U is a set of terms such that u ∈ U iff
T̃ ∈ S, and T̃ represent u, then the t-graphs ∑ S and ∏ S respectively represents
the causal terms ∑U and ∏U. We also assume the following simplifications:

1. If a vertex v is labelled with the operation (∗) or (·) and one of its children
is labelled with 0, then the label of v is replaced by 0 and its children are
removed.

2. If v is labelled with the operation (+) and one of its children is labelled
with 0, then the latter is removed. The label of a vertex v labelled with
the operation (+) without children is replaced by 0.

3. If a vertex v is labelled with the operation (∗) and one of its children is
labelled with 1, then the latter is removed. The label of vertex v labelled
with the operation (∗) without children is replaced by 1.

4. If a vertex v is labelled with the operation (·) and one of its children is
labelled with 1 then the latter is removed and v replaced by the other
children.

5. If a vertex v is labelled with the operations (+) and one of its children is
labelled with 1, then the label of v is replaced by 1 and all its children are
removed.

6. If the root v is labelled with 0, then it is removed.
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Proposition 7.1. The causal value represented by a t-graph T̃ obtained after applying
the above simplifications is the same of the one represented by the original t-graph.
Furthermore, all these simplifications can be run in polynomial time. �

Proof . The proof can be found in Appendix A on page 274. �

In the following we assume that every t-graph has been simplified according
to the above rules. Consequently, a t-graph T̃ represents the causal value 0 if
and only if its set of vertices is empty. Similarly, a t-graph T̃ represents the
causal value 1 if and only if it has a unique vertex whose label is 1. We extend
the notion of t-graph to interpretations in the following straightforward way.

Definition 7.3 (t-Interpretation). A t-interpretation Ĩ : At −→ ṼLb is a mapping
from atoms into t-graphs. We say that a t-interpretation Ĩ represents an interpreta-
tion I iff it holds that Ĩ(A) represents I(A) for every atom A. We denote by Ĩσ the set
of t-interpretations over a signature σ. �

For an interpretation I, there may be several different t-interpretations rep-
resenting it. We can now use t-interpretations in order to define a new direct
consequences operator.

Definition 7.4 (Test function). Given a test function ψ ∈ Ψ, by ψ̃ : ṼLb −→ ṼLb we
denote a function such that G ≤ ψ̃(T̃) iff G ≤ T̃ and ψ(G) = 1 for all causal graph G
and t-graph T̃. Furthermore, given a positive rule R of the form:

lR : A ← (ψ1 :: B1), . . . , (ψm :: Bm)

we denote by f̃R : ṼLb × . . .× ṼLb −→ ṼLb a function such that:

f̃R(µ1, . . . ,µm)
def=

(
ψ̃1(µ1) ∗ . . . ∗ ψ̃m(µm)

)
· lR ·δ(A)

�

Function f̃R is similar to the annotation function fR defined in Chapter 6,
but replacing each test function ψi by its corresponding ψ̃i. From this defini-
tion and the evaluation of causal literals (Definition 6.3), the following result is
immediate.

Proposition 7.2. Given an interpretation I, a t-interpretation Ĩ representing I and a
test function ψ, it holds that ψ̃(I(A)) represents I(ψ :: A) for every atom A. �

We can now combine t-interpretations with an oracle which externally com-
putes the functions ψ̃ for each test function ψ ∈Ψ in order to define a procedure
to compute the direct consequences operator.
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Definition 7.5 (t-Direct consequences operator). Given a positive logic program P
over a signature σ = 〈At, Lb,Ψ〉, the t-direct consequences operator is a function
T̃P : Ĩσ −→ Ĩσ given by:

T̃P( Ĩ)(A) def= ∑
{

f̃R( Ĩ(B1), . . . , Ĩ(Bm))
∣∣ R ∈ P and head(R) = A

}
for any t-interpretation Ĩ and any atom A ∈ At. �

It is easy to see that this definition just translates the direct consequences
operator (Definition 4.3) into the language of t-graphs.

For clarity sake, given a set S of decision functions, we denote by OS an
oracle that can decide all the decision functions f ∈ S. For instance, given the
set of query functions Ψ, by OΨ we denote an oracle that can decide all query
functions ψ ∈ Ψ, and by OΨ∪NP we denote an oracle that can decide all query
functions ψ ∈ Ψ plus all NP queries.

Proposition 7.3. Given a program P over a signature σ = 〈At, Lb,Ψ〉, an interpre-
tation I, any t-interpretation Ĩ representing I holds that T̃P( Ĩ) represents TP(I). Fur-
thermore T̃P( Ĩ) can be computed in polynomial time with an oracle OΨ. �

Proof . The proof can be found in Appendix A on page 275. �

Theorem 6.2 asserted that computing the least model of a finite program by
the direct consequences operator does not take more steps than the number of
rules in the program. Combining this result with Proposition 7.3 implies that a
t-interpretation representing the least model of a program can be computed in
polynomial time by iterating the T̃P procedure from the bottom t-interpretation,
denoted by 0̃ which maps each atom to the empty t-graph.

Corollary 7.1. Given a positive program P over a signature σ = 〈At, Lb,Ψ〉, we can
compute a t-interpretation Ĩ representing the least model I of P in polynomial time with
an oracle OΨ. �

Furthermore, from Theorem 4.9, the causal well-founded model can be ob-
tained from the standard well-founded model by a single application of the ΓP
operator. Hence, given the fact that the standard well-founded model can be
computed in polynomial time, immediately follows the next result.

Corollary 7.2. Given a normal program P over a signature σ = 〈At, Lb,Ψ〉, we can
compute a pair of t-interpretations 〈 Ĩ, J̃〉 representing the causal well-founded model
〈lfp(Γ2

P),gfp(Γ
2
P)〉 of P in polynomial time with an oracle OΨ. �
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7.2 membership results

In this section, we place the entailment, and sufficient and necessary causal
queries into complexity classes relying on an external oracle OΨ to compute
the test functions and the result of Corollary 7.2.

7.2.1 Entailment

For showing that entailment of causal literals under the well-founded seman-
tics is feasible in polynomial time with an oracle OΨ just notice that, by defini-
tion, P |=w f (ψ :: A) iff I(ψ :: A) 6= 0. Similarly, P 6|=w f (ψ :: A) iff J(ψ :: A) = 0
where J = gfp(Γ2

P). Applying the above simplifications a t-graph T̃ represents
the causal value 0 iff its set of vertices is empty. Then, P |=w f (ψ :: A) (resp.
P |=w f not (ψ :: A)) holds iff a t-interpretation Ĩ representing the least (resp.
greatest) fixpoint I = gfp(Γ2

P) (resp. I = lfp(Γ2
P) ) of Γ2

P evaluates ψ̃(I(A)) to
the empty t-graph. As we have seen, from Corollary 7.2, this is computable in
polynomial time.

Theorem 7.1 (Entailment well-founded membership). Given a causal program P
over a signature σ = 〈At, Lb,Ψ〉 and a causal literal (ψ :: A), deciding whether P |=w f
(ψ :: A) and P |=w f not (ψ :: A) is feasible in polynomial time with an oracle OΨ. �

Since the well-founded and the least model semantics agree for positive pro-
grams, it is clear that deciding whether a causal literal is a consequence of a
positive program under the least model semantics is also feasible in polyno-
mial time with an oracle OΨ. For normal programs under the stable model
semantics we distinguish, as usual, between brave and cautious reasoning.

Definition 7.6 (Brave/cautious entailment). A causal literal (ψ :: A) is a brave
(resp. cautious) consequence of a given program P iff (ψ :: A) holds with respect to
some (resp. every) stable model I of P. �

The following result shows that deciding entailment for both, standard and
causal literals, with respect to causal programs is in NPOΨ and coNPOΨ for
brave and cautious reasoning respectively.
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Theorem 7.2 (Entailment stable model membership). Given a causal program P
over a signature σ = 〈At, Lb,Ψ〉 and a causal literal (ψ :: A), deciding whether (ψ :: A)
is a brave (resp. cautious) consequence of P is in NPOΨ (resp. coNPOΨ ). �

Proof . Consider the following procedure.

1. Obtain a program Q by replacing each literal of the form (not ψi :: Bi) by
not aux psii Bi where aux psii Bi is a new auxiliary atom. Let Aux be the
set of all new auxiliary atoms introduced in Q. Then every negative literal
in Q is a standard literal.

2. Guess a set of atoms S ⊆ Lit ∪ Aux

3. Compute the reduct QS of Q w.r.t. the set of atoms S

4. Compute the least model I of QS

5. Fail if I is not a causal stable model of I, that is

a) Fail if (A ∈ S iff I(A) 6= 0) does not hold for every atom A ∈ Lit

b) Fail if (aux psii Bi ∈ S iff I(ψi :: Bi) 6= 0) does not hold for every auxil-
iary atom aux psii Bi ∈ Aux

6. Success if I(ψ :: A) 6= 0. Fail otherwise.

This procedure succeeded iff there is a causal stable model I of P such that
I(ψi :: Bi) 6= 0, that is, iff (ψi :: Bi) is a brave consequence of P. Replacing 6=
by = in step 6, the new procedure success iff there is a causal stable model I of
P such that I(ψ :: A) = 0, that is, iff (ψ :: A) is not a cautious consequence of P.
Hence deciding whether (ψ :: A) is a brave (resp. cautious) consequence of P is
in NPOΨ (resp. coNPOΨ ).

Note that, steps 1-3 are clearly feasible in polynomial time. Step 4 is feasible
in polynomial time with oracle OΨ (Corollary 7.1). Similarly, I(ψ :: A) 6= 0
iff ψ̃(I(A)) 6= 0 (Proposition 7.2) and this is feasible in polynomial time with
oracle OΨ.

In order to show the soundness of the above procedure, let J be a causal inter-
pretation over a sets of atoms At ∪ Aux such that I(A) = J(A) for every atom
A ∈ At and J(aux psii Bi) = I(ψi :: Bi). Let S ⊆ At ∪ Aux be the set of atoms
that hold w.r.t. J. Then, PI = QJ = QS. Hence, I is a causal stable model of P
iff I is the least model of QS. Step 5 checks and fails if the least model of QS

did not coincide with guessed S, that is, iff I is not a causal stable model of P.
Finally, step 6 check whether (ψ :: A) holds or not with respect to I. �
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Corollary 7.3. Given a causal program P over a signature σ = 〈At, Lb,Ψ〉 such that
ψ̃ is computable in polynomial time for all ψ ∈ Ψ, deciding whether a causal literal
(ψ :: A) is a brave (resp. cautious) consequence of P is in NP (resp. coNP). It is,
furthermore, feasible in polynomial time w.r.t. the well-founded semantics or when a
program is positive. �

7.2.2 Sufficient Cause

Testing whether a causal graph G is a sufficient cause of an atom A will rely on
the following result whose proof will be addressed in Section 7.4.

Proposition 7.4. Given a pair of t-graphs, T̃ and T̃′, and a causal graph G, deciding
whether G ≤ T̃ is feasible in polynomial time. Deciding whether G ≤max T̃, T̃ ≤ G
and T̃ ≤ T̃ are in coNP. �

Furthermore, in the particular case that causal graphs are acyclic, we can fix
the following better bound. Recall that, from Theorem 4.8, the sufficient causes
of every head labelled program are acyclic.

Proposition 7.5. Given an acyclic causal graph G and a t-graph T̃, deciding whether
G ≤max T̃ is feasible in polynomial time. �

Proof . The proof can be found in Appendix A on page 278. �

Combining these results with Corollary 7.1 we can settle an upper bound for
the complexity of deciding whether a causal graph is a sufficient cause with
respect to the well-founded semantics.

Theorem 7.3 (Sufficient cause well-founded membership). Given a causal pro-
gram P over a signature σ = 〈At, Lb,Ψ〉, deciding whether a causal graph G is a suf-
ficient cause of an atom A with respect to the well-founded model of P is in coNPOΨ .
Furthermore, if either P is head labelled and δ is a unique atom labelling, or G is acyclic,
then it is decidable in polynomial time with OΨ. �

Proof . From Corollary 7.2, we can compute a pair of t-interpretations 〈 Ĩ, J̃〉
representing the well-founded model of a program P in polynomial time with
the oracle OΨ. Furthermore, from Proposition 7.4, deciding whether a causal
graph G is a sufficient cause of an atom A, that is G≤max Ĩ(A), is in coNP. From
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Proposition 7.5, if G is acyclic, then it is decidable in polynomial time. Moreover,
from Theorem 4.8, if P is head labelled and has a unique atom labelling, then
every sufficient causal is acyclic. Hence, if the causal graph G contains a non-
reflexive cycle, G cannot be a sufficient cause. �

Definition 7.7 (Brave/cautious sufficient cause). A causal graph G is a brave (resp.
cautious) sufficient cause of an atom A with respect to a given labelled program P
iff G is a sufficient cause of A with respect to some (resp. every) stable model I of P. �

For instance, given a program consisting of the following rules:

r1 : a← b

r2 : a← c

r3 : b← not c

r4 : c← not b

r5 : a

whose two causal stable models correspond to:

I1(a) = r3 ·r1 + r5

I1(b) = r3

I1(c) = 0

I2(a) = r4 ·r2 + r5

I2(b) = 0

I2(c) = r4

r3 · r1, r4 · r2 and r5 are brave sufficient causes of a, while only the later is a
cautious one.

Theorem 7.4 (Cautious sufficient cause membership). Given a causal program P
over a signature σ = 〈At, Lb,Ψ〉, a causal graph G and an atom A, deciding whether
G is a cautious sufficient cause of an atom A is in coNPOΨ . �

Proof . In order to decide whether G is a cautious sufficient cause we can be do
as follows.

1. Obtain program Q as in step 1 of Theorem 7.2.

2. Guess a set of atoms S ⊆ Lit ∪ Aux and a causal graph G′ s.t. G < G′

3. Compute the reduct QS of Q w.r.t. the set of atoms S

4. Compute the least model I of QS

5. Fail if I is not a causal stable model of P as in step 5 of Theorem 7.2.

6. Success if G 6≤max I(A). Fail otherwise. That is

a) Success if G 6≤ I(A)

b) Success if G′ ≤ I(A). Fail otherwise.

This procedure succeeds iff there is some causal stable model I and causal
graph G′ such that G 6≤ I(A) or G′ ≤ I(A). The latter holds iff there is some
causal stable model I such that G is not a sufficient cause of A.
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Steps 1-3 and step 5 are feasible in polynomial time as in Theorem 7.2. Steps 4

and 6 are feasible in polynomial time with oracle OΨ respectively due to Corol-
lary 7.1 and Proposition 7.4. Hence, deciding whether G is a cautious sufficient
cause of A is in coNPOΨ . �

Theorem 7.5 (Brave sufficient cause membership). Given a causal program P over
a signature σ = 〈At, Lb,Ψ〉, a causal graph G and an atom A, deciding whether G is a
brave sufficient cause of A is in NPOΨ∪NP . If P is head labelled and δ is a unique atom
labelling, or G is acyclic, then it is in NPOΨ . �

Proof . In order to decide whether G is a brave sufficient cause we can do as
follows.

1. Obtain program Q as in step 1 of Theorem 7.2.

2. Guess a set of atoms S ⊆ Lit ∪ Aux

3. Compute the reduct QS of Q w.r.t. the set of atoms S

4. Compute the least model I of QS

5. Fail if I is not a causal stable model of P as in step 5 of Theorem 7.2.

6. Success if G ≤max A w.r.t. I. Fail otherwise.

This procedure succeeds iff there is some causal stable model I such that
G ≤max I(A). The latter holds iff there is some causal stable model I such
that G is a sufficient cause of A.

Steps 1-3 and step 5 are feasible in polynomial time as in Theorem 7.2. Step 4

is feasible in polynomial time with oracle OΨ due to Corollary 7.1. Step 6

is in coNP (Proposition 7.4). Hence, deciding whether G is a brave sufficient
cause of A is in coNP with oracle O. Furthermore, if P is head labelled with
a unique atom labelling, or G is acyclic, then it is decidable in polynomial
time (Proposition 7.5) and, thus, the oracle only needs to compute the query
functions ψ. �

Corollary 7.4. Given a causal program P over a signature σ = 〈At, Lb,Ψ〉 such that
ψ̃ is computable in polynomial time for all ψ ∈ Ψ, and an atom A, deciding whether G
is

i ) a sufficient cause of A is in coNP when P is positive. It is feasible in polynomial
time when P is head labelled and δ is a unique atom labelling, or the causal graph
G is acyclic.
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ii ) a sufficient cause of A w.r.t. the well-founded model is in coNP. It is feasible in
polynomial time when either P is head labelled and δ is a unique atom labelling,
or G is acyclic.

iii ) a cautious sufficient cause of A is in coNP,

iv ) a brave sufficient cause of A is in ΣP
2 . It is in coNP when either P is head labelled

and δ is a unique atom labelling, or G is acyclic. �

7.2.3 Necessary Cause

We may follow a similar process to show membership for queries about neces-
sary causes.

Theorem 7.6 (Cautious necessary cause membership). Given a causal program
P, deciding whether a causal graph G is a cautious necessary cause of an atom A is
in coNPOΨ . Deciding whether a causal graph G is a cautious necessary cause of an
atom A w.r.t. the well-founded model is also in coNPOΨ . �

Proof . Consider the following procedure.

1. Obtain the program Q as in step 1 of Theorem 7.2.

2. Guess a set of atoms S ⊆ Lit ∪ Aux and a causal graph G′

3. Compute the reduct QS of Q w.r.t. the set of atoms S.

4. Compute the least model I of QS.

5. Fail if I is not a causal stable model of P as in step 5 of Theorem 7.2.

6. Succeeds if I(A) = 0.

7. Fail if G′ 6≤ I(A).

8. Fail if G ⊆ G′. Success otherwise.

This procedure success iff there is a causal stable model I and a causal graph
such that either I(A) = 0 or G′ ≤ I(A) and G 6⊆ G′. The later holds iff there is
a causal stable model I such that G is not a necessary cause of A. Steps 1-5 are
feasible in polynomial time with oracle OΨ as in Theorem 7.2. Steps 6 and 7 are
feasible in polynomial time with oracle OΨ due to Proposition 7.4. Checking
whether a graph is a subgraph (step 8) of another graph also is also computable
in polynomial time. Hence, deciding whether a causal graph G is a cautious
necessary cause of an atom A is in coNP with an oracle O.
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Replacing steps 3− 5 by the procedure for computing the causal well-founded
model 〈I, J〉 of P, which is feasible in polynomial time (Corollary 7.2), the ob-
tained procedure decides whether G is a sufficient cause of A w.r.t. the well-
founded model. �

Theorem 7.7 (Brave necessary cause membership). Given a labelled program P, de-
ciding whether a causal graph G is a brave necessary cause of an atom A is NPOΨ∪NP . �

Proof . We can decide whether G is a necessary cause of A as follows:

1. Obtain program Q as in step 1 of Theorem 7.2.

2. Guess a set of atoms S ⊆ Lit ∪ Aux.

3. Compute the reduct QS of Q w.r.t. the set of atoms S.

4. Compute the least model I of QS.

5. Fail if I is not a causal stable model of P as in step 5 of Theorem 7.2.

6. Success if G is a necessary cause w.r.t. I. Fail otherwise.

This procedure success iff G there is a causal stable model I and G is a necessary
cause of A w.r.t. I. The later holds iff G is a brave necessary cause of A. Steps 1-
5 are computable in polynomial time with the oracle OΨ as in Theorem 7.2.
Step 6 can be checked in the oracle O, since it solves NP queries (Theorem 7.6).
Hence, deciding whether a causal graph G is a brave necessary cause of an
atom A is NP with an oracle O. �

Corollary 7.5. Given a causal program P over a signature σ = 〈At, Lb,Ψ〉 such that
ψ̃ is computable in polynomial time for all ψ ∈ Ψ and an atom A deciding whether a
causal graph G is

i ) a necessary cause of A is in coNP when P is positive.

ii ) a necessary cause of A w.r.t. the well-founded model is in coNP.

iii ) a cautious necessary cause of A is in coNP.

iv ) a brave necessary cause of A is in ΣP
2 . �
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7.3 completeness results

In this Section, we use the results of the previous section to specify complete
characterisations for the case that all the test function can be computed in poly-
nomial time.

7.3.1 Entailment

Theorem 7.8 (Entailment well-founded complete). Given a causal program P over
a signature σ = 〈At, Lb,Ψ〉 such that ψ̃ is computable in polynomial time for all ψ ∈Ψ
and a causal literal (ψ :: A), deciding whether P |=w f (ψ :: A) and P |=w f not (ψ :: A)
w.r.t. to the well-founded model is P-complete. It is P-hard even if P is positive. �

Proof . Membership directly follows from Corollary 7.3. Hardness follows
from the fact that every standard program is also a causal program and de-
ciding whether a literal is a consequence of a standard positive program is
P-complete. �

Theorem 7.9 (Entailment stable model complete). Given program P over a signa-
ture σ = 〈At, Lb,Ψ〉 such that the function ψ̃ is computable in polynomial time for all
ψ∈Ψ, deciding whether a causal literal (ψ :: A) is a brave (resp. cautious) consequence
of P is in NP-complete (resp. coNP-complete). �

Proof . Similarly, membership follows directly from Corollary 7.3. Hardness
follows from the fact that every standard program is also a causal program and
deciding whether a literal is a brave (resp. cautious) consequence of a standard
positive program is NP-complete (resp. coNP-complete). �

7.3.2 Sufficient Cause

Theorem 7.10 (Sufficient cause well-founded complete). Given a causal program P
over a signature σ = 〈At, Lb,Ψ〉 such that ψ̃ is computable in polynomial time for every
ψ ∈ Ψ, deciding whether a causal graph G is a sufficient cause of an atom A w.r.t. the
well-founded model is coNP-complete. Hardness holds even if P is a positive labelled
program. coNP-hardness holds even for positive programs. If P is head labelled and δ
is a unique atom labelling, or G is acyclic, then it is P-complete. �
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Proof . Membership follows directly from Corollary 7.4. P-hardness follows
from the fact that every standard program is also a causal program and decid-
ing whether an atom is a consequence of a positive standard logic program is
P-complete. An atom A is a consequence of a standard logic program iff 1 is a
sufficient cause of A. Cabalar et al. [2014b] have shown that deciding whether
a causal graph G is a sufficient cause of atom A with respect to the least model
I of P is coNP-complete even in the case of positive labelled programs. In the
following, we show such proof by building a log-space reduction for decid-
ing the truth of a formula ϕ = ∀x1, . . . , xm $, where $ = ψ1 ∨ . . . ∨ ψr and each
ψi = Li1 ∧ Li2 ∧ Li3 is a conjunction of three literals Lij over atoms x1, . . . , xm.
Given ϕ, we construct a labelled program Pϕ as follows:

Program 7.2.

f : f

xk : x′′k ← f for each k ∈ {1, . . . ,m}
t : x′k ← x′′k for each k ∈ {1, . . . ,m}
t : t

xk : ψi ← t if Lij = xk for each i ∈ {1, . . . ,r}, j ∈ {1,2,3}
f : ψi ← xk if Lij = xk for each i ∈ {1, . . . ,r}, j ∈ {1,2,3}
xk : xk for each k ∈ {1, . . . ,m}

γ ← x′1, . . . , x′m
$ ← ψ1, . . . , ψr, γ

This transformation can be done using logarithmic space. Moreover, it can be
shown that ϕ is true if and only if the complete connected causal graph graph
Gt f with a set of vertices {x1, . . . , xm, t, f } is a sufficient cause of atom $.

To wit, first observe that any model I of the program Pϕ must satisfy that
I(x′k) = f ·xk ·t for all k∈ {1, . . . ,m} due to the three first rule schemata. Similarly
I(xk) = xk for all k ∈ {1, . . . ,m}. Thus I(ψi) = σ(Li1) + σ(Li2) + σ(Li3) for all
i ∈ { 1, . . . ,r } where

σ(Lij) = t ·xk if Lij = xk

σ(Lij) = xk · f if Lij = xk

Intuitively t ·xk and xk · f represent that variable xk respectively appears posi-
tively or negatively in ψi. Hence, the valuation of atom $ captures the formula
$ as follows.

I($) = ∏
{

σ(Li1) + σ(Li2) + σ(Li3)
∣∣ 1≤ i ≤ r

}
∗ I(γ)
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and, applying the distributivity of products with respect to sums, it follows
that:

I($) = ∑
{

σ(L1j1) ∗ . . . ∗ σ(Lrjr ) ∗ I(γ)
∣∣ ji ∈ { 1,2,3 }

}
where I(γ) def= f · x1 · t ∗ . . . ∗ f · xm · t. Note that I(γ) corresponds to the left
graph depicted in Figure 30 and the rest of I($) corresponds to the conjunctive
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Figure 30: I(γ) for all I and I($) for x1 ∨ xm.

normal form of formula $, replacing
∧

by ∑, ∨ by ∗ and Liji by σ(Liji ). For
every disjunction in the conjunctive normal form

L1j1 ∨ . . . ∨ x1 . . . ∨ xm . . . ∨ Lrjr

there is a causal graph as the right one depicted in Figure 30. Furthermore, for
every variable xk occurring positively we add an edge from it to f and for every
variable occurring negatively we add an edge from t to it. Hence, if both xk and
xk occur in some disjunction we have an edge t ·xk and an edge xk · f . Moreover,
since a causal graph is transitively closed, we must have an edge joining all the
edges. That is, the graph must become the complete connected graph Gt f .

Clearly, ∀x1, . . . , xm $ is valid if and only if all disjunctions of its conjunctive
normal form are valid. In turn, a disjunction is valid iff it contains two comple-
mentary literals for the same variable xk, and the later holds iff its correspond-
ing causal graphs is the completely connected graph. Moreover, suppose there
is some non-valid disjunction, and let G be its corresponding causal graph.
Since the completely connected graph is a supergraph of every possible one,
then Gt f < G. That is, Gt f 6≤max I($). Consequently ∀x1, . . . , xm $ is true iff
Gt f ≤max I($). �

Theorem 7.11 (Cautious sufficient cause complete). Given a causal program P
over a signature σ = 〈At, Lb,Ψ〉 such that ψ̃ is computable in polynomial time for
all ψ ∈ Ψ, deciding whether a causal graph G is a cautious sufficient cause of A is
coNP-complete. �
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Proof . Membership follows directly from Corollary 7.4. Hardness follows from
the fact that deciding whether an atom is a cautious consequence of a standard
logic program is coNP-complete and an atom is a cautious consequence of a
standard logic program iff 1 is a cautious sufficient cause of such an atom. �

Theorem 7.12 (Brave sufficient cause complete). Given a causal program P over a
signature σ = 〈At, Lb,Ψ〉 such that ψ̃ is computable in polynomial time for all ψ ∈ Ψ,
deciding whether G is a brave sufficient cause of A is in ΣP

2 -complete. If P is head
labelled or G is acyclic, then it is NP-complete. �

Proof . Membership follows directly from Corollary 7.4. NP-hardness follows
from the fact that every standard program is also a causal program and decid-
ing whether an atom is a brave consequence of a standard logic program is
NP-complete. Note that an atom is a brave consequence of a standard logic
program iff 1 is a cautious sufficient cause of such an atom.

Program 7.3.

f : f

xk : x′′k ← f for each k ∈ {1, . . . ,m}
t : x′k ← x′′k for each k ∈ {1, . . . ,m}
t : t

xk : ψi ← t if Lij = xk for each i ∈ {1, . . . ,r}, j ∈ {1,2,3}
f : ψi ← xk if Lij = xk for each i ∈ {1, . . . ,r}, j ∈ {1,2,3}
xk : xk for each k ∈ {1, . . . ,m}

γ ← x′1, . . . , x′m
$ ← ψ1, . . . , ψr, γ

yk ← not yk for each k ∈ {1, . . . ,n}
yk ← not yk for each k ∈ {1, . . . ,n}

f : ψi ← yk, t if Lij = yk for each i ∈ {1, . . . ,r}, j ∈ {1,2,3}
f : ψi ← yk, t if Lij = yk for each i ∈ {1, . . . ,r}, j ∈ {1,2,3}

ψi ← yk if Lij = yk for each i ∈ {1, . . . ,r}, j ∈ {1,2,3}
ψi ← yk if Lij = yk for each i ∈ {1, . . . ,r}, j ∈ {1,2,3}

Cabalar et al. [2014b] have shown that deciding whether a causal graph G
is a sufficient cause of atom A with respect to the least model I of P is ΣP

2 -
complete in the case of head labelled programs. In the following, we show
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such proof by building a log-space reduction for deciding the truth of a formula
ϕ = ∃y1, . . . ,yn∀x1, . . . , xm $, where $ = ψ1 ∨ . . . ∨ ψr and each ψi = Li1 ∧ Li2 ∧ Li3
is a conjunction of three literals Lij over atoms x1, . . . , xm. Given ϕ, we construct
a labelled program Pϕ as showed in Program 7.3. This program is the result of
adding the six last rules to Program 7.2. Hence, it can be shown, in a similar
way as in Theorem 7.10, that ϕ is true if and only if the completely connected
causal graph graph Gt f with a set of vertices {x1, . . . , xm, t, f } is a brave sufficient
cause of atom $. After applying distributivity, it follows that

I($) = ∑
{

σI(L1j1) ∗ . . . ∗ σI(Lrjr ) ∗ I(γ)
∣∣ ji ∈ { 1,2,3 }

}
for every causal stable model I and where I(γ) def= f ·x1 · t ∗ . . . ∗ f ·xm · t. Note
that I(γ) corresponds to the graph depicted in Figure 30 as in Theorem 7.10

and σI(Liji ) depends now on the interpretation I. In fact, if Liji = xk of Liji = xk,
then σI(Liji ) does not depends on interpretation I and still has the same value
as in Theorem 7.10.

σI(Lij) = t ·xk if Lij = xk

σI(Lij) = xk · f if Lij = xk

On the other hand, if Liji = yk of Liji = yk, then

σI(Lij) = t · f if Lij = yk and I |= yk

σI(Lij) = 1 if Lij = yk and I 6|= yk

σI(Lij) = t · f if Lij = yk and I 6|= yk

σI(Lij) = 1 if Lij = yk and I |= yk

That is, interpretation I encodes an assignment for the existential variables
y1, . . . ,yn. If a disjunction contains a variable yk of yk which holds in I, then
an edge from t to f is added to the causal graph in Figure 30 leading to the
completely connected graph. The rest of the proof follows as in Theorem 7.10. �

7.3.3 Necessary cause

Theorem 7.13 (Cautious necessary cause complete). Given a causal program P
over a signature σ = 〈At, Lb,Ψ〉 such that ψ̃ is computable in polynomial time for
every ψ ∈ Ψ, deciding whether a causal graph G is a cautious necessary cause of an
atom A is coNP-complete. Deciding whether a causal graph G is a necessary cause
of an atom A with respect to the well-founded model is also coNP-complete. It is
coNP-hard even if P is a positive labelled program. �
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Proof . Membership follows directly from Corollary 7.5. Cabalar et al. [2014b]
have shown that deciding whether a causal graph G is a cautious necessary
cause of atom A with respect to the least model I of P is coNP-complete even in
the case of positive labelled programs. We will show next that proof consisting
on the construction of a log-space reduction of deciding the truth of formula of
the form ϕ = ∀x1, . . . , xm $ where $ = ψ1 ∨ . . . ∨ ψr and each ψi = Li1 ∧ Li2 ∧ Li3
is a conjunction of three literals Lij over atoms x1, . . . , xm. This formula $ will
be valid iff causal graph Gt f with a unique edge (t, f ) is a necessary cause of
an atom $ with respect to the least model I of the following positive program.

Program 7.4.

xk : xk for each k ∈ {1, . . . ,m}
t : t

xk : ψi ← t if Lij = xk for each i ∈ {1, . . . ,r}, j ∈ {1,2,3}
f : ψi ← xk if Lij = xk for each i ∈ {1, . . . ,r}, j ∈ {1,2,3}

$ ← ψ1, . . . , ψr

The idea behind this transformation is similar to that done in Program 7.2 in
Theorem 7.10. Each conjunction ψi = Li1 ∧ Li2 ∧ Li3 is captured by the evalua-
tion of atom ψi in the following way:

I(ψi) = σ(Li1) + σ(Li2) + σ(Li3)

where

σ(Lij) = t ·xk if Lij = xk

σ(Lij) = xk · f if Lij = xk

Hence, the valuation of atom $ captures the formula $ as follows.

I($) = ∏
{

σ(Li1) + σ(Li2) + σ(Li3)
∣∣ 1≤ i ≤ r

}
and, applying distributivity of products with respect to sums, it follows that:

I($) = ∑
{

σ(L1j1) ∗ . . . ∗ σ(Lrjr )
∣∣ ji ∈ { 1,2,3 }

}
After replacing sums by conjunctions and products by disjunctions, it is easy
to see that the above expression corresponds to the conjunctive normal form of
the formula $. The formula ∀x1, . . . , xm $ is true iff all disjunctions of the form
L1j1 ∨ . . . ∨ Lrjr of its conjunctive normal form are valid, which in its turn, is
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the case iff there is a pair of complementary L1ji = xk and Lrjl = xk. When this
happens, σ(L1j1) ∗ . . . ∗ σ(Lrjr ) satisfies:

σ(L1j1) ∗ . . . ∗ t ·xk ∗ . . . ∗ xk · f ∗ . . . ∗ σ(Lrjr ) ≤ t ·xk ∗ xk · f

Furthermore, t · xk ∗ xk · f ≤ t · xk · f ≤ t · f ≤ t · xk · f ≤ t · f . That is, a
disjunction of the form L1j1 ∨ . . . ∨ Lrjr is valid iff it corresponding causal term
satisfies σ(L1j1) ∗ . . . ∗ σ(Lrjr ) ≤ t· f . Consequently, I($)≤ t· f iff all disjunctions
are valid, and the later holds iff the formula is valid. �

Theorem 7.14 (Brave necessary cause complete). Given a causal program P over
a signature σ = 〈At, Lb,Ψ〉 such that ψ̃ is computable in polynomial time for every
ψ ∈ Ψ, deciding whether a causal graph G is a brave necessary cause of an atom A
with respect to the least model I of P is ΣP

2 -complete. It is ΣP
2 -hard even if P is a

labelled program. �

Proof . Membership follows directly from Corollary 7.5. In the following, we
show the reduction introduced in Cabalar et al. [2014b] of a quantified Boolean
formula ϕ = ∃y1, . . . ,yn∀x1, . . . , xm $ where $ = ψ1 ∨ . . .∨ψr and, in its turn, each
ψi = Li1 ∧ Li2 ∧ Li3 is a conjunction of three literals Lij over atoms x1, . . . , xm.
The formula $ will be valid iff causal graph Gt f with a unique edge (t, f ) is a
necessary cause of an atom $ with respect to the least model I of the following
positive program.

Program 7.5.

xk : xk for each k ∈ {1, . . . ,m}
t : t

xk : ψi ← t if Lij = xk for each i ∈ {1, . . . ,r}, j ∈ {1,2,3}
f : ψi ← xk if Lij = xk for each i ∈ {1, . . . ,r}, j ∈ {1,2,3}

$ ← ψ1, . . . , ψr

yk ← not yk for each k ∈ {1, . . . ,n}
yk ← not yk for each k ∈ {1, . . . ,n}

f : ψi ← yk, t if Lij = yk for each i ∈ {1, . . . ,r}, j ∈ {1,2,3}
f : ψi ← yk, t if Lij = yk for each i ∈ {1, . . . ,r}, j ∈ {1,2,3}

ψi ← yk if Lij = yk for each i ∈ {1, . . . ,r}, j ∈ {1,2,3}
ψi ← yk if Lij = yk for each i ∈ {1, . . . ,r}, j ∈ {1,2,3}
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Program 7.5 is the result of adding the last six rules to Program 7.4 in a similar
manner as happened between Program 7.3 and Program 7.2 respectively. In
the same way, each interpretation I encodes an assignment for the variables
y1, . . . ,yn. In this case, if a disjunction contains a literal yk or yk which holds
w.r.t. I, then the corresponding causal graph G will contain an edge from t to
f and hence G ≤ t · f . The rest of the proof follows as in Theorem 7.7. �

It is worth to mention that proofs of Theorems 7.13 and 7.14 do not rely on
a cyclic causal graph as the constructions for the case for sufficient causes. In
fact, the causal graphs used in the proof only contain an edge joining label t
with label f . However, there are two rules with different heads labelled with
xk, that is, the program is not head labelled. Our conjecture is that for head
labelled programs with a unique atom labelling complexity will drop a level,
that is to P and NP for cautions and brave reasoning respectively. The basis of
this conjecture relies on showing that the ≤-maximal causal graphs computed
by the TP operator can be obtained even if the (∗) operation in its definition
is replaced by the ideal formed by the causal graphs resulting from the union
∪ of the ≤-maximal causal graphs corresponding to the literals in the body of
each rule. In case that this conjecture holds, a polynomial time procedure for
deciding T̃≤ G can be constructed because all the branches of T̃ can be checked
independently.

7.4 hascaused predicate

In this section, we will analyse the particular case in which all causal literals are
either standard atoms or causal literals “hascaused(agent, A)” (Definition 6.2).
As we commented in Chapter 6, standard atoms are a particular case of causal
literals in which the test function ψ1 holds for every causal graph. It is clear
that a procedure ψ̃1 corresponding to ψ1 can be decided in polynomial time,
in fact ψ̃1 may be the identity, and so, it can be decided in constant time. As
a consequence, all the results of the previous section are applicable to labelled
programs, that is, those programs which only contain standard atoms.

In the rest of this section, we will show that we may define a function
caused(A, G, T̃) that computes I(hascaused(Aa, A)) with respect to a set of ac-
tions A and an interpretation I when T̃ is a tg-graph that represents I(A) and
G = ∏Aa. For this purpose, we define a recursive function caused(A, G, T̃,v, l)
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where A is the set of labels corresponding to actions, G is a causal graph,
T̃ is a t-graph corresponding to the evaluation of atom A with respect to a
t-interpretation Ĩ representing I, v is a vertex of T̃ and, finally, l ∈ Lb ∪ {1} is a
label or 1. Then, we define caused(A, G, T̃) def= T̃0 if T̃ = 0 and caused(A, G, T̃) def=
caused(A, G, T̃,v,1), where v is the root of T̃, otherwise. Consequently, this
function must satisfy that:

caused(A, G, T̃) = ∑
{

G′ ∈ CLb
∣∣ G ≤ ψA(G′) and G′ ≤ T̃

}
which corresponds to the evaluation of I(hascaused(A, A)) when T̃ is a t-
graph representing I(A).

Below, we define the function caused(A, G, T̃,v, l). Recall that function ψA was
introduced in Definition 6.2. For the clarity sake, we are making the following
assumptions: ψA(1) = 1 and (1,w) and (w,1) represent the edge (w,w). Then
caused(A, G, T̃,v, l) is recursively defined by:

1. caused(A, G, T̃,v, l) def= T̃u · l
if fV(v) = u ∈ Lb ∪ {1} and (wu,wl) ∈ G

with ψA(u) = wu and ψA(l) = wl

2. caused(A, G, T̃,v, l) def= caused(A, G, T̃,vl ,u) · l
if fV(v) ∈ {·} and (wu,wl) ∈ G

with {(v,vl)
l , (v,vu

r )
r} ⊆ E(T̃), fV(vr) = u,

ψA(u) = wu and ψA(l) = wl .

3. caused(A, G, T̃,v, l) def= ∑{ caused(G, T̃,v′, l) | (v,v′) ∈ E(T̃) }
if fV(v) ∈ {+}

4. caused(A, G, T̃,v, l) def= ∏{ caused(G, T̃,v′, l) | (v,v′) ∈ E(T̃) }
if fV(v) ∈ {∗}

5. caused(A, G, T̃,v, l) def= T̃0 otherwise

Intuitively, this procedure goes through all the branches of T̃ checking that
all edges resulting from their evaluation are contained in G. If some branch
contains an edge that is not in G means that such branch corresponds to causes
G′ that do not satisfies G ⊇ ψA(G′) (that is G 6≤ ψA(G′) holds). Therefore, G′

needs to be removed, that is, the branch containing G′ is replaced by T̃0.

Proposition 7.6. Given a set of labels A ⊆ Lb and causal graph G, it holds that

caused(A, G, T̃,v, l) = ∑
{

G′ ∈ CLb
∣∣ G ≤ ψA(G′) and G′ ≤ T̃

}
· l

for any t-graph T̃ ∈ ṼLb. Furthermore, caused(A, G, T̃,v, l) can be computed in poly-
nomial time. �
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Proof . The proof follows by structural induction assuming that it holds for
every children of a vertex and showing then that it holds for such a vertex. The
details can be found in Appendix A on page 275. �

Corollary 7.6. Given a set of labels A ⊆ Lb and causal graph G, it holds that

caused(A, G, T̃) = ∑
{

G′ ∈ CLb
∣∣ G ≤ ψA(G′) and G′ ≤ T̃

}
for any t-graph T̃ ∈ ṼLb. Hence caused(A, G, I(A)) = I(hascaused(G, A)). Fur-
thermore, caused(A, G, T̃) can be computed in polynomial time. � �

Proof . The proof directly follows from Proposition 7.6 by noting that l = 1 in
the definition of caused(A, G, T̃) and 1 is the application identity. �

Now, we can use the function caused(A, G, T̃) to prove Proposition 7.4.

Proof of Proposition 7.4. Note that by taking A= Lb in Corollary 7.6 it follows
that ψA is the identity function, and hence

caused(Lb, G, T̃) = ∑
{

G′ ∈ CLb
∣∣ G ≤ G′ ≤ T̃

}
Then, caused(Lb, G, T̃) = 0 iff G ≤ T̃. Hence, deciding whether G ≤ T̃ is com-
putable in polynomial time.

Furthermore, G ≤max T̃ iff G ≤ T̃ and G 6< G′ for all G′ such that G′ ≤ T̃, and
the last holds iff G ≤ T̃ and either G 6⊇ G′ or G′ 6≤ T̃ for all G′ ∈ CLb. Hence,
we can guess a causal graph G′ and check in polynomial time whether either
G 6⊇ G′ or G′ 6≤ T̃ for all causal graph G′. That is, deciding whether G ≤max T̃
is in coNP.

In order to show that T̃ ≤ T̃′ is in coNP, just note that T̃ ≤ T̃′ iff it holds that
G′ ≤ T̃ implies G′ ≤ T̃′ for all causal graph G′. Hence, we may just guess a
causal graph G′ and then test whether (G′ ≤ T̃ implies G′ ≤ T̃′) holds by a
pair of calls to the caused function. Furthermore, building a t-graph T̃′ that
represents a causal graph G is trivial, and hence, deciding whether T̃ ≤ G is
also in coNP. �

Finally, we get the results for programs which only contain standard atoms
and causal literals of the form “hascaused(Aa, A)”.

Theorem 7.15 (HasCaused complete). Given a program P only containing standard
atoms and causal literal of the form “hascaused(Aa, A)” and giving a causal graph
G and an atom A,deciding whether
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i ) an atom A is a consequence of P is P-complete when P is positive.

ii ) an atom A is a consequence of P w.r.t. the well-founded model is P-complete.

iii ) an atom A is a brave consequence of P is NP-complete.

iv ) an atom A is a cautions consequence of P is coNP-complete.

v ) G is a sufficient cause of A is coNP-complete when P is positive. It is P-complete
when furthermore either P is head labelled and δ is a unique atom labelling, or G
is acyclic.

vi ) G is a sufficient cause of A w.r.t. the well-founded model is coNP-complete. It
is P-complete when, in addition, either P is head labelled and δ is a unique atom
labelling, or G is acyclic.

vii) G is a cautions sufficient cause of A is coNP-complete.

viii) G is a brave sufficient cause of A is ΣP
2 -complete. It is NP-complete when in

addition P is head labelled and δ is a unique atom labelling, or G is acyclic.

ix ) G is a necessary cause of A is coNP-complete when P is positive.

x ) G is a necessary cause of A w.r.t. the well-founded model is coNP-complete.

xi ) G is a cautions necessary cause of A is coNP-complete.

xii) G is a brave necessary cause of A is ΣP
2 -complete. �

Proof . From Corollary 7.6, computing I(hascaused(Aa, A)) is feasible in poly-
nomial time. Hence, (i) and (ii) directly follows from Theorem 7.8, while (iii)
and (iv) follows from Theorem 7.9. Similarly (v) and (vi) follow from Theo-
rem 7.10, while (vii) and (viii) respectively follow from Theorems 7.11 and 7.12.
Finally, (ix), (x) (xi) follow from Theorem 7.13, while (xii) follows from Theo-
rem 7.14. �

The table in Figure 28 at the beginning of this chapter summarised these
results in Theorem 7.15.

160



8 RELATED WORK

There exists a vast literature on causal reasoning in Artificial Intelligence. Pa-
pers on reasoning about actions and change by Lin [1995], Thielscher [1997],
McCain and Turner [1997] or Turner [1997] have been traditionally focused on
using causal inference to solve representational problems (mostly, the frame,
ramification and qualification problems) without paying much attention to the
derivation of cause-effect relations. Chapter 5 shows how some of the tradi-
tional problems of this area can be represented as a logic program. On the
other hand, perhaps the most established AI approach for causality is relying
on causal structural models [Pearl, 2000, Halpern and Pearl, 2005, Halpern, 2008]
(see [Halpern and Hitchcock, 2011] for a more actualized view). As commented
in the introduction, in this approach, it is possible to conclude cause-effect
relations like “A has caused B” from the behaviour of structural equations
by applying, under some contingency, the counterfactual interpretation from
Hume [1748]: “had A not happened, B would not have happened.” As dis-
cussed by Hall [2004, 2007], this approach relays on the idea that counterfactual-
dependence is enough for causation. As opposed to this, Hall considers a dif-
ferent (and incompatible) definition, called production, where causes must be
connected to their effects via sequences of causal intermediates, something that, as
we will see in Section 8.4, is closer to our explanations in terms of causal graphs.
In that section, we explore how the idea of contributory cause can be captured by
our formalism, and the relation between this concept and Halpern and Pearl’s
concept of actual cause. In particular, we show that both concepts coincide in
those examples in which the causal concepts of dependence and production
introduced by Hall also agree, and differs in those in which production and de-
pendence do not agree. To the best of our knowledge, the problem of deriving
further conclusions for statements of the form “hascaused(A, B)” has not been
considered in the literature yet.

Apart from the different AI approaches and attitudes towards causality, from
the technical point of view, the current approach can be classified as a labelled
deductive system [Broda et al., 2004]. In particular, the work that has had a
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clearest and most influential relation to the current proposal is the Logic of
Proofs (LP) by Artëmov [2001]. We have borrowed from that formalism part of
the notation for our causal terms and rule labellings, and the fundamental idea
of keeping track of justifications by considering rule applications.

Focusing on LP, our work obviously relates to explanations as provided by
approaches to debugging and justifications in ASP by Gebser et al. [2008], Pon-
telli et al. [2009], Schulz and Toni [2013, 2014] or Damásio et al. [2013]. In
particular, from a technical point of view, the why-not provenance approach
followed by Damásio et al. [2013] is the most close of them. This approach
also relies on a multivalued semantics in which values form a Boolean alge-
bra. Section 8.1 summarises this approach and proposes a new semantics that
generalises both, ours and why-not provenance. As a byproduct of this new
semantics we obtain a formal relation between both approaches. Furthermore,
in Section 8.4, we will see that this new semantics seems useful for capturing,
in a single formalism, the above concepts of production and dependence, al-
though a formal study of dependence is left for future work. In Section 8.2, we
explore the relation between the sufficient causes of a literal and its off-line jus-
tifications as defined by Pontelli et al. [2009]. Intuitively, sufficient causes can
be seen as the subgraph of positive dependences of an off-line justification. It is
worth to note that sufficient causes are required to be minimal (causes do not
contain non necessary events for being sufficient), while off-line justifications
are not. From a technical point of view, off-line justifications are built externally
to the logic and, although they are provided as terms for being handled by an
external Prolog program, they are not first class citizens of the ASP semantics.
Section 8.3 explores the relation between our work and the concept of ABAS
justifications introduced by Schulz and Toni [2013, 2014]. Schulz and Toni de-
part from an argument based reading of logic programs instead of the causal
reading we are assigning to them. In particular, in an argument based reading,
negation as failure is understood as a counterargument to the conclusion, and
therefore those counterarguments (negative dependences) are required to be
included in justifications. This contrasts with our reading of negation as failure
as representing default behaviour, which leads us to the non inclusion of the
abnormal behaviour (negative dependences) in sufficient causes.

Pereira et al. [1991] and Denecker and Schreye [1993] also define different se-
mantics in terms of justifications, but do not provide calculi for them. As in the
above works, justifications usually contain all possible ways to derive a given
fact. Vennekens [2011] translates Halpern and Pearl’s concept of actual cause
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in the context of CP-logic and shares a similar causal orientation where only
the cause-effect relations that “break the norm” should be considered relevant.

8.1 why-not provenance justifications

Why-not provenance justifications [Damásio et al., 2013] is a declarative and log-
ical approach for helping to understand why a given literal is true or false
in a model of some program. In this sense, it is clear that our approach and
why-not provenance justifications share a similar aim. However, a more close
look shows a major difference in what is considered to be a justification. For
instance, consider a program formed by the following labelled rule:

a : p← p

It is easy to see that this program does not entail p, and so, in our approach
there is no cause for it. On the other hand, the formula ¬not p is a why-not
provenance justification of p pointing out that p would be true if the program
would have contained a fact p. In this sense, we may distinguish two different
kinds of why-not provenance justifications. For instance, ¬not p is actually
a non-real justification explaining why p is entailed by the program (in fact
the program does not entail p) but rather an hypothetical justification explaining
how we can make p hold by modifying the program. The second kind, that
we would call real justifications, are those that actually justify why p is entailed
by the program without modifying it. It is easy to see that our approach is
focused only in real justifications, so most of this section will be focused on
real justifications.

Another major difference is how both approaches deal with negation. As
we will see later, treatment of negation will also be the major difference when
compared to other approaches of justifications in LP like off-line and ABAS
justifications. We assume that negation represents an exception, or deviation
from the default behaviour. Hence, sufficient causes do not include depen-
dences through negation. For instance, we consider the following variation of
Program 4.4 obtained by removing the fact oxygen:

Program 8.1.

f : f ire ← match, not ab

d : ab ← oxygen

match : match
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This program captures the match-oxygen scenario (Example 1.7) and entails
f ire. Accordingly, in our approach, there is a single cause for it, which corre-
sponds to the causal term match · f . This cause do not makes any reference to
any abnormality that could, but did not, prevent the effect, in particular the
absence of oxygen. On the other hand, the why-not provenance information of
f ire is:

(¬not f ire) ∨ (match ∧ f ∧ not ab ∧ not oxygen)

∨ (match ∧ f ∧ not ab ∧ ¬d)

Each conjunction of this formula is a why-not provenance justification. The first,
¬not f ire is an hypothetical justification in similar manner as ¬not p in the pre-
vious example. Similarly, the third one points out that f ire would be justified
if the fact ab (stated by a conjunct not ab) were kept absent and rule d had been
removed. The second one, match ∧ f ∧ not ab ∧ not oxygen is, in its turn, the
real justification of f ire, that is, it holds because of rule f and the fact match are
in the program and the facts ab and oxygen are not. Compared to match · f , this
“real” why-not provenance justification, further includes ab ∧ oxygen meaning
that ab and oxygen cannot be in the program. This information may be useful
for understanding why f ire holds or not, for instance for debugging a program,
but it is somehow redundant from a causal point of view. For instance, consider
the Yale Shooting scenario where, in addition we have the possibility of unload-
ing the gun. The program representing this scenario may contain the following
rules for loading and unloading the gun.

Program 8.2.

loadeds+1 ← loadeds, not loadeds+1

us+1 : loadeds+1 ← unloads

ls+1 : loadeds+1 ← loads

load1 : load1

In the unique causal answer set of this program, for any situation s ≥ 1, the
cause of loads is just load1 · l2. On the other hand, the unique real why-not
provenance justification will be:

load1 ∧ l2 ∧ not loaded2 ∧ . . . ∧ not loadeds

∧ not unload1 ∧ . . . ∧ not unloads−1
(97)
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which explicitly makes reference to the absence of the action unloadi for every
situation between the load and the current state. In addition to this one, there
will be several hypothetical why-not provenance justifications as:

¬not load2∧o2∧not loaded2∧ . . .∧not loadeds∧not unload1∧ . . .

¬not load3∧o3∧not loaded2∧ . . .∧not loadeds∧not unload1∧ . . .

. . .

each one stating that the gun would be loaded if it had been loaded in situations
2,3, . . . Going back to (97), by removing every conjunct of the form not A, we
will obtain load1 ∧ l2, whose conjuncts are exactly the vertices of the causal
graph represented by load1 · l2. However, in general, this is not always the case.
Consider for instance, that we replace the above rule us+1 by the rules

as+1 : loadeds ← not ps

bs+1 : ps

This does not affect the causes of loads. The only cause still is load1 · l2. But the
unique real why-not provenance justification is now:

load1∧ l2∧b2∧ . . .∧bs−1∧not loaded2∧ . . .∧not loadeds (98)

In this example l2 is indistinguishable from b2, . . . ,bs−1, although only l2 is a
vertex of the cause of loads. That is, given a why-not provenance justification, a
corresponding cause cannot be built. Furthermore, from the cause load1 · l2, the
rest of conjuncts that forms the why-not provenance justification (97) cannot be
obtained either.

Despite these differences, it is interesting to notice that from a technical point
of view both approaches are also quite similar, relying both on a multivalued
semantics with a set of values that form a completely distributive lattice. In
particular, provenance values form a free Boolean algebra.

Definition 8.1 (Provenance values). Given a set of labels Lb, we denote by Lbnot

the set Lbnot def= {not A | A ∈ At}. A provenance term, t is recursively defined as
one of the following expressions t ::= l | ∧S | ∨S | ¬t where l ∈ Lb ∪ Lbnot, t is a
provenance term and S is a (possibly empty and possible infinite) set of provenance
terms. Provenance values are the equivalence classes of provenance terms under the
equivalences of the Boolean algebra. Given a signature 〈At, Lb〉, we denote by BLb the
set of provenance values generated by a set of labels Lb. �
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Recall that (+) and (∗) operators, in our approach, are respectively the least
upper bound and the greatest lower bound of a completely distributive lattice,
and so they respectively correspond to the conjunction (∧) and disjunction (∨)
Boolean operators. Then, the difference between values of both approaches re-
lies on the lack of the application (·) operator and the availability of a negation
(¬) operator by provenance terms. On the one hand, the lack of the applica-
tion (·) operator means that why-not provenance justifications cannot represent
the causal structure of dependences, but just which literals and rules are in-
volved in that justification. On the other hand, the availability of a negation (¬)
operator is useful for answering questions of the form “why the fire has not
started?” when, for instance, the oxygen is absent in the match example.

The why-not provenance approach assumes that there is a label of the form
not A for every literal A, so that, for any given signature 〈At, Lb〉 the set of
labels must be extended with the labels in Lbnot. Labels of the form not A, are
used to state that the fact A cannot be added to the program, and labels of
the form ¬not A are used to state that by adding the fact A we will obtain a
justification.

In order to illustrate how the negation operator (¬) allows answering ques-
tions of the form “why the fire has not started?” consider the Program 4.3 from
Chapter 4 consisting of the following rules:

Program 8.3.

f : f ire ← match, not ab

d : ab ← oxygen

match : match

oxygen : oxygen

In this program the literal f ire does not hold and, consequently, there is no
cause for it. So the answer to the question “why the fire has not started?”
could be “because, by default, there are not fires.” However, we may be still
interested in a more detailed answer: “by default, there are not fires, but also
by default, matches cause fires.” On the other hand, there are why-not prove-
nance justifications for f ire. In fact, in this program, the why-not provenance
information of f ire is:

(¬not f ire) ∨ ( f ∧match ∧ ¬d) ∨ ( f ∧match ∧ ¬oxygen) (99)

stating that f ire would be true if either the fact f ire would have been added to
the program or either the rule d or the fact oxygen would have been removed.
The negation of (99):

(not f ire∧¬ f ) ∨ (not f ire∧¬match) ∨ (not f ire∧a∧oxygen) (100)
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constitutes the why-not provenance information for not f ire. Each conjunc-
tion of (100) is a why-not provenance justification for not f ire. The first two,
not f ire∧¬ f and not f ire∧¬match are hypothetical justifications that points out
that f ire would be false if the fact f ire were not in the program and either the
fact match or the rule f had been removed. The last one, not f ire ∧ d ∧ oxygen,
explains that f ire does not hold because the fact f ire is not in the program and
rule d and the fact oxygen are in it.

In the rest of this section we will extend causal values in order to capture both
the causes of a literal and explanations for negative literals. This formalism
takes advantage of the strengths of both approaches and will allow us to relate
them formally.

Definition 8.2 (CP-values). A CP-term, t is recursively defined as one of the fol-
lowing expressions t ::= l | ∑ S | ∏ S | t1 · t2 | ∼t1 where l ∈ Lb∪ Lbnot, t1 and t2 are
CP-terms and S is a (possibly empty and possible infinite) set of CP-terms. CP-values
are the equivalence classes of provenance terms under the equivalences of causal values
(equations in Figures 13 and 14 and 15) plus:

i ) pseudo-complement and DeMorgan laws

t ∗ ∼t= 0
∼∼∼t=∼t

∼(t+u)=(∼t ∗∼u)
∼(t ∗ u)=(∼t+∼u)

ii ) weak excluded middle ∼t +∼∼t = 1

iii ) negation of application ∼(t · u) = ∼(t ∗ u)

The set of CP-values generated by a set of labels B is denoted by ṼLb. �

CP-values extend the notion of causal values (Definition 3.9) with a negation
(∼) operator which, in contrast to the classical negation (¬) of the why-not
provenance approach, does not satisfy the exclude in the middle principle. In
fact 〈ṼLb,+,∗,∼,0,1〉 forms a pseudo-complemented completely distributive
lattice, which is an algebraic structure weaker than a Boolean algebra. To illus-
trate the importance of this fact we appeal to the above load-unload example
where the why-not provenance justification of loads corresponded to the con-
junction (98). Instead, of this conjunction we will assign to loads the CP-term:

( load1∗∼∼b2∗ . . .∗∼∼bs−1

∗∼∼not loaded2∗ . . .∗∼∼not loadeds−1 ) · l2
(101)

167



8 related work

By replacing the product (∗) and application (·) symbols in CP-terms by con-
junctions (∧) and removing the double negation (∼∼) for each conjunct in (101)
we obtain the previous why-not provenance justification in (98). Furthermore,
by removing from CP-terms every subterm containing doubly negated labels
we obtain load1 · l2 which is the cause of loads. That is, by removing some
subterms we may be able to obtain causes and why-not justifications from CP-
terms.

It is also worth to note that by following the equivalences in Definition 8.2,
every CP-term t can be rewritten as an equivalent CP-term u where negation
(∼) is not in the scope of any other operation. That is, negations are only
applied to labels or negations of labels.

Definition 8.3 (Negated normal form). A CP-term where negation is not in the
scope of any other operation (and it is only applied to labels or negated labels) is said to
be in negation normal form. Furthermore, the terms 0, 1 and terms that only contain
labels and negations are said to be atomic. �

CP-interpretations are functions Ĩ : At −→ ṼLb mapping each atom into a
CP-value. We will denote by Ĩσ the set of CP-interpretations over a signa-
ture σ = 〈At, Lb〉. Since causal values are those CP-values that have some
representative term t with no negation (∼), causal interpretations are those
CP-interpretations that map each literal into a causal value. Recall that, as
usual in lattices, we say that a CP-term t is smaller than other u, in symbols
t≤ u, iff t ∗ u = t iff t + u = u. This relation is extended to CP-interpretations as
it has been extended for causal interpretations, that is, Ĩ ≤ J̃ iff Ĩ(A)≤ J̃(A) for
any atom A. The evaluation of a term t with respect to a CP-interpretation Ĩ,
in symbols Ĩ(t) is the equivalence class of t. The value assigned to a nega-
tive literal not A by an CP-interpretation Ĩ, denoted as Ĩ(not A), is defined
as: Ĩ(not A) def= ∼ Ĩ(A). The evaluation of negative literals with respect to
CP-interpretations is different that their evaluation with respect to causal in-
terpretations. For a causal interpretation I the evaluation of a negative literal
not A was defined as I(not A) def= 1 if I(A) = 0 and I(not A) def= 0 otherwise. This
difference is what will allow capturing justifications for negative literals. We
may then, introduce the notion of reduct for CP-interpretations in the following
way.

Definition 8.4 (CP-reduct). Given a program P and a CP-interpretation Ĩ, we denote
by P Ĩ the positive program containing a rule of the form

lR : A ← B1, . . . , Bm, Ĩ(not C1), . . . , Ĩ(not Cn) (102)
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for each rule in P of the form (92). �

Furthermore, for positive programs, we may define CP-models in the same
way as we have defined causal stable models (Definition 4.2), but replacing
causal interpretations by CP-interpretations.

Definition 8.5 (CP-model). Given a positive labelled rule R of the form (48) (with
m = 0), we say that an CP-interpretation Ĩ satisfies R, in symbols Ĩ |= R, if and only
if the following condition holds:(

Ĩ(B1) ∗ . . . ∗ Ĩ(Bm)
)
· lR · δ(A) ≤ Ĩ(A) (103)

Given a positive program P, we say that a CP-interpretation Ĩ is a CP-model of P, in
symbols I |= P, if and only if, I is the ≤-minimal interpretation that satisfies all rules
R in P. �

For positive programs, we may also define a direct consequences operator [van
Emden and Kowalski, 1976] for computing the least CP-model of a program by
iterating it from the bottom CP-interpretation which maps each literal to 0.

Definition 8.6 (CP direct consequences). Given a positive labelled program P over
a signature σ = 〈At, Lb,δ〉, the operator of direct consequences is the function
T̃P : Ĩσ −→ Ĩσ such that T̃P( Ĩ)(A) is given by

∑
{ (

Ĩ(B1) ∗ . . . ∗ Ĩ(Bm)
)
· lR · δ(A)

∣∣ R ∈ P and head(R) = A
}

for any CP-interpretation Ĩ and any literal A ∈ At. �

Definition 8.6 is exactly the same as Definition 4.3 but replacing causal inter-
pretations by CP-interpretations. Hence, similar results are obtained.

Theorem 8.1 (CP direct consequences). Let P be a positive labelled program. Then,

i ) lfp(T̃P) is the least model of P, and

ii ) lfp(T̃P) = Tω
P (0̃).

If furthermore P is finite and has n rules, then lfp(T̃P) = T̃n
P(0̃). �

Proof . The proof can be found in Appendix A on page 280. �

In order to define the CP well-founded model of a program, we define first an
operator Γ̃P : Ĩσ −→ Ĩσ mapping CP-interpretations into the least model of the
positive program P Ĩ . As the ΓP operator, the Γ̃P operator is also antimonotonic
and, therefore, Γ̃2

P is monotonic having a least and greatest fixpoint respectively
denoted by lfp(Γ̃2

P) and gfp(Γ̃2
P).
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Definition 8.7 (CP well-founded model). Given a labelled program P, its CP well-
founded model is given by the pair W̃ = 〈lfp(Γ̃2

P), gfp(Γ̃
2
P)〉. �

For the sake of readability, for every atom A, we will write:

• W̃(A) def= lfp(Γ̃2
P)(A),

• W̃(not A) def= ∼gfp(Γ̃2
P)(A), and

• W̃(undefA) def= ∼W̃(A) ∗∼W̃(not A).

We can see now that, in Programs 8.1 and 4.3, W̃( f ire) = lfp(Γ̃2
P)( f ire) are

respectively match · f and

(∼oxygen ∗match) · f (104)

The value match · f is also the cause of f ire according to our causal semantics
and the well-founded model of Program 8.1. On the other hand, f ire does not
hold in Program 4.3 and, consequently, there is no cause for it. (104) provides
a further explanation which points out that f ire is false because oxygen has
prevented the match to cause the f ire.

Definition 8.8 (CP-Justification). A query literal (q-literal) L is either an atom A,
its default negation not A or undefA. Given a program P and a q-literal L we say
that a term with no sums E is a CP-justification for L iff E ≤ W̃(L). Every label
l ∈ Lb that occurs negated (∼l) in E is said to be a disabling condition of E and
every label that occurs doubly negated (∼∼l) is said to be an enabling condition. A
justification is said to be disabled if it contains some disabling condition and it is said
to be non-disabled otherwise. �

Intuitively, a disabled CP-justification is a cause that, by default would have
caused the effect, but it was prevented to do it. For instance, in Program 4.3, the
CP-term (104) is a disabled CP-justification indicating that match would have
caused a f ire but for the absence of oxygen. Clearly, disabled CP-justifications
do not correspond to actual causes, but to causes that could have been. Hence,
to obtain the causes of an atom from its CP well-founded model we must re-
move all disabled CP-justifications. Furthermore, as we have informally seen
above, for obtaining a cause from a CP-justification, we must remove every
enabling condition, that is doubly negated labels. The following mapping for-
malises this transformation.
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Definition 8.9 (CP to causal term mapping). For a CP-term in negation normal
form u we define

λc(u) def=


λc(v)⊗ λc(w) if u = v⊗ w with ⊗ ∈ {+,∗, ·}
1 if u = ∼∼l with l ∈ Lb
0 if u = ∼l with l ∈ Lb
l if u = l with l ∈ Lb

For any CP-term we define λc(t) def= λc(u) where a u is CP-term in negation normal
form equivalent to t. Then, λc may also be applied to CP-values by applying it to
any of the representatives in the equivalence class. We also extend the application
of λc to interpretations and pairs of interpretations in the following way: λc( Ĩ) def=
J̃ iff J̃(A) = λc( Ĩ(A)) for any literal A and λc(〈 Ĩ, J̃〉) def= 〈λc( Ĩ), λc( J̃)〉 for any
CP-interpretations Ĩ and J̃. �

Definition 8.9 formalises the above intuitive translation from CP-terms into
causal terms and provides a way of obtaining the causal well-founded model
of a program from its CP well-founded model. For instance, applying λc to
the CP-term associated to f ire in the CP well-founded model of Program 8.1, it
follows that λc(match · f

)
= match · f which corresponds to the value assigned

in its causal well-founded model. That is, λc maps those CP-terms that are
also causal terms, like match · f , into themselves. Similarly, applying λc to the
CP-term (104) we will obtain:

(0 ∗match) · f = 0

which corresponds the value assigned to f ire in the causal well-founded model
of Program 4.3. Mapping λc removes all disabled CP-justifications and all
enabling conditions from the non-disabled ones. The following theorem for-
malises the relation between the causal well-founded model and the CP well-
founded model.

Theorem 8.2 (CP-causal well-founded model correspondence). Let P be a labelled
program, W its causal well-founded model (Definition 4.13) and W̃ is CP well-founded
model (Definition 8.7). Then λc(W̃) = W. �

Proof . The proof can be found in Appendix A on page 286. �

Theorem 8.2 shows that the CP well-founded model (Definition 8.7) extends
the notion of causal well-founded model (Definition 4.13) by allowing terms
with negations.
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Let us address now the relation between the CP well-founded model and
why-not provenance information of a logic program. Provenance interpretations
are functions I : At −→ BLb mapping each atom into a provenance value. Fur-
thermore t≤ u iff t ∧ u = t iff t ∨ u = u iff t |=cl u where |=cl stands for classical
satisfaction. As we did with CP-interpretations, this relation is extended to
provenance interpretations so that I≤ J iff I(A) ≤ J(A) for any literal A. The
value assigned to a negative literal not A by an interpretation I, denoted as
I(not A), is defined as: I(not A) def= ¬I(A).

Definition 8.10 (Provenance model). Given a positive labelled rule R of the form (48)
(with m = 0), we say that a provenance interpretation I satisfies R, in symbols I |= R,
if and only if the following condition holds:

I(B1) ∧ . . . ∧ I(Bm) ∧ lR ≤ I(A) (105)

Given a positive program P, we say that a provenance interpretation I is a prove-
nance model of P, in symbols I |= P, if and only if, I is a ≤-minimal provenance
interpretation that satisfies all rules in P. �

The direct consequences operator for provenance interpretations is defined in
the following way.

Definition 8.11 (Provenance direct consequences). Given a positive labelled pro-
gram P over a signature σ = 〈At, Lb,δ〉, the operator of direct consequences is the
function TP : Ĩσ −→ Ĩσ such that TP(I)(A) is given by∨{

I(B1) ∧ . . . ∧ I(Bm) ∧ lR
∣∣ R ∈ P and head(R) = A

}
for any CP-interpretation I and any literal A ∈ At. �

Theorem 8.3 (From [Damásio et al., 2013]). A program P has a least model which
can be obtained by iterating the direct consequences operator of Definition 8.11 on the
bottom interpretation which maps every atom to ⊥. �

Comparing Definitions 8.10 and 8.11 of provenance models and provenance
direct consequences operator to the respective Definitions 8.5 and 8.6 of CP-
models and CP-direct consequences operator, it is easy to see that, in the for-
mer two, products (∗) and applications (·) are replaced by conjunctions (∧) and
that each label associated to the literal in the head of the rule, δ(A), is miss-
ing. Furthermore, sum (+) and disjunction (∨) are respectively the least upper
bound of the ≤ relations. Then, we may define a function λp : ṼLb −→ BLb that
transforms CP-values into their corresponding provenance values.
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Definition 8.12 (CP to provenance terms mapping). Given a term t we define a
mapping λp in the following recursive way:

λp(t) def=



λp(u) ∨ λp(w) if t = u + v
λp(u) ∧ λp(w) if t = u⊗ v with ⊗ ∈ {∗, ·}
¬λp(u) if t = ∼u
1 if t = δ(A) for some A ∈ At
l otherwise

We define a mapping λp : ṼLb −→ BLb by mapping each CP-value into the equivalence
class of the mapping of any of its representatives. �

Theorem 8.4 (CP-provenance least model correspondence). Let P be positive la-
belled program, Ĩ and I be respectively the least CP-model and least provenance model
of P. Then I= λp( Ĩ). �

Proof . The proof can be found in Appendix A on page 284. �

Theorem 8.4 shows that our CP approach is also an extension of why-not
provenance approach under the least model semantics. Note, however, that
the CP well-founded model of a program containing the single rule a : p← p
assigns the value 0 to p. In contrast, the why-not provenance information of
p is ¬not p. Capturing hypothetical why-not provenance has been addressed
in [Damásio et al., 2013] by adding new facts to the program in the following
way:

Definition 8.13 (Provenance Program). Given a positive labelled program P, its
provenance program is P(P) def= P ∪Q where Q contains a labelled fact of the form

∼not A : A

for each atom A ∈ At such that there is not a fact A in P. We will write just P instead
of P(P) when the program P is clear by the context. �

The why-not provenance information of a positive program can be obtained
by a two step procedure. First, we build the corresponding provenance pro-
gram and, then, we compute its provenance least model. The following for-
malises the idea of why-not provenance information.
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Definition 8.14 (Why-not provenance (positive programs)). Let P be a positive
labelled program and I be the least model of P(P). Then, the why-not provenance infor-
mation WhyP(A) for a positive NAF-literal A is given by WhyP(A) def= I(A) and for
a negative NAF-literal not A is given by WhyP(not A) def= ¬I(A). A why-not prove-
nance justification of a literal A is a conjunction D such that D ≤WhyP(not A). �

We distinguish two kinds of why-not provenance justifications. Those that
do not contain negated conjuncts are called real. Those that contain negated
conjuncts are called hypothetical. Recall also that, P(P) is just a labelled program
augmented with new facts and, therefore, from Theorem 8.4 the next result
immediately follows.

Corollary 8.1. Let P be positive labelled program, and let Ĩ and I be the least CP-
model and least provenance model of P(P), respectively. Then I= λp( Ĩ) and, therefore,
WhyP(A) = λp( Ĩ(A)) and WhyP(not A) = λp(∼ Ĩ(A)). �

Corollary 8.1 states that an alternative way of obtaining the why-not prove-
nance information of a program is by building its provenance program, com-
puting its CP well-founded model and then applying the mapping λp.

The why-not provenance information for a normal program under the well-
founded semantics can be obtained, in its turn, by a fixpoint construction of
the style of [Van Gelder, 1989]. The reduct of a program P with respect to a
provenance interpretation I is defined as the CP-reduct (Definition 8.4). Note
that, for a provenance interpretation I(not Ci) = ¬I(Ci) instead of I(not Ci) =
∼I(Ci). The GP(I) operator returns the least provenance model of program PI.
The provenance well-founded model is given by the pair 〈lfp(Γ2

P),gfp(Γ
2
P)〉

where lfp(G2
P) and lfp(G2

P) are respectively the least and greatest fixpoints of
operator G2

P given by G2
P(J)

def= GP(GP(I)).

Theorem 8.5 (CP-provenance well-founded model correspondence). Let P be a
labelled program, and let W̃ and W be the CP and provenance well-founded model of
P, respectively. Then W= λp(W̃). �

Proof . The proof can be found in Appendix A on page 174. �

Theorem 8.5 extends the correspondence stated by Theorem 8.4 for positive
programs to normal programs under the well-founded semantics. The why-
not provenance information under the well-founded semantics is defined in a
similar manner as for positive programs, but information for undefined literals
is also defined.
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Definition 8.15 (Why-not provenance). Let P be a labelled program. Then the
why-not provenance information WhyP(A) for a positive NAF-literal A is given by
WhyP(A) def= lfp(G2

P)(A) and for a negative NAF-literal not A is given by WhyP(not A) def=

¬gfp(G2
P)(A). For an undefined literal A, its why-not provenance information

WhyP(undefA) is defined as WhyP(undefA) def= ¬WhyP(A) ∧ ¬WhyP(not A). �

Corollary 8.2. Let P be labelled program and W̃ be the CP well-founded model of
P(P), respectively. Then WhyP(L) = λp(W̃(L)) for L in {A,not A,undefA} and
any atom A. �

Corollary 8.2 relates why-not provenance information of a literal with its
value in the CP well-founded model of its provenance program. Finally, in
order to relate the why-not provenance information of a program to its causes
we have to relate the CP well-founded model of a program to the CP well-
founded model of its provenance program. The provenance program only adds
facts of the form (∼not A : A), and so, by mapping each term of the form ∼not A
to 0 we will obtain the CP well-founded model of the original program.

Proposition 8.1. Let P be a logic program, W̃ the CP well-founded model of P and Ĩ be
the CP well-founded model of P(P). Then W̃ is the result of replacing each occurrence
of labels of the form not A by 1. �

Proof . The proof can be found in Appendix A on page 283. �

Taking into account the result of Proposition 8.1 we may extend the definition
of λc to provenance programs in the following way.

Definition 8.16 (Hypothetical CP to causal mapping). Given a CP-term t in nega-
tion normal form we define a mapping λcp in the following recursive way:

λcp(u) def=



λcp(v)⊗ λcp(w) if u = v⊗ w with ⊗ ∈ {+,∗, ·}
1 if u = ∼∼l with l ∈ Lb ∪ Lbnot

0 if u = ∼l with l ∈ Lb ∪ Lbnot

l if u = l with l ∈ Lb
1 if u = l with l ∈ Lbnot

We define a mapping λcp : ṼLb −→ BLb by mapping each CP-value into the equivalence
class of the mapping of any of its representatives in negated normal form. �
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Proposition 8.2. Let P be a logic program, W̃ the CP well-founded model of P(P)
and W the causal well-founded model of P. Then W = λcp(W̃). �

Proof . The proof can be found in Appendix A on page 286. �

Taking together the results of Corollary 8.2 and Proposition 8.2 we can build
a formal correspondence between the causes of a literal and its real why-not
provenance justifications.

Theorem 8.6 (Causal-provenance well-founded correspondence). Let P be a la-
belled program, and A be a literal. Then a conjunction of labels D is a real why-
not provenance justification of A, that is D ≤ WhyP(A), iff there is some causal
graph G sufficient for A with respect to the causal well-founded model of P, that is
G ≤ lfp(Γ2

P)(A), and D is a conjunction containing all the labels in G excepting
those in the image of δ. �

Proof . The proof can be found in Appendix A on page 286. �

Theorem 8.6 states that, under the well-founded semantics, for every cause,
there is a real why-not provenance justification containing all its vertices as
conjuncts, and vice-versa.

Why-not provenance justifications have also been defined for the answer set
semantics in the following way.

Definition 8.17 (Answer set why-not provenance). The answer set why-not prove-
nance for A is: AnsWhyP(A) def= WhyP(A) ∧ ∧

a∈At¬WhyP(undefA). �

In contrast to our approach, answer-set why-not provenance information has
been defined with respect to a unique “canonical model” of the program in-
stead of with respect to each of the stable models. To illustrate how this dif-
ference influences the obtained explanations, consider the following program.

Program 8.4.

r1 : a← c, not b r2 : b← not a c : c

Ignoring the labels, Program 8.4 has two (standard) answer sets {a, c} and {b, c},
and consequently, it also has two causal answer sets. The fact c is the unique
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sufficient cause of the literal c with respect to any of the causal stable models.
Furthermore, c ·r1 is the unique sufficient cause of a with respect to the former
and r2 is the unique sufficient cause of b with respect to the latter. On the
other hand the answer-set why-not provenance of such atoms correspond to
the prime implicants of the following Boolean formulas:

AnsWhyP(a) = ¬not(a) ∨ not(b) ∧ ¬r2 ∧ r1

AnsWhyP(b) = ¬not(b) ∨ not(a) ∧ ¬r1 ∧ r2

AnsWhyP(c) = c ∧ ¬not(a)

∨ c ∧ ¬not(b)

∨ c ∧ ¬r1

∨ c ∧ ¬r2

It is easy to see that there is no real answer-set why-not provenance justification
of neither a nor b nor even c, despite the fact that c is true in all the answer sets.
In general, there is not any real answer set why-not provenance justification,
unless the (standard) well-founded model is two-valued. This fact implies that
the above correspondence stated between our approach and why-not prove-
nance justifications under the well-founded semantics cannot be extended to
the case of the answer set semantics. The correspondence does not hold even
if the program has a unique answer set, but not a two-valued well-founded
model. Consider the following two program obtained by adding a constraint
r3 to the Program 8.4.

Program 8.5.

r1 : a ← c, not b

r3 : d ← b, not d

r2 : b ← not a c : c

Program 8.5 has a unique answer set {a, c} and the unique cause of a in it is
c ·r1. On the other hand

AnsWhyP(a) = ¬not a ∧ ¬r3

∨ ¬not a ∧ ¬not d

∨ ¬not a ∧ not b

∨ not b ∧ ¬r2 ∧ c ∧ r1

Hence, there is no real answer set why-not provenance justification for a. In
fact, each of the four why-not provenance justifications — corresponding to

177



8 related work

the four prime implicants of AnsWhyP(a) — points out a modification of the
program that will lead to a two-valued well-founded model where a holds. This
shows that, contrarily to what has happen under the well-founded semantics,
the approach followed by Damásio et al. [2013] with respect to answer sets is
quite different from our approach, under which every literal has a cause if and
only if it holds with respect to that answer set.

8.2 off-line justifications for asp

Off-line justifications have been introduced by Pontelli et al. [2009] as a tool
for helping users to understand the program’s behaviour and debugging it. In
particular, our approach and off-line justifications share two features. First,
both approaches are useful for understanding why a given literal holds or not
with respect to some answer set. Second, both approaches are graph based.
In fact, an off-line justification is a labelled, directed graph whose vertices are
literals. For instance, Figure 31 depicts the two off-line justifications of the
literal bomb in Program 3.1. Comparing these off-line justifications to the causal
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Figure 31: Off-line justifications of bomb in Program 3.1.

graphs depicted in Figure 3, the first thing to notice is that rule labels have been
replaced by the literals in the head of the corresponding rules. Conversely, rule
labels can be obtained from the off-line justification by looking at the children
of each vertex (under the assumption that the same rule is not repeated with
different labels). Furthermore, head and tail of edges are interchanged. Also off-
line justifications are usually depicted turned upside down with respect to how
causal graphs have been displayed. It is also worth to mention that vertices and
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edges, in Figure 3, are labelled with a (+) symbol. Vertices labelled with a (+)
symbol mean that their corresponding literals hold with respect to the stable
model. On the other hand, vertices labelled with the (−) symbol will mean
that their corresponding literals do not hold with respect to the stable model.
For instance, Figure 32 depicts the off-line justification of f ire with respect to
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yy
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> ⊥

Figure 32: Off-line justifications of bomb in Program 3.1.

Program 8.1. In this off-line justification, literals ab and oxygen are labelled with
the (−) symbol. This points out that they do not hold in the unique answer set
of Program 8.1. Furthermore, the edge from f ire to ab is also labelled with (−)
symbol pointing out that f ire negatively depends on ab. On the other hand,
f ire positively depends on match. That is, the rule corresponding to vertex f ire
is of the form f ire ← match, not ab. Hence, we may check the program, and
replace f ire+ by label f to obtain a graph of rule labels. By contrast, causes
only contain literals that hold with respect to the answer set and do not contain
negative dependences, therefore every vertex and edge in a causal graph can be
considered as (+) labelled in off-line justifications. Off-line justifications have
three additional special vertices, >, ⊥ and assume. The > vertex is used to
justify facts, while the ⊥ vertex is used to justify why literals that have not
rules in the program are false. Vertex assume is used for literals that have been
assumed to be false. For instance, consider the following program obtained by
labelling a program taken from Pontelli et al. [2009].

Program 8.6.

a : a ← f , not b

f : f ← e

b : b ← e, not a

d : d ← c, e

e : e

c : c ← d, f

Program 8.6 has two answer sets: {a, e, f } and {b, e, f }. Figure 33 shows the
off-line justification for the literal b w.r.t. the answer set {b, e, f }. Here, a is
just assumed to be false. In off-line justifications, atoms may be false because
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Figure 33: Off-line justifications of b w.r.t. {b, e, f } in Program 8.6.

they have been assumed to be false, which is the case of a in this example, or
because they are justified to be false as oxygen in Figure 32. In our semantics,
negative literals are always assumed as being in their default state.

Taking into account these differences, a causal graph corresponding to an
off-line justifications can be obtained by the following procedure.

1. Replace each vertex by the corresponding rule label by looking at their
children.

2. Remove every vertex and edge labelled with the (−) symbol.

3. Ignore the (+) label for the remaining vertices and edges.

4. Remove the special vertices >, ⊥ and assume.

5. Remove all vertices and edges that are unreachable from the root.

6. Reverse the direction of the remaining edges.

For instance, Figure 34 depicts the only cause of b with respect to {b, e, f } in
Program 8.6.

e

��

b

Figure 34: Cause of b w.r.t. {b, e, f } in Program 8.6.

Despite these similarities, there are also three main differences. The first,
which we have already seen, is the treatment of negation. In off-line justifi-
cations negation propagates negative dependences, whereas in our semantics,
negation represents a default behaviour. A default behaviour can be achieved
in off-line justifications by removing negative edges as in the above procedure.
For the other way around, we have seen in the previous section how to extend
our semantics with CP-terms, which extend the causal algebra with a nega-
tion operator (∼), allowing the representation of negative dependences. The
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second feature that differentiates off-line justifications from our approach, and
also from the why-not provenance approach, is that off-line justifications are
built externally to the semantics. That is, program interpretations do not carry
any justification information, making difficult to study properties of literals re-
ferring to this information. The last major difference is related to the principle
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Figure 35: Off-line justifications of alarm in Program 3.2.

that “causes do not include unnecessary events for being sufficient.” In this
sense, off-line justifications may provide non-relevant information for explain-
ing a literal. For instance, Figure 35 depicts an off-line justification of the literal
alarm with respect to Program 3.2. It is easy to see, by applying the above
translation, that this off-line justification corresponds to the causal graph G3 in
Figure 5. Recall from the discussion of Example 3.1, that sw4 is not relevant for
alarm, and consequently, G3 is not a cause of it.

8.3 abas justifications

Schulz and Toni [2013, 2014] propose a method for obtaining justifications with
respect to an answer set, relying on the relation between the stable model se-
mantics and the stable extension semantics for Assumption-Based Argumentation
(ABA) [Bondarenko et al., 1997]. Then, literals are justified by means of ABA
arguments and attacks between them. Consider, for instance, the following
example taken from Schulz and Toni [2014].
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Example 8.1 (Dr. Smith). Program 8.7 below represents the decision support system
used by Dr. Smith. It encodes some general world knowledge as well as an ophthalmol-
ogist’s specialist knowledge about the possible treatments of shortsightedness. It also
captures the additional information that Dr. Smith has about his shortsighted patient
Peter. �

Program 8.7.

m : tightOnMoney ← student, not richParents

p : caresAboutPracticality ← likesSports

r : correctiveLens ← shortSighted, not laserSurgery

s : laserSurgery ← shortSighted, not tightOnMoney,

not correctiveLens

g : glasses ← correctiveLens, not caresAboutPracticality,

not contactLens

c : contactLens ← correctiveLens, not a f raidToTouchEyes,

not longSighted, not glasses

i : intraocularLens ← correctiveLens, not glasses, not contactLens

$ : shortSighted

$ : a f raidToTouchEyes

$ : student

$ : likesSports

We have labelled rules and facts with respect to the original example. This
example will be useful for showing, besides the technical differences and sim-
ilarities, the epistemological differences in the interpretation of negation be-
tween our approach and ABAS. For instance, in rule with label g, the literal
not caresAboutPracticality does not represent an abnormality or exception to
the possibility that correctiveLenss causes glasses, like the absence of oxygen
represents an exception to the fact that scratching a match causes f ires in Exam-
ple 1.7, but is rather a counterargument against giving glasses to a patient that
cares about practicality. In this sense, it is important to justify why we have
decided not to give glasses to the patient: that is, negative literals. Justifying
negative literals, instead of treating them as defaults, will be one of the majors
differences between our approach and ABAS justifications.

Technically, ABAS justifications are directed labelled graphs which have two
kinds of edges, support and attack edges, respectively denoted by dotted and
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solid lines. Furthermore, vertices and edges are labelled with either the symbol
(+) or the symbol (−). Vertices labelled with the symbol (+) correspond to
literals that hold in the answer set similarly as in off-line justifications. Vertices
labelled with the symbol (−) correspond to literals that do not hold in the an-
swer set. Edges take the label of their origin vertices. Figure 36 shows the ABA
justification explaining why laserSurgey does not hold in the unique answer set
of Program 8.7. Besides labels (+) and (−), each vertex also contains a label of
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−
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Figure 36: Negative ABA Justification of laserSurgey with respect to Program 8.7.

the form Ai, asm or f act. A label f act means that such vertex is a fact. Similarly,
a label asm indicates that it is an assumption. A label of the form Ai indicates
that such vertex is justified by argument Ai. We will discuss arguments below.

The first difference to notice with respect to our approach is that Figure 8.7
represents a justification explaining why the stable model does not satisfies
the atom laserSurgey. On the other hand, Figure 37 depicts the ABA justifi-
cation explaining why the stable model satisfy intraocularLens. This justifica-
tion includes the negative literals not laserSurgey, not glasses, not contactLens. . .
Justifications for literals that do not hold in a stable model and explanations
containing negative literals can be incorporated in our semantics by means of
a negation (∼) operator as we have seen in Section 8.1.

The justification depicted in Figure 37 is also useful to illustrate another im-
portant difference between ABAS and our approach. ABAS justifications only
contain the facts and the negated literals necessary to derive the literal in ques-
tion, but not the intermediate rules. For instance, if we remove all negative
dependences from justification in Figure 37, in a similar manner as we did with
off-line justifications, we obtain the graph depicted in Figure 38. The unique
cause of intraocularLens with respect to Program 8.7 is depicted in Figure 39.
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Figure 37: ABA Justification of intraocularLens with respect to Program 8.7.
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Figure 38: Positive dependences of intraocularLens with respect to Program 8.7.
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Figure 39: Sufficient cause intraocularLens with respect to Program 8.7.
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As pointed out by Schulz and Toni [2014], these rules can be extracted from
the argument of intraocularLens. An ABA Argument is a finite tree where every
node satisfies a literal such that

• the leaves contain assumptions or facts,

• if a non-leaf contains A, then there is a rule A ← B1, . . . , Bm and it has m
children, containing B1, . . . , Bm, respectively.

For instance, Figure 40 shows the ABA argument A3 which has the atom
intraocularLens as its conclusion. Leaves with the asm label, not laserSurgey,

intraocularLens

not laserSurgeyasm

33

correcctiveLens

;;

not glassesasm

aa

not contactLensasm

kk

shortSighted f act

OO

Figure 40: ABA Argument for intraocularLens with respect to Program 8.7.

not glasses and not contanctLens are assumptions, while shortSighted is a fact.
If we now remove all the negative dependences, it is easy to see that we obtain a
graph that corresponds to the cause depicted in Figure 39 when rule labels are
replaced by their heads. In this sense, our concept of cause is technically closer
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ff
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Figure 41: ABA argument A of alarm in Program 3.2.

to the concept of ABA argument than to the concept of ABA justification. In a
similar manner as has happens with off-line justifications, ABA arguments are
not required to be minimal or non-redundant. For instance, Figure 41 depicts
an ABA argument of alarm in Program 3.2. It is easy to see that, by reversing

185



8 related work

the edges, labelling vertices and edges with the symbol (+) and connecting the
facts sw3, sw4 and sw2 to the > vertex, we obtain the off-line justification de-
picted depicted in Figure 35. Recall that the latter corresponds to the redundant
causal graph G3 in Figure 5. Similarly, ABA justifications are not required to be
minimal either. Figure 42 depicts the corresponding ABA justification, which
also includes switch 4.
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+
99
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OO

sw+
2 f act
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ee

Figure 42: ABA justification of alarm in Program 3.2.

8.4 actual causation

In this section, we will analyse some traditional examples of the actual causa-
tion literature, and relate the results obtained by our approach to the results
obtained by some of the established approaches in the field. We have briefly
discussed the literature of actual causation in the introduction, so we directly
introduce the language of structural equations as a first step to provide the
formal the definition of actual causation given by Halpern and Pearl [2001].

A signature σ is a tuple 〈U ,V ,R〉, where U is a finite set of exogenous vari-
ables, V is a finite set of endogenous variables, and R associates with every
variable Y ∈ U ∪ V a non-empty set R(Y) of possible values for Y (that is, the
set of values over which Y ranges). A structural model over signature σ is a
tuple M = 〈σ,F〉, where F associates to each endogenous variable X ∈ V a
function denoted FX such that:

FX :
(¡

U∈U
R(U)

)
×
( ¡

Y∈V\{X}
R(Y)

)
−→ R(X)

A function FX tells us the value of X given the values of all the other variables
in U ∪ V . From now on, we will assume that models do not have exogenous
variables, that is U = ∅, and that they are binary, that is R(X) = {0,1} for all
X ∈ V .
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For instance, Example 1.5 can be captured by a model with the following set
of endogenous binary variables:

V = {shattered, hit(billy), hit(suzy), throw(suzy), throw(billy)}

and a function FX for each X ∈ V that captures the assignments shown in the
equation to the Structural Model 1.1. It is easy to see that the unique solution
to these equations must satisfy shattered = 1.

Given a signature σ = 〈U ,V ,R〉, a formula of the form (X = x) for X ∈ V and
x ∈ R(X), is called a primitive event. A basic causal formula (over a signature σ)
has the form [Y1← y1, . . . ,Yk← yk]ϕ where ϕ is a Boolean combination of prim-
itive events, Y1, . . . ,Yk are distinct variables in V , and yi ∈ R(Yi). Furthermore,
given a set of variables ~Y = {Y1, . . . ,Yk} ⊆ U ∪ V we write ~y ∈ R(~Y) for an as-
signment of variables [Y1 ← y1, . . . ,Yk ← yk] such that yi ∈ R(Yi) for 1 ≤ i ≤ k.
Such a formula is abbreviated as [~Y← ~y]. The special case where k = 0 is ab-
breviated as ϕ. As we have assumed that R(X) = {0,1}, we will write just X
instead of (X = 1) and X instead of (X = 0). Similarly, we write [y′1, . . . ,y′k]ϕ
instead of [Y1← y1, . . . ,Yk← yk]ϕ where y′i = Yi if y1 = 1 and yi = Yi otherwise.
Intuitively, [y′1, . . . ,y′k]ϕ says that ϕ holds in the counterfactual world that would
arise if Yi is set to the value indicated by y′i for all 1≤ i≤ k. A causal formula is
a Boolean combination of basic causal formulas. Furthermore, structural mod-
els are restricted to be recursive (or acyclic) equations; these are ones that can
be described with a directed acyclic graph.

Given some context ~u or setting for the variables in U, we write 〈M,~u〉 |= ϕ
iff ϕ is true in a causal model M given context ~u. 〈M,~u〉 |= [~y]x if and only
if 〈M~y,~u〉 |= x where M~y = 〈σ′,F~y〉, and σ′ is the result of removing from σ
the all variables Y in the assignment ~y for all Y in ~Y. Similarly, F~y is the
result of removing the function FYi and replacing Yi by yi in the remaining
equations with~y = [Y1← y1, . . . ,Yk← yk]. 〈M,~u〉 |= [~y]ϕ for an arbitrary Boolean
combination of primitive events ϕ is defined similarly. Since we have assumed
U to be empty, the context ~u is irrelevant, so we will just write M |= [~y]~x instead
of 〈M,~u〉 |= [~y]~x.

We may now make use of this notation for presenting the definition of actual
cause given by Halpern and Pearl [2001].

Definition 8.18 (HP01). An assignment ~x for a set of variables ~X is an actual cause
of formula ϕ iff the following three conditions hold:

1. M |= ~x ∧ ϕ. That is, both ~X and ϕ are true in the actual world.
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2. There exists a partition 〈~Z, ~W〉 of V with ~X ⊆ ~Z and some setting 〈~x′,~w′〉 of the
variables in 〈~X, ~W〉, then

a) M |= [~x′,~w′]¬ϕ. In words, changing 〈~X, ~W〉 for the values corresponding
to 〈~x,~w〉 changes ϕ from true to false,

b) M |= [~x,~w′,~z∗]ϕ for all subsets ~Z′ ⊆ ~Z where ~z∗ is the assignment given
by M to variables in Z′, that is M |= z∗. In words, setting ~W to ~w should
have no effect on ϕ as long as ~X is kept at its current value ~x, even if all the
variables in an arbitrary subset of ~Z′ are set to their original values.

3. ~X is minimal, no subset of ~X satisfies the other conditions. �

Eiter and Lukasiewicz [2002] have shown that the following is an equivalent
definition of actual cause when the structural model is binary:

Theorem 8.7 (From Eiter and Lukasiewicz [2002]). Let σ = 〈U ,V ,R〉 and M =
〈σ,F〉 respectively be an binary signature and a model over such signature. Let ~X ⊆ V
and ~x ∈R(~X), and let ϕ be an event. Then, ~x is a an actual cause of ϕ under a context
~u iff following conditions:

1. condition 1 in HP01,

2. Some set of endogenous variables ~W ∈ V\~X and some setting 〈~x′,~w′〉 of variables
〈~X, ~W〉 exist such that:

a) M |= [~x′,~w′]¬ϕ,

b) M |= [~x,~w′]ϕ,

c) M |= [~x,~w′]~z∗ where ~z∗ is the assignment given by M to the variables in
Z = V\(~X ∪ ~W), that is M |=~z∗,

3. ~X is minimal, no subset of ~X satisfies the other conditions. �

The definition provided by Theorem 8.7 is easier to apply than HP01 because
we do not need to check condition 2b for all subsets ~Z′ ⊆ ~Z. We may then apply
this definition for showing that, as we have claimed in the introduction, the
event throw(suzy) is an actual cause of shattered with respect to Example 1.5. It
is clear that throw(suzy) and shattered hold with respect to the structural model
represented by the Structural Model 1.1, that is condition 1 of HP01 holds. This
conditions consist in checking that:

M |= throw(suzy) ∧ shattered
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For checking the second condition, take the witness 〈~W,~x′, ~w′〉 given by:

~W = { throw(billy), hit(billy) }
~x′ = { throw(suzy) }
~w′ = { throw(billy), hit(billy)) }

The Structural Model 8.8 below shows the equations of the structural model
M~y with ~y = ~x′ ∪ ~w′.

Structural Model 8.8.

shattered = hit(suzy) ∨ 0

hit(billy) = 0 ∧ ¬hit(suzy)

hit(suzy) = throw(suzy)

throw(suzy) = 0

throw(billy) = 1

It is easy to see that shattered does not hold in the Structural Model 8.8. Hence
condition 2a of Theorem 8.7, consisting on M |= [~x′,~w′]¬shattered, holds. Sim-
ilarly, the Structural Model 8.9 below shows the model M~y where ~y = ~x ∪ ~w′.

Structural Model 8.9.

shattered = hit(suzy) ∨ 0

hit(billy) = 0 ∧ ¬hit(suzy)

hit(suzy) = throw(suzy)

throw(suzy) = 1

throw(billy) = 1

It is also clear now that M |= [~x,~w′]shattered and M |= [~x,~w′]hit(suzy). Note
that Z = {hit(suzy), shattered}, and then conditions 2b and 2c of Theorem 8.7
also hold. Furthermore, since ~X is a primitive event, no subset of it satisfies
these conditions, therefore we may conclude that throw(suzy) is an actual cause
of shattered with respect to HP01. It can also be shown that such witness
cannot be found for throw(billy). Note that any witness holding condition 2a
must assign hit(suzy) = 0 and therefore any witness holding condition 2b must
satisfy {hit(billy)} ⊆ Z and hit(billy) = 1 which is not the value in the actual
model.

We may represent this example by the following labelled program:

189



8 related work

Program 8.10.

$ : shattered(T + 1) ← throw(X, T), not shattered(T)

shattered(T + 1) ← shattered(T)

$ : throw(suzy,2)

$ : throw(billy,4)

In the least model I of Program 8.10, I( shattered) = Gsuzy where Gsuzy is the
causal graph depicted in Figure 8.10. It is easy to see that throw(suzy) is a

throw(suzy,2)

��

shattered

Gsuzy

throw(john,0)

��

shattered

Gjohn

Figure 43: Sufficient cause Gsuzy of shattered with respect to Program 8.10 and Gjohn
obtained after adding the labelled fact $ : throw(john,0).

vertex of the unique sufficient cause of shattered, and so an actual cause of it,
whereas throw(billy) is not. Is is also easy to see that by adding the labelled
fact:

$ : throw(john,0)

to Program 8.10 we will obtain I(shattered) = Gjohn instead, which points out
that, in such case, throw(john) is the actual cause of shattered and not throw(suzy).

A second example that we have presented in the introduction was the desert
traveller scenario of Example 1.8 that has put in trouble Mackie’s approach.
Program 8.11 bellow labels the rules of Program 1.2 presented there.

Program 8.11.

$ : death ← shoot, poison

$ : death ← shoot

$ : shoot

$ : poison

190



8.4 Actual Causation

Recall that, in Mackie’s approach, death was explained by the Boolean formula
shoot ∨ poison that does not allow distinguishing which of the actions is the
actual cause of the death. We have claimed in the introduction that death will
be explained by the term shoot·death pointing out that was shoot and not poison
the responsible of the traveller’s death. Now it is easy to see that the least model
I of Program 8.11 verifies I(shoot) = 0 because there exists no rule with shoot
in the head, and therefore I(death) = shoot ·death. On the other hand, the direct
translation of Program 1.2 into the language of structural models would be:

Structural Model 8.12.

death = shoot ∨ ¬shoot ∧ poison

shoot = 1

poison = 1

It is easy to see that according to Halpern and Pearl definition of actual cause
(HP01) both, shoot and poison, are actual causes. We just show that 〈~W, x′,w′〉
given by:

~W = { shoot }
~x′ = { poison }
~w′ = { shoot }

is a witness of poison being an actual cause of death. It is clear that this model
holds M |= poison ∧ death. To show condition 1a (M |= [~x′,~w′]¬death) we build
the corresponding model M~y with ~y = ~x′ ∪ ~w′ in the following way:

Structural Model 8.13.

death = 0 ∨ ¬0∧ 0 = 0

shoot = 1

poison = 1

It is easy to see that death do not hold in this program. Similarly, we show
condition 2a (M |= [~x,~w′]death) by building the following model in which dead
holds.

Structural Model 8.14.

death = 0 ∨ ¬0∧ 1 = 1

shoot = 1

poison = 1
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Hence, as in Mackie’s approach, poison is wrongly pointed out to be an actual
cause of death. It is easy to see that, by applying the same procedure, shoot is
correctly recognised to be an actual cause of death.

Pearl [2000] circumnavigate this issue by introducing two new intermediate
variables, dehydration and intake, in the following way:

Structural Model 8.15.

death = dehydration ∨ intake

dehydration = shoot

intake = ¬shoot ∧ poison

shoot = 1

poison = 1

In this case poison is correctly not considered to be an actual cause of death.
Note that in order to fulfil condition 2a shoot or dehydration must be fixed to
false, and both cases have the consequence of dehydration being false. If only
dehydrating is fixed to false, then shoot will still be true, and therefore intake
would not hold. Hence death does not hold either. If, on the contrary, shoot
if fixed to false, then intake holds, but in the actual model it has the value
0, so that, condition 2c does not hold. This example reflect the importance
of choosing the “right model,” a fact that has pointed out by Halpern and
Hitchcock [2011]:

“Once the modeler has selected a set of variables to include in the model, the world
determines which equations among those variables correctly represent the effects
of interventions. By contrast, the choice of variables is subjective; in general,
there need be no objectively ‘right’ set of exogenous and endogenous variables to
use in modeling a problem.”

By contrast, we may include variables dehydration and intake in Program 8.11

as follows:

Program 8.16.

$ : death ← dehydration

$ : death ← intake

$ : dehydration ← shoot

$ : intake ← shoot, poison

$ : shoot

$ : poison
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and we still conclude that shoot is the actual cause of death, whereas poison is
not. That is, logic programs are not sensitive to the intermediate variables that
are included or not. This behaviour coincides with the idea of locality. Hall
[2004, 2007] says that a causal relation is local if causes are connected to their
effects via spatiotemporally continuous sequences of causal intermediates. In
this sense dehydration is a causal intermediate between shoot and death. Simi-
larly, intake is a causal intermediate between poison and death. As this example
shows, our approach does not depend on the inclusion or not of these interme-
diate variables. In contrast, the definition given by Halpern and Pearl [2001]
does.

It is also interesting to analyse the following example introduced by Hopkins
and Pearl [2003] which is also related to this same issue:

Example 8.2 (Three men Firing Squad). For a firing squad consisting of shooters
Suzy and Billy, it is John’s job to load Suzy’s gun. Billy loads and fires his own gun.
On a given day, John loads Suzy’s gun. When the time comes, Suzy and Billy shoot the
prisoner. �

Hopkins and Pearl [2003] represent this example as follows:

Structural Model 8.17.

death = shoot(suzy) ∧ load(john) ∨ shoot load(billy)

shoot(suzy) = 1

load(john) = 1

shoot load(billy) = 1

and we will obtain that shoot(suzy), load(john) and shoot load(billy) are the
actual causes of dead. Similarly, we may represent this scenario by the following
labelled program:

Program 8.18.

$ : death ← shoot(suzy), load(john)

$ : death ← shoot load(billy)

$ : shoot(suzy)

$ : load(john)

$ : shoot load(billy)
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and obtain the same results. Note that, in this example there are two sufficient
causes of death depicted in Figure 44.

shoot(suzy)

((

load(john)

ww

shoot load(billy)

��

death death

G1 G2

Figure 44: Graphs G1 and G2 associated to dead in Program 8.18.

We may define a contributory cause by incorporating the concept of INUS
condition given by Mackie [1965].

Definition 8.19 (Contributory Cause). Given a labelled program P and a sufficient
cause G of some literal A, the head B of any rule R whose label lR is in G is a contrib-
utory cause of A.

It is easy to see that shoot(suzy), load(john) and shoot load(billy) are the con-
tributory causes of death. That is, the contributory causes and the actual causes
of death coincide in this example. The interesting feature of this example comes
with the following variation introduced also by Hopkins and Pearl [2003]:

Example 8.3 (Ex. 8.2 continued). Consider now that John still loads Suzy’s gun, but
Suzy decides not to shoot. Billy still loads and shoots his gun, and the prisoner still
dies. �

This story can be modelled in the same way as above in Program 8.17 by
changing the equation shoot(suzy) = 1 by shoot(suzy) = 0. As Hopkins and
Pearl [2003] pointed out, load(john) is surprisingly an actual cause of death
according to HP01. Just consider a witness 〈~W, x′,w′〉 given by:

~W = { shoot(suzy), shoot(billy) }
~x′ = { load(john) }
~w′ = { shoot(suzy), shoot(billy) }
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By contrast, the least model I of the program obtained by removing the fact
shoot(suzy) from Program 8.18 satisfies that:

I(death) = shoot load(billy) · death

That is, our semantics recognises, as expected, that Billy is an actual cause of
the prisoner’s death while neither Suzy nor John are. In order to deal with this
example Halpern and Pearl [2005] propose the following revision of HP01.

Definition 8.20 (HP05). An assignment ~x for a set of variables ~X is an actual causal
formula ϕ iff the following three conditions hold:

1. M |= ~x ∧ ϕ. That is, both ~X and ϕ are true in the actual world.

2. There exists a partition 〈~Z, ~W〉 of V with ~X ⊆ ~Z and some setting 〈~x′,~w′〉 of the
variables in 〈~X, ~W〉, then

a) M |= [~x′,~w′′]¬ϕ. In words, changing 〈~X, ~W〉 for the values corresponding
to 〈~x,~w〉 changes ϕ from true to false,

b) M |= [~x,~w′′,~z∗]ϕ for all subsets ~W ′ ⊆ ~W and ~Z′ ⊆ ~Z where ~w′′ is a assign-
ment to variables in ~W ′ that agrees with ~w′ in all those variables and ~z∗

is the assignment give by M to variables in Z′, that is M |= z∗. In words,
setting ~W to ~w should have no effect on ϕ as long as ~X is kept at its current
value ~x, even if all the variables in an arbitrary subset of ~Z′ are set to their
original values.

3. ~X is minimal, no subset of ~X satisfies the other conditions. �

Definitions 8.18 and 8.20 are equal but for condition 2b, which additionally
impose that ϕ must hold even if all subsets of ~W are not fixed to their values
in ~w′. According to HP05, we obtain the expected result that event load(john)
is not an actual cause of death: now (8.4) is not a witness of load(john) being
an actual cause of death because, in addition to the above criteria, death would
have to hold when shoot(suzy) is fixed to its original value 0, which is not the
case.

Alternatively, we may solve this issue by adding an intermediate variable
as Pearl [2000] did by introducing the dehydration and intake variables in the
desert traveller scenario of Example 1.8. Hence, we will have the following
model:
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Structural Model 8.19.

death = bullet ∨ shoot load(billy)

bullet = shoot(suzy) ∧ load(john)

shoot(suzy) = 1

load(john) = 1

shoot load(billy) = 1

In Program 8.19, the above witness for load(john) being an actual cause of death
is not valid any more because bullet has to take the value 1 to fulfil condition 2b
of Theorem 8.7 but its actual value is 0. That is, this kind of examples may be
correctly captured by HP01 by ensuring that the right hand side of each equa-
tion contains either only disjunctions or only conjunctions. On the other hand,
Example 1.8 cannot be solved with this new definition without the intermedi-
ate variables. In the model shown by Structural Model 8.12, once the value of
poison is fixed to 1, the value of shoot does not matter. Consequently, given
that we may solve the above issue by providing an appropriate model in which
conjunctions and disjunctions are not mixed in the same equation, and that
HP05 does not solve the issue in all cases, it seems reasonable to remain with
HP01. To the best of our knowledge, no further evidence in favour of HP05

over binary models has been provided. Therefore, in the following we continue
the comparative with respect to HP01 and avoid HP05.

Till this point, we have considered scenarios in which default knowledge is
absent, so that we may represent them by means of positive programs. For in-
troducing default knowledge, consider now the following example due to Hid-
dleston [2005] which has also been discussed by Halpern [2008].

Example 8.4 (Poison). Assassin is in possession of a lethal poison, but has a last-
minute change of heart and refrains from putting it in Victim’s coffee. Bodyguard puts
antidote in the coffee, which would have neutralized the poison had there been any.
Victim drinks the coffee and survives. �

As Halpern [2008] points out, the interesting feature of this example consists
in determining whether:

“Is Bodyguard’s putting in the antidote a cause of Victim surviving? Most people
would say no, but according to the preliminary HP definition, it is. For in the
contingency where Assassin puts in the poison, Victim survives iff Bodyguard
puts in the antidote.”
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This example is represented in Halpern [2008] by the following set of struc-
tural equations:

Structural Model 8.20.

survive = antidote ∨ ¬poison

antidote = 1

poison = 0

As commented above, it is easy to see that, by fixing a contingency where
poison = 1, survive becomes counterfactually dependent on antidote, so that
antidote is an actual cause of survive.

In order to deal with default knowledge, Halpern [2008] introduces extended
causal models to be a tuple M = 〈σ,F ,κ〉, where 〈σ,F〉 is a causal model, and κ
is a ranking function that associates a rank to each world. A world is a complete
description of the values of all the random variables. Each world has an associ-
ated rank, which is just a natural number or ∞. Intuitively, the higher the rank,
the less likely the world. A world with rank 0 is reasonably likely, one with a
rank of ∞ is somewhat unlikely, one with a rank of 2 is quite unlikely, and so
on.

Definition 8.21 (HP01 defaults). An assignment ~x for a set of variables ~X is an
actual causal formula ϕ iff the following three conditions hold:

1. condition 1 in HP01,

2. There exists a partition 〈~Z, ~W〉 of V with ~X ⊆ ~Z and some setting 〈~x′,~w′〉 of the
variables in 〈~X, ~W〉, then

a) M |= [~x′,~w′]¬ϕ and κ(s)≤ κ(s∗) where s is the world obtained by applying
the assignment 〈~x′,~w′〉 and s∗ is the actual world. In words, changing
〈~X, ~W〉 for the values corresponding to 〈~x,~w〉 changes ϕ from true to false
in a more normal world,

b) condition 2b in HP01,

3. ~X is minimal, no subset of ~X satisfies the other conditions. �

Hence, to deal with Example 8.4 we have to define a ranking over the possible
worlds for the variables {survive, antidote, poison}. We may define the raking of
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worlds in this example to be a function κ mapping each world in the following
way:

{survive = 0, antidote = 0, poison = 0} 7→ 0

{survive = 1, antidote = 0, poison = 0} 7→ 0

{survive = 0, antidote = 1, poison = 0} 7→ 1

{survive = 1, antidote = 1, poison = 0} 7→ 1

{survive = 0, antidote = 0, poison = 1} 7→ 1

{survive = 1, antidote = 0, poison = 1} 7→ 1

{survive = 0, antidote = 1, poison = 1} 7→ 2

{survive = 1, antidote = 1, poison = 1} 7→ 2

The mapping κ points out that antidote and poison do not happen by default.
World s required to fulfil M |= [~x′,~w′]¬ϕ has a raking 2, whereas the actual
world s∗ has ranking 1 and, consequently, the new condition 2a does not hold.

The following labelled program captures the intended meaning given by
HP01 to this example1:

Program 8.21.

$ : survive ← antidote

$ : survive ← not poison

$ : antidote

In the (total) well-founded causal model and unique causal stable model I of
this program I(survive) = survive, that is, it just holds by default, and there is
not any actual cause for it. If we add the labelled fact ($ : poison), then

I(survive) = antidote · survive

that is, antidote becomes a contributory cause of survive. Note that, default nega-
tion is used here for capturing the idea that not poison is the normal situation
or, alternatively, that it holds by default.

Another interesting example has been provided by Hall and Paul [2003]:

1 It may seem counter-intuitive that antidote causes survive, but note the difference between survive
and alive. When we are talking about surviving, we are assuming a death threat, and so, the ex-
pected (default) outcome becomes death instead of alive, which would be the default in the absence
of the threat. A more elaborated representation of this example should include the existence of that
threat, in its turn, caused by poison.
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Example 8.5 (Water Plant). Suppose Suzy goes away on vacation, leaving her favourite
plant in the hands of Billy, who has promised to water it. Billy fails to do so. The plant
dies but would not have, had Billy watered it. . . Billy’s failure to water the plant caused
its death. But Vladimir Putin also failed to water Suzy’s plant. And, had he done so, it
would not have died. Why do we also not count his omission as a cause of the plant’s
death?

Halpern and Pearl [2005] argue that:

“Billy is clearly a cause in the obvious structural model. So is Vladimir Putin,
if we do not disallow any settings and include Putin watering the plant as one
of the endogenous variables. However, if we simply disallow the setting where
Vladimir Putin waters the plant. [T]hen Billy’s failure to water the plants is
a cause, and Putin’s failure is not. We could equally well get this result by not
taking Putin’s watering the plant as one of the endogenous variables in the model.
(Indeed, we suspect that most people modeling the problem would not include this
as a random variable.)”

On the contrary, any elaboration tolerant representation should be unaffected
by the inclusion of unrelated events like Putin not watering the plant. In this
sense, we may represent this scenario as the following labelled program:

Program 8.22.

death ← not death, not promise

death ← not death, not promise

water ← water(X)

promise ← promise(X)

promise ← not promise

$ : death ← water(X)

$ : death ← water(X), not promise(X), not water

water(X) ← not water(X)

promise(X) ← not promise(X)

$ : promise(billy)

$ : water(billy)
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The first two rules of this program state the default behaviour of the plant. On
the one hand, the plant will die by default unless somebody has promised to
water it. On the other hand, if somebody has promised to water it, we will
expect the plant to continue alive. Literal promise means that somebody has
promised to water the plant. Similarly, literal water means that somebody has
watered the plant. The two next rules state that, the plant will survive anyway
if it is watered, and that it will die if who promise water it does not fulfil her
promise. The following two rules state that, by default, people do not water the
plant nor promise to do it. Last, Billy promised to water the plant and failed to
do it. The only causal stable model I of this program satisfies that:

I(death) = water(billy) · death (106)

regardless of whether Putin is considered in the program or not, as long as
Putin did not promise to water the plant. Hence, we may add the following
labelled fact:

$ : water(putin)

to Program 8.22 and we will still conclude (106) as the sufficient cause of death.
In this sense Billy alone, and not Putin, is a contributory cause of death. Of
course, if we add now the labelled fact

$ : promise(putin)

indicating that Putin has promised to water Suzy’s plant, then Putin will be-
come a contributory cause in the same sense as Billy.

Another interesting example is the gear scenario of Example 5.4 that we have
discussed in Chapter 5. This example is an usual benchmark in the AI literature
for testing the behaviour of causal cycles. We have seen that when the first mo-
tor is started at situation 1 and the gears are coupled at situation 3, we obtain
that the second wheel is turning because of causal graph G1 in Figure 25. This
causal graph contains the labels start(1)1 and couple3 corresponding to the ho-
mograph facts, so that both are contributory causes of spinning(2)4 according
to Definition 8.19. On the other hand, structural models are usually assumed to
be acyclic, fact that will complicate the representation of this example. Halpern
and Pearl [2005] provide, in Appendix A.4, an attempt to define actual causes
for structural model containing cycles. We will follow here their attempt and
represent this scenario by the following model.
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Structural Model 8.23.

spinning(a)s+1 = trans(a)s+1 ∨ start(a)s ∨ inert(a)s+1 for t = 0,1,2,3

spinning(b)s+1 = trans(b)s+1 ∨ start(b)s ∨ inert(b)s+1 for t = 0,1,2,3

inert(a)s+1 = spinning(a)s ∧ ¬spinning(a)s+1 for t = 0,1,2,3

inert(b)s+1 = spinning(b)s ∧ ¬spinning(b)s+1 for t = 0,1,2,3

trans(a)s+1 = spinning(b)s ∧ coupleds for t = 0,1,2,3

trans(b)s+1 = spinning(a)s ∧ coupleds for t = 0,1,2,3

spinning(a)0 = 0

spinning(b)0 = 0

inert(a)0 = 0

inert(b)0 = 0

trans(a)0 = 0

trans(b)0 = 0

start(a)1 = 1

start(a)s = 0 for t = 0,2,3,4

couple3 = 1

couples = 0 for t = 0,1,2,4

However, there exists a solution of these equations in which spinning(a)3 = 0,
and hence spinning(a)4 = 0 and spinning(b)4 = 0 too. Since the condition 2b
of the new definition requires that spinning(b)4 holds in all solutions, it is
clear that start(a)2 is not recognised to be an actual cause of spinning(b)4. As
a conclusion, we can see that this definition is not adequate for representing
examples that are inherently cyclic.

In all the previous examples our definition of contributory cause coincides
with Halpern and Pearl’s concept of actual cause. Hall [2004, 2007] pointed out
the existence of at least two different concepts that are usually covered by the
wider concept of causation. He calls these more fine concepts production and
dependence. The concept of production relies on the following idea: causality is
transitive, local and intrinsic. In our approach, intrinsicness is reflected in the
following idea: a sufficient cause suffices to produce the effect under circum-
stances that are not more abnormal than the current circumstances. Furthermore,
by definition we have assumed that causality is transitively propagated by rules,
so that our definition is transitive a priory. However, this does means that it is
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transitive a posteriori due to the minimality criterion. For instance, in the circuit
of Example 3.2, switch 4 is a contributory cause of the current at point b, and
this, in its turn, is a contributory cause of the alarm firing, but, as we have al-
ready discussed, switch 4 is not part of any sufficient cause of the firing alarm,
and so it is not a contributory cause of such firing either. Finally, locality refers
to the fact that causes and effects must be connected via spatiotemporally con-
tinuous sequences of causal intermediates. We have already commented how
the principle of locality is manifested in our approach when we discussed the
role played by variables dehydration and intake in the desert-travel scenario of
Example 1.8.

As opposed to production, dependence relies on the idea that counterfactual
dependence between wholly distinct events is sufficient for causation. In these
sense, it is easy to see that our concept of contributory cause follows the concept
of production rather than the dependence one. On the other hand, Halpern and
Pearl’s concept of actual causation follows the concept of dependence rather than
production. Hall [2007] illustrates the difference between these two concepts by
the following two examples relying on the so-called neuron diagrams.

A E

C B

F

Figure 45: A and C are joint productive causes of E.

Each circle on those neuron diagrams represents a neuron. A grey filled circle
means that such neuron is active. Arrows are stimulatory paths, that is, if the
origin neuron is active, so it will be its destination. An arrow with a circled
head is an inhibitory path. Inhibitory paths take preference over stimulatory
ones, that is, if one inhibitory path is active, the neuron will remain inactive,
regardless of the incoming stimulatory paths. A thicker circle around a neuron
represents an stubborn neuron which requires at least two active stimulatory
paths to be active. In the neuron diagram represented by Figure 45, neurons
A and C are joint productive causes of E. On the other hand, in Figure 46,
A is the only productive cause of E, while E still depends on C. Note the
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A E

C B

FG

Figure 46: E depends on C which is not productive causes of it.

difference in the relation between C and E in these two cases. In Figure 45,
C is required to activate the stubborn neuron E, while in Figure 46, C just
allows A to produce E by preventing that G prevents E. To further illustrate
the intuition of Figure 46, consider the following history matching its structure.
Neuron A represents a family which is sleepy, and which in the end causes
them to go to sleep (neuron E). Neuron C represents the watching police that
captures a gang of thieves that would disturb the family sleeping, allowing,
but not producing, them to continue sleeping. As we have commented, since E
depends on C, Halpern and Pearl’s approach will count C to be an actual cause
of E, while, since C is not a producer of E, we will not count it as a contributory
cause. Both approaches will recognise A as a cause of E. Figure 47 shows the

A E

C B

FG

Figure 47: E depends on C which is not productive causes of it.

case in which the police is watching but there are no thieves. In such a case,
E does not depend on C. This shows that the dependence relation between
E and C is not intrinsic, that is, it depends on the existence of some kind of
external threat G. Despite the fact that E does not depend on C, both HP01 and
HP05 definitions will still count C as an actual cause of E. To overcome this
issue, Hall [2007] has made use of default knowledge, requiring that dependence
is only considered in a “less abnormal” world. Considering that neurons are
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non-firing by default, a contingency in which G fires is “more abnormal” than
the current state. Consequently, the dependence in this world does not allow
counting C as an actual cause of E.

A dependence relation may be captured in our formalism using the CP-
values algebra from Section 8.1. Using that semantics on the structure of Fig-
ure 46 we get the value A ∗∼∼C pointing out that A is a productive cause
of E which counterfactually depends on C. For Figure 47, E will be assigned
the value A, that is, A is a productive cause of E without further dependences.
Another point where the CP-values algebra may be useful is in the following
example due to Hall [2000]:

Example 8.6 (The Engineer). An engineer is standing by a switch in the railroad
tracks. A train approaches in the distance. She flips the switch, so that the train travels
down the right-hand track, instead of the left. Since the tracks reconverge up ahead,
the train arrives at its destination all the same; let us further suppose that the time
and manner of its arrival are exactly as they would have been, had she not flipped the
switch. �

Hall [2007] characterises this kind of examples with the neuron diagram de-
picted in Figure 48. Neuron S acts as a “switch:” B would fire interdependently

A B

S

L

R

E

Figure 48: The train is deliver to the right-hand track.

of whether S fires or not, but if S fires it will activate the lower stimulatory path
to R, and if not, it will activate the upper one to L. Neuron A represents the
train approaching, L and R respectively represent the train going through the
left and right tracks. Neuron E represents the arrival of the train to its destina-
tion. Figure 48 shows the neuron diagram corresponding to the scenario were
the engineer does not switch the railroad tracks. This has been a controversial
example. For instance, Hall [2000] has argued that the switch should be con-
sidered a cause of the arrival, while in [Hall, 2007] he argues otherwise. If the
switch is intended to be considered a cause, we may just represent this scenario
by the following logic program.
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A B

S

L

R

E

Figure 49: The train is deliver to the left-hand track.

Program 8.24.

$ : arrive ← le f t

$ : arrive ← right

$ : le f t ← train, switch

$ : right ← train, switch

$ : train

$ : switch

The least model of this program satisfies that:

I(arrive) = (train ∗ switch) · right · arrive

Hence switch is considered to be contributory cause of arrive. However, com-
mon sense seems to point out that moving the switch is only a cause for the
chosen route but not for the arrival itself. This can be captured by the CP-
algebra, by adding the following two rules to Program 8.24:

switch ← not switch

switch ← not switch

stating that the switch behaves “classically,” that is, the law of the excluded in
the middle holds. The well-founded model of this program satisfies that:

I(arrive) = (train ∗ switch) · le f t · arrive

+ (train ∗∼switch) · right · arrive

Note that switch is a contributory cause with respect to the first addend and,
at the same time, it is preventing the same effect in the second addend. A
definition of actual cause can be based in a refinement of Definition 8.19 which
takes into account that a contributory cause cannot be an actual cause if it is
simultaneously preventing the same effect that is helping to produce. A deeper
study of causal dependence and switching is left for future work.
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9 IMPLEMENTAT ION

In this chapter, we present a prototype that implements some of the concepts
presented in this dissertation. To illustrate the input syntax of the prototype
consider, for instance, the suitcase-bomb scenario of Example 1.3.

1 time (1..4).
2 agent (suzy ).
3 agent ( billy ).
4

5 b :: bomb(T) :− open(T), not bomb(T−1).
6 u :: open(T) :− up(T ,1) , up(T ,2) , not open(T−1).
7 l(L) :: up(T+1,L) :− lift(T,A,L), not up(T,L).
8 p :: prison (T+1,A) :− # hascaused (A, bomb(T)), agent (A).
9

10 up(T+1,L) :− up(T,L), not down(T+1,L), time(T).
11 open(T+1) :− open(T), not close (T+1) , time(T).
12 bomb(T+1) :− bomb(T), time(T).
13

14 :: lift (1,suzy ,1).
15 :: lift (3,suzy ,2).
16

17 :: lift (3,billy ,1).
18 :: lift (4,billy ,2).
19

20 suzy # does lift(T,suzy ,L).
21 billy # does lift(T,billy ,L).

Labels are separated from rules by two colons “::” instead of a single colon “:”
for avoiding the confusion with other uses of the colon in standard ASP. If the
name of the rule label is omitted, we assume that the rule is labelled with the
same name as the head atom. Hence, actions (lines 14-18) have been labelled
by an homonymous label. Unlabelled rules in lines 10-12 represent the inertia
axioms for fluents up, open and bomb respectively. Note that the fact that the
bomb has exploded cannot be reversed, so there is not exception to its inertia.
The rule in line 8 captures the statement that “whoever causes a bomb explosion
will be punished with imprisonment.” The causal literal “#hascaused(A,bomb(T))”
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is true when A has caused the bomb(T) according to Definition 6.2. The #does
directives in lines 20-21 specify which actions have been performed by each
agent. This program has a unique causal stable model, which can be computed
by the following command line1.

python ./cgraphs ./examples/judge.lp

Lines 22-26 in the below listing show the literals that holds in the only causal
stable model of this program, that is those for which there exists some cause to
hold. For instance, suzy will be in prison from situation 4 as the cause of the
bomb explosion, while billy will not.

22 Answer 1 :
23 agent ( b i l l y ) agent ( suzy ) bomb ( 4 ) bomb ( 5 ) l i f t ( 1 , suzy , 1 )
24 l i f t ( 3 , b i l l y , 1 ) l i f t ( 3 , suzy , 2 ) l i f t ( 4 , b i l l y , 2 ) open ( 4 ) open ( 5 )
25 prison ( 5 , suzy ) prison ( 6 , suzy ) time ( 1 ) time ( 2 ) time ( 3 ) time ( 4 )
26 up ( 2 , 1 ) up ( 3 , 1 ) up ( 4 , 1 ) up ( 4 , 2 ) up ( 5 , 1 ) up ( 5 , 2 )
27

28 bomb ( 4 ) = ( l i f t ( 1 , suzy , 1 ) . l ( 1 ) * l i f t ( 3 , suzy , 2 ) . l ( 2 ) ) . u . b
29 bomb ( 5 ) = ( l i f t ( 1 , suzy , 1 ) . l ( 1 ) * l i f t ( 3 , suzy , 2 ) . l ( 2 ) ) . u . b
30 l i f t ( 1 , suzy , 1 ) = l i f t ( 1 , suzy , 1 )
31 l i f t ( 3 , b i l l y , 1 ) = l i f t ( 3 , b i l l y , 1 )
32 l i f t ( 3 , suzy , 2 ) = l i f t ( 3 , suzy , 2 )
33 l i f t ( 4 , b i l l y , 2 ) = l i f t ( 4 , b i l l y , 2 )
34 open ( 4 ) = ( l i f t ( 3 , suzy , 2 ) . l ( 2 ) * l i f t ( 1 , suzy , 1 ) . l ( 1 ) ) . u
35 open ( 5 ) = ( l i f t ( 3 , suzy , 2 ) . l ( 2 ) * l i f t ( 1 , suzy , 1 ) . l ( 1 ) ) . u
36 prison ( 5 , suzy ) = ( l i f t ( 1 , suzy , 1 ) . l ( 1 ) * l i f t ( 3 , suzy , 2 ) . l ( 2 ) ) . u . b . p
37 prison ( 6 , suzy ) = ( l i f t ( 1 , suzy , 1 ) . l ( 1 ) * l i f t ( 3 , suzy , 2 ) . l ( 2 ) ) . u . b . p
38 up ( 2 , 1 ) = l i f t ( 1 , suzy , 1 ) . l ( 1 )
39 up ( 3 , 1 ) = l i f t ( 1 , suzy , 1 ) . l ( 1 )
40 up ( 4 , 1 ) = l i f t ( 1 , suzy , 1 ) . l ( 1 )
41 up ( 4 , 2 ) = l i f t ( 3 , suzy , 2 ) . l ( 2 )
42 up ( 5 , 1 ) = l i f t ( 1 , suzy , 1 ) . l ( 1 )
43 up ( 5 , 2 ) = l i f t ( 3 , suzy , 2 ) . l ( 2 )

The remaining lines show the causes of those literals that hold as causal terms.
Literals whose cause is 1 are conveniently hidden for the sake of compactness.
The above program also has a total causal well-founded model that can be
computed by the following command line2:

python ./cgraphs --well -founded ./examples/judge.lp

1 The program cgraphs runs over phython, www.python.org, and makes use of the gringo Python
library, version 4.4.0, which is assumed to be accessible in the Python path. The gringo library is
free accessible at the Potassco web page: http://potassco.sourceforge.net.

2 The causal well-founded model can be computed even in the absence of the gringo library.
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The following listing shows the result of computing the causal well-founded
model of the above program, which coincides with the unique answer set of
such program.

Well−Founded Tota l Model
agent ( b i l l y ) agent ( suzy ) bomb ( 4 ) bomb ( 5 ) l i f t ( 1 , suzy , 1 )
l i f t ( 3 , b i l l y , 1 ) l i f t ( 3 , suzy , 2 ) l i f t ( 4 , b i l l y , 2 ) open ( 4 ) open ( 5 )
prison ( 5 , suzy ) prison ( 6 , suzy ) time ( 1 ) time ( 2 ) time ( 3 ) time ( 4 )
up ( 2 , 1 ) up ( 3 , 1 ) up ( 4 , 1 ) up ( 4 , 2 ) up ( 5 , 1 ) up ( 5 , 2 )

bomb ( 4 ) = ( l i f t ( 1 , suzy , 1 ) . l ( 1 ) * l i f t ( 3 , suzy , 2 ) . l ( 2 ) ) . u . b
bomb ( 5 ) = ( l i f t ( 1 , suzy , 1 ) . l ( 1 ) * l i f t ( 3 , suzy , 2 ) . l ( 2 ) ) . u . b
l i f t ( 1 , suzy , 1 ) = l i f t ( 1 , suzy , 1 )
l i f t ( 3 , b i l l y , 1 ) = l i f t ( 3 , b i l l y , 1 )
l i f t ( 3 , suzy , 2 ) = l i f t ( 3 , suzy , 2 )
l i f t ( 4 , b i l l y , 2 ) = l i f t ( 4 , b i l l y , 2 )
open ( 4 ) = ( l i f t ( 3 , suzy , 2 ) . l ( 2 ) * l i f t ( 1 , suzy , 1 ) . l ( 1 ) ) . u
open ( 5 ) = ( l i f t ( 3 , suzy , 2 ) . l ( 2 ) * l i f t ( 1 , suzy , 1 ) . l ( 1 ) ) . u
prison ( 5 , suzy ) = ( l i f t ( 1 , suzy , 1 ) . l ( 1 ) * l i f t ( 3 , suzy , 2 ) . l ( 2 ) ) . u . b . p
prison ( 6 , suzy ) = ( l i f t ( 1 , suzy , 1 ) . l ( 1 ) * l i f t ( 3 , suzy , 2 ) . l ( 2 ) ) . u . b . p
up ( 2 , 1 ) = l i f t ( 1 , suzy , 1 ) . l ( 1 )
up ( 3 , 1 ) = l i f t ( 1 , suzy , 1 ) . l ( 1 )
up ( 4 , 1 ) = l i f t ( 1 , suzy , 1 ) . l ( 1 )
up ( 4 , 2 ) = l i f t ( 3 , suzy , 2 ) . l ( 2 )
up ( 5 , 1 ) = l i f t ( 1 , suzy , 1 ) . l ( 1 )
up ( 5 , 2 ) = l i f t ( 3 , suzy , 2 ) . l ( 2 )

If lines 14-15, containing Suzy’s actions, are removed from the above pro-
gram, the bomb would still explode, but this time due to Billy’s actions. The
following listing shows the answer in such case.

22 Answer 1 :
23 agent ( b i l l y ) agent ( suzy ) bomb ( 5 ) l i f t ( 3 , b i l l y , 1 )
24 l i f t ( 4 , b i l l y , 2 ) open ( 5 ) pr ison ( 6 , b i l l y ) time ( 1 ) time ( 2 )
25 time ( 3 ) time ( 4 ) up ( 4 , 1 ) up ( 5 , 1 ) up ( 5 , 2 )
26

27 bomb ( 5 ) = ( l i f t ( 3 , b i l l y , 1 ) . l ( 1 ) * l i f t ( 4 , b i l l y , 2 ) . l ( 2 ) ) . u . b
28 l i f t ( 3 , b i l l y , 1 ) = l i f t ( 3 , b i l l y , 1 )
29 l i f t ( 4 , b i l l y , 2 ) = l i f t ( 4 , b i l l y , 2 )
30 open ( 5 ) = ( l i f t ( 4 , b i l l y , 2 ) . l ( 2 ) * l i f t ( 3 , b i l l y , 1 ) . l ( 1 ) ) . u
31 prison ( 6 , b i l l y ) = ( l i f t ( 3 , b i l l y , 1 ) . l ( 1 ) * l i f t ( 4 , b i l l y , 2 ) . l ( 2 ) ) . u . b . p
32 up ( 4 , 1 ) = l i f t ( 3 , b i l l y , 1 ) . l ( 1 )
33 up ( 5 , 1 ) = l i f t ( 3 , b i l l y , 1 ) . l ( 1 )
34 up ( 5 , 2 ) = l i f t ( 4 , b i l l y , 2 ) . l ( 2 )

As expected, in this case it is Billy who ends in prison instead of Suzy. This
example illustrates the degree of elaboration tolerance of our formalism: a
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change in the actions that have occurred do not require any change in the
model but for those facts representing them.

It is also possible to obtain the causal information associated to atoms in a
graph format instead of the term format3.

python --img=graphs ./cgraphs ./examples/judge.lp

By using the above command line, a folder graphs/answer n is created for each
answer set (where n is a number). Inside this folder, a file is created with name
atom.pdf for each atom. This file contains the causal value of literal depicted as
a graph. For instance, Figure 50 depicts the only cause of prison(6, suzy) in our
former example. The vertices corresponding to the causal graph are hexagonal.
In addition, an oval vertex with the corresponding literal is added. When a lit-
eral has more than one associated cause, each one is represented by a different
connected component. For instance, consider the program corresponding to
the symmetric behaviour representation of Example 1.4. The following listing
shows the program capturing this variation.

time ( 1 . . 5 ) .

o ( S ) : : caused ( open ( S ) ) :− up ( a , S ) , up ( b , S ) , caused ( o , S ) .
k ( S ) : : caused ( open ( S + 1 ) ) :− key ( S ) .
u ( L , S ) : : caused ( up ( L , S + 1 ) ) :− l i f t ( L , S ) .

caused ( o , S ) :− caused ( up ( a , S ) ) .
caused ( o , S ) :− caused ( up ( b , S ) ) .

open ( S ) :− caused ( open ( S ) ) .
up ( L , S ) :− caused ( up ( L , S ) ) .

open ( S +1) :− open ( S ) , not caused ( nopen ( S + 1 ) ) , time ( S ) .

up (A, S +1) :− up (A, S ) , not caused ( nup (A, S + 1 ) ) , time ( S ) .

l i f t ( a , 1 ) : : l i f t ( a , 1 ) .
l i f t ( b , 3 ) : : l i f t ( b , 3 ) .

key ( 4 ) : : key ( 4 ) .

# hide caused ( ) .
# hide caused ( , ) .

3 Requires graphviz, version 2.38 www.graphviz.org and the python graphviz library, version 0.4.3
(install with command: pip install graphviz, if python pip is not installed run before: python
get-pip.py).
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lift(3,suzy,2)

l(2)

lift(1,suzy,1)

l(1)

prison(6,suzy)

u

b

p

Figure 50: The cause of prison(6, suzy).

The following listing shows the unique causal answer set of this program:

Answer 1 :
key ( 4 ) l i f t ( a , 1 ) l i f t ( b , 3 ) open ( 4 ) open ( 5 ) open ( 6 ) time ( 1 )
time ( 2 ) time ( 3 ) time ( 4 ) time ( 5 ) up ( a , 2 ) up ( a , 3 ) up ( a , 4 )
up ( a , 5 ) up ( a , 6 ) up ( b , 4 ) up ( b , 5 ) up ( b , 6 )

key ( 4 ) = key ( 4 )
l i f t ( a , 1 ) = l i f t ( a , 1 )
l i f t ( b , 3 ) = l i f t ( b , 3 )
open ( 4 ) = ( l i f t ( b , 3 ) . u ( b , 3 ) * l i f t ( a , 1 ) . u ( a , 1 ) ) . o ( 4 )
open ( 5 ) = key ( 4 ) . k ( 4 )

+ ( l i f t ( b , 3 ) . u ( b , 3 ) * l i f t ( a , 1 ) . u ( a , 1 ) ) . o ( 4 )
open ( 6 ) = key ( 4 ) . k ( 4 )

+ ( l i f t ( a , 1 ) . u ( a , 1 ) * l i f t ( b , 3 ) . u ( b , 3 ) ) . o ( 4 )
up ( a , 2 ) = l i f t ( a , 1 ) . u ( a , 1 )
up ( a , 3 ) = l i f t ( a , 1 ) . u ( a , 1 )
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up ( a , 4 ) = l i f t ( a , 1 ) . u ( a , 1 )
up ( a , 5 ) = l i f t ( a , 1 ) . u ( a , 1 )
up ( a , 6 ) = l i f t ( a , 1 ) . u ( a , 1 )
up ( b , 4 ) = l i f t ( b , 3 ) . u ( b , 3 )
up ( b , 5 ) = l i f t ( b , 3 ) . u ( b , 3 )
up ( b , 6 ) = l i f t ( b , 3 ) . u ( b , 3 )

In contrast with our former example, we have here there are two different
causes of open(6). Figure 51 shows the graphs corresponding to those causes.
Each connected component corresponds to one alternative cause.

key(4)

k(4)

open(6)

lift(b,3)

u(b,3)

lift(a,1)

u(a,1)

open(6)

o(4)

Figure 51: Causes of open(6).

Figure 52 shows the flowchart of the application cgraphs, starting from the in-
put causal program, and ending with the answer with the corresponding causal
stable models. The parser and grounder modules are modifications of the tool
pyngo [Konig, 2009] to cover the new syntax of causal programs: labels, causal
literals of the form “#hascaused(A, B)” and agent #does directives. Syntactically,
labels have the same form of atoms and can contain variables. As usual vari-
ables appearing in the head or in the negative body of a rule are required to
appear in some positive literal in the body. In addition, variables in labels must
appear in some positive standard literal in the rule body. Causal literals are of
the form
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<c l i t e r a l > : : = [ not ] # hascaused(<cg−term> , <atom>)
| [ not ] # hascaused(<var iab le > , <atom>)

Recall from Definition 3.12 that a cg-term is a term without sums (+). The test
performed by a causal literal, can be stated by a cg-term or by a variable. For
the latter, the term resulting from the rule grounding is considered to be a a
label. For instance, the grounding of rule in line 8 consists of the following pair
of rules:

p : : pr ison ( t , suzy ) :− #hascaused ( suzy , bomb( t ) ) , agent ( suzy ) .
p : : pr ison ( t , b i l l y ) :− #hascaused ( b i l l y , bomb( t ) ) , agent ( b i l l y ) .

for t ∈ {4,5}. For t /∈ {4,5}, the standard literal bomb(t) does not hold, therefore
no ground rules are produced for those values of t. Recall that the causes of
bomb correspond to the term:(

li f t(1, suzy,1) · l(1) ∗ li f t(3, suzy,2) · l(2)
)
· u · b (107)

To inspect the influence of Suzy in the explosion of the bomb, we need to indi-
cate the actions performed by Suzy. This is done in line 20:

20 suzy #does l i f t ( T , suzy , L ) .

This action assignment indicates that all labels that unify with li f t(T, suzy, L) are
considered actions performed by Suzy. As a consequence, the causal literal
“#hascaused(suzy, bomb(t))” hold for t ∈ {4,5}.

An action assignment is a set of rules such that each rule matches the follow
grammar:

<a c t i o n assignment> : : = <l a b e l> #does <l i s t O f L a b e l s> .
| <var iab le> #does <l i s t O f L a b e l s> .

<l i s t O f L a b e l s> : : = <l a b e l> [ , <l i s t O f L a b e l s> ]

All variables on the left hand side of #does must appear on the right. By using
variables we may abbreviate the action assignments in lines 21-22 as:

A #does l i f t ( T ,A, L ) .
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That is, every label that unifies with li f t(T, A, L) is considered to be performed
by the substitution corresponding to variable A.

In the rest of this chapter we detail how to obtain the causal stable models
of a ground causal program. Recall from Chapter 4 that Theorem 4.4 shows
that, for programs without non-standard causal literals, there is a one-to-one
correspondence between the causal stable models of a program and their stan-
dard stable models. In such case, we may compute the causal stable models
of a program by obtaining a standard stable model, for instance by means of
some answer set solver, and use it to compute the reduct of the program. Then,
we just need to compute the least model of the reduct to obtain a causal stable
model.

Unfortunately, for evaluating the non-standard causal literals we need to
know the causal value associated to its standard literal, and hence the above
procedure does not work. Then, for this class of programs, we may compute a
causal stable model by relying on its definition, that is, for all possible causal
interpretation we compute the reduct of the program, its least model, and check
that this corresponds to the interpretation used for computing the reduct.

For improving this naive approach, the following splitting Theorem and no-
tation will be useful. By abuse of notation, for any interpretation I, we denote
by I a set of rules of the form:

I def= { A← t | A ∈ At and t = I(A) }

Note the convenience of this notation: the least least model of the program I is
the interpretation I.

Proposition 9.1. Let I be a causal stable model of a program P. Then, the interpreta-
tion I is also the least model of the program I. �

Proof . The proof can be found in Appendix A on page 288. �

Furthermore, given a set S of literals, we denote by I |S an interpretation such
that I |S(A) = I(A) for all A ∈ S and I |S(A) = 0 for all A /∈ S. We can then obtain
the following result.

Theorem 9.1 (Splitting). Let P1 and P2 be two programs such that no literal occurring
in P1 is a head atom of P2. Let S be a set of atoms containing exactly the atoms occurring
P1 but no head atoms of P2. An interpretation I is a causal stable model of P1 ∪ P2 iff
I |S is causal stable model of P1 and I is the causal stable model of I |S ∪ P2. �
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Proof . The proof can be found in Appendix A on page 289. �

We may make use of Theorem 9.1 for removing all negative non-standard
literals from the input program, and obtaining program P1 in Figure 52.

Proposition 9.2. Let P be a causal program and R be a rule in P of the form:

lR : A ← B1, . . . , Bm, not C1, . . . , not Ci, . . . , not Cn

with Ci a non-standard causal literal. Let P1 be the result of replacing R in P by

lR : A ← B1, . . . , Bm,not C1, . . . , not aux, . . . ,not Cn

aux ← Ci

where aux is an auxiliary atom not appearing in P. Let I and I′ be two causal inter-
pretations such that:

• I1(aux) = I(Ci).

• I = I1 |S with S = Lit\{aux}

Then, I is a causal stable model of P if and only if I1 is a causal stable model of P1. �

Proof . Let P′ = {aux ← Ci}. Note that, since I(aux) = 0, it follows that I1 is
the unique causal stable model of I ∪ P′. Hence, since aux does not occur in P,
from Theorem 9.1, it follows that I is a causal stable model of P if and only if I1
is a causal stable model of P ∪ P′. Finally note that, since I1(aux) = I(Ci), I1 is
a causal stable model of P∪ P′ if and only if I1 is a causal stable model of P1. �

Proposition 9.2 allows us to remove, one by one, all the negative causal liter-
als of a program. In the light of this result, we do not need to guess a causal
interpretation to compute the reduct of a program, but only a set of literals that
are assumed to be true.

The next step is trying to remove each of the non-standard causal literals of
the form (ψi :: Bi) replacing it by an auxiliary atom aux and a pair of rules of
the form:

aux ← Bi, not aux

aux ← not aux

Note that, if Bi does not hold, then no causal literal containing it holds either. It
is clear that this transformation loses the one-to-one correspondence. Instead,
we only we have a complete, but not sound, result.
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Proposition 9.3. Let P2 be a causal program and R be a rule in P2 of the form:

lR : A ← B1, . . . , (ψi :: Bi), . . . , Bm, not C1, . . . , not Cn

Let P3 be the result of replacing R in P2 by

lR : A ← B1, . . . , aux, . . . , Bm,not C1, . . . , not Cn

aux ← Bi, not aux

aux ← not aux

where aux and aux auxiliary atoms not in P. If I2 is a causal stable model of P2, there
is a causal stable model I3 of P3 such that

• I3(aux) = 1 iff I2(ψi :: Bi) 6= 0; I3(aux) = 0 otherwise.

• I3(aux) = 1 iff I3(aux) 6= 0; I2(aux) = 0 otherwise.

• (I2)
cl = (I3 |S)

cl with S = Lit\{aux, aux}. �

Proof . The proof can be found in Appendix A on page 290. �

Corollary 9.1. Let P2 be a causal program. Let P3 be the result of replacing all non-
standard causal literals by auxiliary atoms as done in Proposition 9.3 and removing all
the rule labels. If I2 is a causal stable model of P2, there is a stable model I3 of P3 such
that

• I3(aux) = 1 iff I2(ψi :: Bi) 6= 0; I3(aux) = 0 otherwise.

• I3(aux) = 1 iff I3(aux) 6= 0; I2(aux) = 0 otherwise.

• (I2)
cl = I3 |S with S = Lit\{aux, aux}. �

Proof . Let P′3 be the program resulting by removing all non-standard causal
literals by auxiliary atoms as done in Proposition 9.3. Then P′3 is a labelled
program (without non-standard causal literals) and there is an interpretation
I′3 satisfying the three conditions of this statement. Hence, from Theorem 4.4,
I3

def= (I′3)
cl is a stable model of P3 satisfying these three properties. �

Given a causal program P2 without negative causal literals, we may obtain a
standard program P3 by replacing, one-by-one, all non-standard causal literals
by auxiliary atoms as in Proposition 9.3, and then removing all its labels. If
a set of literals S is a standard stable model of P3, the least model I of the
reduct of PS

2 is a candidate to be a causal stable model. To check whether I is
a causal stable model of P2 we only need to check whether I(ψi :: Bi) holds if
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and only if auxi is in S, where auxi is the auxiliary atom that replaces (ψi :: Bi).
Corollary 9.1 shows that there does not exist more candidates. That is, this
procedure is correct and complete for obtaining the causal stable model of a
program P2 without negative causal literals.

However, the evaluation of non-standard causal literals is blindly guessed, so
the number of candidate models that the solver needs to compute is exponential
in the number of those non-standard causal literals. For improving this proce-
dure, we may rely on the causal well-founded model. Recall from Chapter 7

that deciding whether a causal literal is a consequence of a program under the
well-founded semantics is feasible in polynomial time. Proposition 4.1 stated
that a causal literal that holds with respect to lfp(Γ2

P), holds with respect to
all causal stable models, and a causal literal that does not hold with respect to
gfp(Γ2

P), does not hold with respect to any of them. Therefore, we may use the
causal well-founded model for simplifying a program in the following way:

• Removing all rules with some positive causal literal that does not hold
with respect to gfp(Γ2

P).

• Removing all rules with some negative causal literal that holds with re-
spect to lfp(Γ2

P).

• Removing from the remaining rules those positive causal literals that hold
with respect to lfp(Γ2

P).

• Removing from the remaining rules those negative causal literals that
hold with respect to gfp(Γ2

P).

This procedure corresponds to obtaining program P2 from program P1 in the
procedure described by Figure 52. This procedure keeps a one-to-one corre-
spondence between the causal stable models of program P1 and program P2 in
which the literals that hold in one of them hold in the other, and vice-versa.
However, the causal stable models of both programs may differ in their as-
sociated causal values. In order to illustrate this fact, consider the following
program whose causal well-founded model holds lfp(Γ2

P)(w) = a ∗ b.

a : : p .
b : : q .

r :− p , q .
a : : s :− not t .
b : : t :− not s .

r :− s .
r :− t .

w :− #hascaused ( a *b , r ) .
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#renaming a .
#renaming b .

Note that the causal literal “#hascaused(a*b,r)” holds with respect to the causal
well-founded model, therefore we may remove it. This simplification leads us
to the following program:

a : : p .
b : : q .

r :− p , q .
a : : s :− not t .
b : : t :− not s .

r :− s .
r :− t .

w.

#renaming a .
#renaming b .

whose causal stable models hold I(w) = 1. However, the causal stable models of
the original program respectively satisfy I1(w) = a and I2(w) = b. This example
also illustrates that causal values associated to literals may not be the same even
if, instead of removing the causal literal, this is replaced by its causal value. In
our running example, this would consist in dealing with a rule of the form:

w :− a * b

which would lead to a causal stable model that satisfy Ii(w) = a ∗ b for i ∈ {1,2}.

Further improvements of this procedure may rely on Theorem 9.1 for split-
ting the program in smaller subprograms, whose causal stable models can be
computed independently, and incorporating the causal information inside the
solver in order to avoid blindly guessing the valuation of non-standard causal
literals.
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Figure 52: cgraphs flowchart.
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10 CONCLUS IONS

In this dissertation, we have provided a logical semantics for representing and
reasoning with causal explanations. In particular, the main contributions of this
dissertation may be summarised as follows:

i ) We have formally defined the concepts of causal graph and causal value
which extend the Lewis’ idea of causal chain distinguishing between joint
and alternative causes. We have also defined the concepts of sufficient,
necessary and contributory causes with respect to them. The concept of
sufficient cause is closely related to a non-redundant logical proof : we have
proved their one-to-one correspondence for programs in which every rule
has a different label.

ii ) We have studied the algebraic properties of causal values. In particular,
we have shown that causal values can be manipulated by means of three
algebraic operations (·), (∗) and (+). Furthermore, we have shown that
causal values are isomorphic to a free, completely distributive lattice gen-
erated by causal graphs, and so, the maximal causal terms without sums
capture the notion of set of pairwise incomparable causal graphs.

iii ) We have provided causal semantics for logic programs that are conserva-
tive extensions of the least model, the stable model, the well-founded model
and the answer set semantics. We also have shown how causal information
can be computed under those semantics. In particular, we have shown
that causal information under the least model can be computed by an
extension of the direct consequences operator for standard LP of van Em-
den and Kowalski [1976]. For the stable and the answer set semantics,
causal information can be computed relying on the reduct of a program,
similar as in standard LP [Gelfond and Lifschitz, 1988]. Finally, for the
well-founded semantics, we may rely on an extension of the alternate
fixpoint definition of Van Gelder [1989].

iv ) We have explored how these semantics can be applied to KR problems
for obtaining causal information. In particular, we have applied the causal
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answer set semantics for obtaining causal information when solving some
of the traditional examples of the literature of Reasoning about Actions
and Change. We also have shown how these semantics can be applied for
representing some of the traditional examples of the literature on actual
causation.

v ) We have incorporated a new kind of causal literal that allows inspect-
ing the causal information associated to standard ASP literals. In par-
ticular, we have used causal literals for defining a literal of the form
hascaused(A, B) which holds when “A has been sufficient to cause B.”
Furthermore, we have shown how this kind of literal can be used for
representing statements involving causality without falling in problems of
elaboration tolerance [McCarthy, 1998].

vi ) We have explored the computational cost of solving the decision problems
associated to entailment, sufficient and necessary causation, and provided
complete characterisations for them. In particular, we have shown that
all these problems fit into the second level of the polynomial hierarchy,
and that (under reasonable assumptions) the costs of both entailment and
sufficient causation do not increase with respect to standard LP entailment.

vii) We have compared our work to justifications approaches for ASP and
Halpern and Pearl’s approach to actual causation. With respect to justifi-
cations approaches for ASP, we have shown a formal correspondence be-
tween sufficient explanations and why-not provenance justifications [Damásio
et al., 2013] under the well-founded semantics. We have also informally
shown the similarities and differences between our approach and ap-
proaches by Pontelli et al. [2009] and Schulz and Toni [2013, 2014].

viii) Finally, we have provided an implementation of a prototype that com-
putes the sufficient causes of literals with respect to the well-founded
and the stable model semantics. Furthermore, this tool incorporates the
hascaused(A, B) predicate that allows, not only obtaining those causes,
but also reasoning with them.

We next outline some of the aspects in which this work can be extended or
completed in the future.

i ) With respect to the semantics, there are two main issues that are worth to
study. The first is replacing the reduct basic syntactic definition in favour
of a logical treatment of default negation, as done for instance with the
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Equilibrium Logic [Pearce, 1996] characterisation of stable models. The
second consists in allowing rules to contain disjunctions in the head.

ii ) With respect to the complexity assessment, from the definition of contribu-
tory cause it immediately follows the NP membership for the least and the
well-founded semantics, and NP/ΠP

2 respectively for brave and cautions
reasoning under the stable model semantics. Whether these characterisa-
tions are complete or not is still an open question.

iii ) We have used causal literals to define the predicate hascaused(A, B), and
used the latter for representing statements that involve some causal re-
lations. However, causal literals allow more complex queries about the
causal information of ASP literals. How to exploit this information for
KR is a major open question. With respect to causal literals themselves,
their major limitation is the requirement of monotonicity. In particular,
convex causal literals will allow reasoning with necessary and contribu-
tory causes.

iv ) Going on with KR open questions, an interesting issue is how causal
information can be extracted from programs with aggregates, so that we
may be able to reason with the causal information of quantitative, and
not only qualitative, problems.

v ) Another interesting issue consists in defining causal stable models relying
on CP-values. CP-values were mainly introduced for a formal unification
of our work and why-not provenance justifications. However, the intro-
duction of the negation operator (∼) seems to be a step in the right direc-
tion for representing short-circuit and switch problems from the literature
on actual causation.

vi ) Finally, the performance of the tool for computing the causal information
will be significantly improved by incorporating causal information into
the solver, instead of using it as black box.
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A PROOFS

This appendix addresses the formal proofs of the results showed along the
dissertation.

chapter 3: sufficient causes

Proof of Proposition 3.1

Lemma 1. Given a completely labelled program P and proofs π(A) and π′(A), it
holds that graph(π) ⊆ graph(π′) iff cgraph(π) ⊆ cgraph(π′). �

Proof . For the only if direction, just note that, by definition, cgraph(π) is the
transitive and reflexive closure of graph(π). So that, assume that cgraph(π) ⊆
cgraph(π′) and suppose there is an edge in graph(π)\graph(π′). Note that
such edge must be in cgraph(π) ⊆ cgraph(π′). Note also that such edge must
be of the form (lR, lA) or (lB, lR) for some rule R, and since P is completely
labelled, graph(π′) must contain both edges (lR, lA) of (lB, lR) for every proof
containing the rule lR. �

Lemma 2. Given a completely labelled program P and proofs π(A) and π′(A), it
holds that graph(π) ⊂ graph(π′) iff cgraph(π) ⊂ cgraph(π′). �

Proof . By Lemma 1, graph(π) ⊆ graph(π′) iff cgraph(π) ⊆ cgraph(π′) which
is equivalent to graph(π) 6⊇ graph(π′) iff cgraph(π) 6⊇ cgraph(π′). Therefore,
graph(π) ⊂ graph(π′) if and only if graph(π) ⊆ graph(π′) and graph(π) 6⊇
graph(π′) if and only if cgraph(π)⊆ cgraph(π′) and cgraph(π) 6⊇ cgraph(π′)
if and only if cgraph(π) ⊂ cgraph(π′). �



A proofs

Lemma 3. Given a completely program P and a pair of proofs π(A) and π′(A), if
subproo f s(π′) ⊆ subproo f s(π), then graph(π′) ⊆ graph(π). �

Proof . Note that, by definition, the edges of graph(π′) are of the form (lR, lA)
or (lB, lR) for some subproof π′′ of π′ of the form (50). Note also that π′′ ∈
subproo f s(π′)⊆ subproo f s(π) implies that those edges are in graph(π) as well.
Hence graph(π′) ⊆ graph(π′). �

Lemma 4. Given a completely program P and a pair of proofs π(A) and π′(A), if
subproo f s(π′) ⊂ subproo f s(π), then graph(π′) ⊂ graph(π). �

Proof . Assume as induction hypothesis that

subproo f s(π′) ⊂ subproo f s(π′′) implies graph(π′) ⊂ graph(π′′)

for every proof π′′ of the same atom than π which furthermore holds that
subproo f s(π′′) ⊂ subproo f s(π).

If π has no subproofs then the antecedent holds vacuous. Otherwise, by hypoth-
esis it holds that subproo f s(π′)⊂ subproo f s(π), and this implies subproo f s(π′)⊆
subproo f s(π) which, in its turn, implies, by Lemma 3, that graph(π′)⊆ graph(π).

Suppose that graph(π′) = graph(π) and let πs a sub-proof of π which is not a
sub-proof of π′ and let R and A be respectively the rule and the consequent
of πs. Then the edge (lR, lA) ∈ graph(π) = graph(π′), and hence, there exists a
sub-proof πt of π′ with the same rule R and the same consequent A but with a
different direct subproofs.

Note that {πs,πt} ⊆ subproo f s(π) and let π′′ be the result of replacing in π
each occurrence of πs by πt. Note that subproo f s(π′′) = subproo f s(π)\{πs},
and then subproo f s(π′) ⊂ subproo f s(π′′) because πs /∈ subproo f s(π′). Hence,
by induction hypothesis, graph(π′) ⊂ graph(π′′),

Furthermore, by Lemma 3 again, subproo f s(π′′) ⊆ subproo f s(π) implies the
fact graph(π′′) ⊆ graph(π). Hence, graph(π′) ⊂ graph(π′′) ⊆ graph(π). �

Lemma 5. Given a completely program P and a pair of proofs π(A) and π′(A), if
subproo f s(π′) ⊂ subproo f s(π), then graph(π′) ⊂ graph(π). �

Proof . By Lemma 4, subproo f s(π′)⊂ subproo f s(π) implies the fact graph(π′)⊂
graph(π) which, by Lemma 2, implies cgraph(π′) ⊂ cgraph(π). �
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Lemma 6. Given a completely program P, a non-redundant proof π(A) and a proof
π′(A) s.t. graph(π′) ⊆ graph(π), then subproo f s(π′) ⊆ subproo f s(π). �

Proof . Suppose there is a proof π′′ ∈ subproo f s(π′) but π′′ /∈ subproo f s(π). If
π′′ is of the form

π′′ =
>
A

(R),

then the edge (lR, lA)∈ graph(π′′)⊆ graph(π′)⊆ graph(π), and therefore, π′′ ∈
subproo f s(π) which is a contradiction.

Assume as induction hypothesis that all subproofs of π′′ but for itself are sub-
proofs of π. Since the edge (lR, lA) ∈ graph(π′′)⊆ graph(π′)⊆ graph(π), there
is a subproof of π which is like π′′ but with some different direct subproof
πs(B) for some literal B in the body of R. Let πt(B) the direct subproof of π′′

for the literal B. Since, by induction hypothesis, every subproof of π′′ but for it-
self are a subproof of π, then there are two different subproof of π, for the literal
B: πs(B) and πt(B). Let π′′′ be the result of replacing, in π, each occurrence of
the subproof πs(B) by πt(B). Then subproo f s(π′′′) = subproo f s(π)\{πs(B)},
that is subproo f s(π′′′) ⊂ subproo f s(π) which contradicts the assumption that
π is non-redundant. �

Lemma 7. Given a completely program P and a non-redundant proof π(A), there not
exists a proof π′(A) such that graph(π′) ⊂ graph(π). �

Proof . Note that, graph(π′) ⊂ graph(π) implies graph(π′) ⊆ graph(π), and
then, by Lemma 6, it follows that subproo f s(π′) ⊆ subproo f s(π).

Furthermore, since graph(π′) ⊂ graph(π), there is an edge of the form (lR, lA)
or (lB, lR) in graph(π) which is not in graph(π′), and so, there is a proof π′′,
whose rule is R, which is a subproof of π but not of π′, that is, subproo f s(π′)⊂
subproo f s(π), that is π is redundant. �

Lemma 8. Given a completely program P and a non-redundant proof π(A), there not
exists a proof π′(A) such that cgraph(π′) ⊂ cgraph(π). �

Proof . By Lemma 2, cgraph(π′) ⊂ cgraph(π) iff graph(π′) ⊂ graph(π) and, by
Lemma 7, there not exists a proof π′(A) s.t. graph(π′) ⊂ graph(π). �
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Proof of Proposition 3.1. For the only if direction, by definition, π(A) is redun-
dant iff there exist some proof π′(A) s.t. subproo f s(π′)⊂ subproo f s(π), which,
by Lemma 5, implies cgraph(π′) ⊂ cgraph(π), that is π is graph-redundant.

For the if direction, Suppose that π(A) is non-redundant. By Lemma 8, there
not exists a proof π′(A) such that cgraph(π′) ⊂ cgraph(π) which is a contra-
diction with the assumption that π(A) is graph-redundant, that is, there exist
some proof π′(A) s.t. cgraph(π′) ⊂ cgraph(π). �

Proof of Proposition 3.2

Proof of Proposition 3.2.

a ∗ a · b = a ∗ 1 · a · b (identity)

= 1 · a · b (absorption)

= a · b (identity)

a ∗ b · a = a ∗ b · a · 1 (identity)

= b · a · 1 (absorption)

= b · a (identity)

a · b ∗ b · c ∗ a · c = (a · b ∗ b · c) ∗ a · c (associative (∗))
= (a · b · c) ∗ a · c (transitivity)

= a · (b · c) ∗ a · c (associative (·)
= a · (b · c ∗ c) (distributivity)

= a · (b · c) (absorption der)

= a · b · c (associativity)

= a · b ∗ b · c (transitivity)
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Proof of Proposition 3.3

Proof of Proposition 3.3.

• Product (∗) is associative. That is, given three causal graphs G1, G2 and
G3 they hold that G1 ∗ (G2 ∗ G3) = (G1 ∗ G2) ∗ G3.

(G1 ∗ G2) ∗ G3 =
(
G1 ∪ G2)

∗ ∪ G3
)∗

=
(
G1 ∪ G2 ∪ G3

)∗
=
(
G1 ∪ (G2 ∪ G3)

∗)∗
=
(
G1 ∪ (G2 ∪ G3)

∗)∗
= G1 ∗ (G2 ∗ G3)

• Application (·) is associative. That is, given three causal graphs G1, G2
and G3 they hold that G1 · (G2 · G3) = (G1 · G2) · G3. By definition

(G1 · G2) · G3 =
(
(G1 ∪ G2 ∪ G12)

∗ ∪ G3 ∪ G12,3
)∗

=
(
G1 ∪ G2 ∪ G3 ∪ G12 ∪ G12,3

)∗ (108)

G1 · (G2 · G3) =
(
G1 ∪ (G2 ∪ G3 ∪ G23

)∗ ∪ G1,23
)∗

=
(
G1 ∪ G2 ∪ G3 ∪ G1,23 ∪ G23

)∗ (109)

where

G12
def= { (v1,v2) | v1 ∈ G1 and v2 ∈ G2 }

G12,3
def= { (v12,v3) | v12 ∈ G1 ∪ G2 and v3 ∈ G3 }

G23
def= { (v2,v3) | v2 ∈ G2 and v3 ∈ G3 }

G1,23
def= { (v1,v23) | v1 ∈ G1 and v23 ∈ G2 ∪ G3 }

From (108) and (109), it follows that (G1 · G2) · G3 = G1 · (G2 · G3) holds
if G12 ∪ G12,3 = G1,23 ∪ G23 if G12,3 ⊆ G1,23 ∪ G23 and G1,23 ⊆ G12 ∪ G12,3.
Note that G12 ⊆ G1,23 and G23 ⊆ G12,3.

We will show that G12,3 ⊆ G1,23 ∪ G23. Suppose an edge (v12,v3) ∈ G12,3
such that (v12,v3) /∈ G23 and (v12,v3) /∈ G1,23. Note that v12 ∈ G1 ∪ G2 and
v3 ∈ G3 implies that either v12 ∈ G1 or v12 ∈ G2. If v12 ∈ G1, then (v12,v3) ∈
G1,23 which is a contradiction, and if, otherwise, v12 ∈ G2, then (v12,v3) ∈
G23 which is also a contradiction. The case for G1,23 ⊆ G12 ∪ G12,3 is sym-
metric.
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• The empty graph is the identity of product (∗). That is G ∗ ∅ = G. Just
note that, by definition G ∗ ∅ = (G ∪ ∅)∗ = G∗. And since, G is a causal
graphs, it is already close, that is G = G∗.

• The empty graph is the identity of application (·) That is G ·∅ = G. Mote
that, by definition

G ·∅ = (G ∪∅ ∪ { (v1,v2) | v1 ∈ G and v2 ∈ ∅ })∗ = G∗ = G

• Product (∗) is commutative. That is G ∗ G′ = G′ ∗ G. Just note that by
definition G ∗ G′ = (G ∪ G′)∗ = (G′ ∪ G)∗ = G′ ∗ G.

• Product (∗) is idempotent. That is G ∗ G = G. Just note that by definition
G ∗ G = (G ∪ G)∗ = (G)∗ = G.

• Application (·) is idempotent with respect to atomic causal graphs. Let
G = { (v,v) }. Then G · G = (G ∪ G ∪ { (v1,v2) | v1 ∈ G and v2 ∈ G })∗
Thus G · G = (G ∪ G ∪ { (v,v) })∗ = G∗ = G.

• Product (∗) is monotonic. Assume that G1 ⊆ G2 and suppose also that
G1 ∗ G3 6⊆ G2 ∗ G3 Pick (v1,vn)∈ (G1 ∗G3)\(G2 ∗G3) By definition, it holds
(G1 ∗ G3) = (G1 ∪ G3)

∗, it follows that there are a sequence of edges
{ (v1,v2), . . . , (vn−1,vn) }⊆G1∪G3. Note that each edge (vi,vi+1) is either
in G1 or in G3, and so, it is eider in G2 ⊇ G1 or G2, that is (vi,vi+1) ∈ G2 ∪
G3. Hence { (v1,v2), . . . , (vn−1,vn) } ⊆ G2 ∪ G3, and therefore (v1,vn) ∈
(G2 ∪ G3)

∗ = G2 ∗ G3 which is a contradiction.

• Application (·) is monotonic. Assume that G1 ⊆ G2 and suppose that
G1 · G3 6⊆ G2 · G3 Pick (v1,vn) ∈ (G1 · G3)\(G2 · G3) By definition, it holds
(G1 · G3) = (G1 ∪ G3 ∪ G13)

∗, where

G13 = { (v1,v3) | v1 ∈ G1 and v3 ∈ G3 }

Then, there are a sequence of edges { (v1,v2), . . . , (vn−1,vn) } ⊆ G1 ∪ G3 ∪
G13. If (vi,vi+1) ∈ G1 ∪ G3, then, as above (vi,vi+1) ∈ G2 ∪ G3. So that
assume that (vi,vi+1) ∈ G13. Then vi ∈ G1, and then vi ∈ G2, and vi+1 ∈ G3,
so that (vi,vi+1) ∈ G2 · G3. Hence { (v1,v2), . . . , (vn−1,vn) } ⊆ G2 · G3, and
therefore (v1,vn) ∈ (G2 · G3)

∗ = G2 · G3 which is a contradiction. �

Proof of Proposition 3.4

Proof of Proposition 3.4.
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• Application (·) distributes over products (∗). For every pair of non-empty
sets of causal graphs S and S2, it holds that(

∏S
)
·
(
∏S2

)
= ∏

{
G1 · G2

∣∣ G1 ∈ S and G2 ∈ S2
}

.

We define the following names

Gr
def=
(
∏S1

)
·
(
∏S2

)
Gl

def= ∏
{

G1 · G2
∣∣ G1 ∈ S2 and G2 ∈ S2

}
Then, by product definition, it follows that

Gl =
(⋃{

G1
∣∣ G1 ∈ S1

}
∪
⋃{

G2
∣∣ G2 ∈ S2

}
∪ G′l

)∗
Gr =

(⋃{
G1 ∪ G2 ∪ G12

∣∣ G1 ∈ S2 and G2 ∈ S2
})∗

where

G′l =
{
(v1,v2)

∣∣ v1 ∈
⋃
{ G1 | G1 ∈ S1 } and v2 ∈

⋃
{ G2 | G2 ∈ S2 }

}
G12 = { (v1,v2) | v1 ∈ G1 and v2 ∈ G2 }

Let G′r =
⋃{ G12 | G1 ∈ S and G2 ∈ S2 }. For every edge (v1,v2) ∈ G′l there

are a pair of c-graphs G1 ∈ S1 and G2 ∈ S2 s.t. v1 ∈ G1 and v2 ∈ G2) and
then (v1,v2) ∈ G12 and consequently (v1,v2) ∈ G′r.

Moreover, for every edge (v1,v2) ∈ G′r there are a pair of c-graphs G1 ∈ S1
and G2 ∈ S2 s.t. (v1,v2)∈G12 with l1 ∈G1 and v2 ∈G2. So that (v1,v2)∈G′l .
That is G′l = G′r. Then

Gr =
(⋃{

G1
∣∣ G1 ∈ S1

}
∪
⋃{

G2
∣∣ G2 ∈ S2

}
∪ G′r

)∗
= (Gl\G′l ∪ G′r)

∗ = (Gl)
∗ = Gl

Consequently Gl = Gr.

• Application (·) holds the absorption equation. Note that, by definition, it
is clear that G1 · G2 · G3 ⊇ G2 and then

G2 ∗ G1 · G2 · G3 = (G2 ∪ G1 · G2 · G3)
∗

= (G1 · G2 · G3)
∗ = G1 · G2 · G3

• Application (·) holds the transitive equation. That is, for any causal
graphs G1, G2 6= ∅ and G3, it holds that G1 · G2 · G3 = G1 · G2 ∗ G2 · G3
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It is clear that G1 · G2 · G3 ⊇ G1 · G2 and G1 · G2 · G3 ⊇ G2 · G3 and then
G1 · G2 · G3 ⊇ G1 · G2 ∗ G2 · G3.

Let G12, G23, Gl and Gr be respectively G12 = G1 · G2, G23 = G2 · G3, Gl =
G12 · G3 = G1 · G2 · G3 and Gr = G12 ∗ G23.

Suppose there is an edge (v1,vn) ∈ Gl\Gr. Then there is a sequence of
edges { (v1,v2), . . . , (vn−1,vn) } ⊆ G12 ∪ G3 ∪ G12,3. For each (vi,vi+1), if
(vi,vi+1) ∈ G12 ⊆ Gr or (vi,vi+1) ∈ G3 ⊆ G23 ⊆ Gr, then (vi,vi+1) ∈ Gr. If
(vi,vi+1) ∈ G12,3, then v1 ∈ G12 and v2 ∈ G3, and then one of the following
holds

– If vi ∈ G1 and vi+1 ∈ G3, then, since G2 6= ∅, there is v ∈ G3, and
therefore (vi,v) ∈ G12 ⊆ Gr and (v,vi+1) ∈ G23 ⊆ Gr. Furthermore,
since Gr is closed transitively, (vi,vi+1) ∈ Gr

– If vi ∈ G2 and vi+1 ∈ G3, then (vi,vi+1) ∈ G23 ⊆ Gr

That is (vi,vi+1) ∈ Gr for all i, and therefore, (v1,vn) ∈ Gr which is a
contradiction. That is, Gl = G1 · G2 · G3 = G1 · G2 ∗ G2 · G3 = Gr. �

Proof of Proposition 3.5

Proof of Proposition 3.5. Let us name as G the causal graphs associated to the
expression

(
cgraph(π1) ∗ . . . ∗ cgraph(πm)

)
· lR · lA.

By definition cgraph(π) is the reflexive and transitive closure of graph(π) and,
in its turn, graph(π) is given by{

graph(πi)
∣∣ 1≤ i ≤ m

}
∪
{
(lBi , lR)

∣∣ 1≤ i ≤ m
}
∪
{
(lR, lA)

}
It is easy to see that all edge in graph(πi) and also the edge (lR, lA) are in
G. Similarly, the edges of the form (lBi , lR) are in G because lBi belongs to
cgraph(πi), and so, (lBi , lR) to the result of apply the rule lR. That is graph(π)⊆
G, and hence also cgraph(π) ⊆ G.

The other way around. We proceed by structural induction assuming that
cgraph(πi) ⊆ G for every direct sub-proof πi and, furthermore, for every la-
bel l ∈ cgraph(πi) there is an edge (l, lBi ) ∈ cgraph(πi) where Bi the consequent
of πi and lBi its associated label.

Suppose that cgraph(π) ⊃ G and pick an edge G which is not an edge of
cgraph(π). By induction hypothesis, if the edge corresponds to a a sub-proof
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of π then it belongs to cgraph(πi) for some direct sub-proof πi, and so, to G
which is a contradiction. Furthermore, it is easy to see that the edge (lR, lA) ∈
graph(π) ⊆ cgraph(π).

Then, such edge must be of the form (v1,v2) where v1 ∈ cgraph(πi) for some
πi and v2 ∈ {lR, lA}. By induction hypothesis, there is some edge (v1, lBi ) ∈
graph(πi) ⊆ graph(π). Note that (lBi , lR) ∈ graph(π) and, consequently, it fol-
lows that (v1, lR) ∈ cgraph(π) because cgraph(π) is transitively close. Similarly
it follows that (v1, lA) ∈ cgraph(π). �

Proof of Proposition 3.6

Proof of Proposition 3.6.

1. Product is the greatest lower bound of the sufficient ≤ relation. By defi-
nition ∏G∈U G =

(⋃
G∈U G

)∗ ⊇ ⋃G∈U G ⊇ G for all G ∈ U. Note that, by
definition G ≤ G′ iff G ⊇ G′, so that ∏G∈U G ≤ G for all G ∈ U. Further-
more, let G′ the greatest lower bound of ≤, then G′ ⊇ G for all G ∈U, and
hence, G′ ⊇ ⋃G∈U G which implies (G′)∗ ⊇

(⋃
G∈U G

)∗
= ∏G∈U G Since

G′ is a causal graphs it is transitively and reflexively close, so that G′ =
(G′)∗ = ∏G∈U G.

2. for every pair of causal graphs G and G′ it holds that G ≤ G′ if and only if
G ∗ G′ = G. Just note that G ∗ G′ is the greatest lower bound of ≤ and G is
the a lower bound of both G and G′ and any other lower bound have to be
a lower bound of G, so that G ∗ G′ = G.

3. Both product and application are monotonic operations with respect to the
sufficient ≤ relation. Note that, by Proposition 3.3 they are monotonic with
respect to the subgraph relation and G ≤ G′ iff G ⊇ G′, so that, they are
monotonic with respect to the ≤ order relation.

4. for every pair of causal graphs G and G′ it holds that G · G′ ≤ G ∗ G′.
Note that by definition G · G′ = (G � G′)∗ and G ∗ G′ = (G ∪ G′)∗ and
G � G′ ⊇ G ∪ G′, so that, G · G′ ⊇ G ∗ G∗ and this, by definition, implies
G · G′ ≤ G ∗ G′. �

Proof of Proposition 3.8

Proof of Proposition 3.8.
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It is clear that ↓ is subjective since ⇓CLb is the image of ↓ . Furthermore, ff
↓G1 = ↓G2, that is, {G′ | G′ ≤ G1}= {G′ | G′ ≤ G2}, then G2 ∈ ↓G1 and G1 ∈ ↓G2,
and then G2 ≤ G1 and G1 ≤ G2, that is G1 = G2. Hence ↓ is bijective.

We show now that it preserves the product.

↓∏
G∈U

G = {G′ | G′ ≤ G for all G ∈U} =
⋂

G∈U
{G′ | G′ ≤ G} = ∏

G∈U
↓G

Furthermore, since by definition, G1 ≤ G2 iff G1 ∗ G2 = G1 and ↓G1 ≤ ↓G2 iff
↓G1 ⊆ ↓G2 iff ↓G1 ∩ ↓G2 = ↓G1 iff ↓G1 ∗ ↓G2 = ↓G1, then ↓ also preserves the ≤
relation. �

Proof of Proposition 3.9

Proof of Proposition 3.9.

1. Application is associative. Let T, U and W be three causal values. By
definition it follows that

(U · T) ·W = ↓{ GU · GT | GU ∈U and GT ∈ T } ·W
= ↓{ G′ · GW | GU ∈U, GT ∈ T, G′ ≤ GU · GT and GW ∈W }
= ↓{ (GU · GT) · GW | GU ∈U, GT ∈ T and GW ∈W }

In the same way, it also follows that

U · (T ·W) = ↓{ GU · (GT · GW) | GU ∈U, GT ∈ T and GW ∈W }

Then it is enough to show that (GU ·GT) ·GW = GU · (GT ·Gw) = GU ·GT ·
GW which holds due to Proposition 3.3. Then, it holds that U · (T ·W) =
(U · T) ·W = U · T ·W.

2. Addition distributive. By definition, it follows that

(U · T) + (U ·W) = (U · T) ∪ (U ·W)

= ↓
{

GU · GT
∣∣ GU ∈U and GT ∈ T

}
∪ ↓

{
GU · GT

∣∣ GU ∈U and GW ∈W
}

= ↓
{

GU · G′
∣∣ GU ∈U and G′ ∈ T ∪W

}
= U · (T ∪W) = U · (T + W)

Furthermore (U + T) ·W = (U ·W) + (T ·W) holds symmetrically.
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3. Absorption. As we have seen above,

U · T ·W = ↓
{

GU · GT · GW
∣∣ GU ∈U, GT ∈ T and GW ∈W

}
Furthermore, for every c-graph GT ∈ T, it holds that GU · GT · TW ≤ GT .
Then, since T is an ideal, it follows that GU · GT · TW ∈ T and conse-
quently U · T ·W ⊆ T. Thus U · T ·W ∪ T = T. Similarly, it also holds
that U · T ·W ∩ T = U · T ·W. Then, by definition, these equalities can be
rewritten as U · T ·W + T = T and U · T ·W ∗ T = U · T ·W.

4. Identity and Annihilator follow directly from the definition of 1 and 0
respectively as CLb and ∅. �

Proof of Proposition 3.10

Proof of Proposition 3.10.

Note that, by definition products (∗) are ideal intersections (∩) and ≤ stands
for the subgraph relation ⊆. Hence, the preservation of products and the ≤
relation directly follows from Proposition 3.8

It remains to show that ↓ preserves applications. Take any c-graphs G1 and G2,
then

↓G1 · ↓G2 = ⇓{ (G′1 · G′2) | G′1 ∈ ↓G1 and G′2 ∈ ↓G2 }
= ⇓{ (G′1 · G′2) | G′1 ≤ G1 and G′2 ≤ G2 }

Recall that (·) is monotonic with respect to ‘≤’, so that G′1 ·G′2 ≤ G1 ·G2. Hence

↓G1 · ↓G2 = ⇓{ (G′1 · G′2) | G′1 ≤ G1 and G′2 ≤ G2 } ⊆ ↓(G1 · G2)

Furthermore, G1 ≤ G1 and G2 ≤ G2 implies (G1 · G2) ∈ (↓G1 · ↓G2). Note that
every G ∈ ↓(G1 · G2) holds that G≤ (G1 ·G2) and that ↓G1 · ↓G2 is a down set, so
that G ∈ ↓G1 · ↓G2 too. Hence ↓G1 · ↓G2 = ↓(G1 · G2). That is, ↓ also preserves
applications. �
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Proof of Theorem 3.2

Proposition A.1. Given a set of labels Lb, the 〈CLb,∗, ·〉 is isomorphic to the free alge-
bra generated by atomic causal graphs ALb, that is, for any set S and homomorphism
δ : ALb −→ S, there exists a homomorphism term : CLb −→ S given by

term(G) 7→∏{ δ(v1) · δ(v2) | (v1,v2) ∈ G } (110)

such that δ(G) = term(G) for all atomic causal graph G ∈ ALb. �

Proof . Recall that G∗ represents the transitive and reflexive closure of G and,
by definition, ∏G∈U =

(⋃
G∈U

)∗. Furthermore, we write just v instead of δ(v).
Let F =

⋃
G∈U G. Then

∏
G∈U

term(G) = ∏
G∈U

∏
(v1,v2)∈G

v1 ·v2 = ∏
(v1,v2)∈F

v1 ·v2

Furthermore, from the equations in Figure 16 it follows

∏
(v1,v2)∈F

v1 ·v2 = ∏
(v1,v2)∈F∗

l1 · l2 = term(F∗)

= term
(( ⋃

G∈U
G
)∗)

= term
(

∏
G∈U

G
)

That is, term preserves products. Let us see that it also preserves applications.

term(Gu) · term(Gv) =
(

∏
(u1,u2)∈Gu

u1 ·u2

)
·
(

∏
(v1,v2)∈Gv

v1 ·v2

)
= ∏

(u1,u2)∈Gu , (v1,v2)∈Gv

(u1 ·u2) · (v1 ·v2)

Note that

(u1 ·u2) · (v1 ·v2) = u1 · (u2 ·v1 ·v2) = u1 · (u2 ·v1 ∗ v1 ·v2)

= (u1 ·u2 ·v1) ∗ (u1 ·v1 ·v2)

= (u1 ·u2 ∗ u2 ·v1) ∗ (u1 ·v1 ∗ v1 ·v2)

= (u1 ·u2 ∗ u2 ·v1) ∗ (u1 ·v1 ∗ v1 ·v2) ∗ (u1 ·v2 ∗ u2 ·v2)

reorganizing, it follows that

(u1 ·u2) · (v1 ·v2) = (u1 ·u2 ∗ v1 ·v2) ∗ (u1 ·v1 ∗ u2 ·v1 ∗ u1 ·v2 ∗ u2 ·v2)
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and then

term(Gu) · term(Gv) = ∏
(u1,u2)∈Gu , (v1,v2)∈Gv

(u1 ·u2 ∗ v1 ·v2)

∗ ∏
(u1,u2)∈Gu , (v1,v2)∈Gv

(u2 ·v1 ∗ u1 ·v1 ∗ u1 ·v1 ∗ u1 ·v2)

= ∏
(l1,l2)∈Gu∪Gv

(l1 · l2) ∗ ∏
u∈Gu , v∈Gv

(u ·v)

= ∏
(l1,l2)∈Gu ·Gv

(l1 · l2) = term(G1 · G2)

So that, term preserves applications, and hence, it is an homomorphism. �

Proposition A.1 formalize the intuition that every causal graph can be ex-
pressed as a combination of atomic causal graphs, products (∗) and applica-
tions ‘·’. Furthermore, it states that the set of causal graphs CLb is the most
general set we can build with atomic causal graphs, product (∗) and applica-
tion (·) in the sense that, any other set S generated by the atomic causal graphs
together with these operations cannot have more distinct elements.

Proof of Theorem 3.2. Recall the convention of represent atomic causal graph
of the form {(v,v)} just as v. It is clear that δ : ALb −→ Lb given by δ({(v,v)}) 7→
v is a bijection. Note that 〈CLb,∗, ·〉 is a the free algebra generated by ALb
(Proposition A.1) and 〈Ct

Lb,∗, ·〉 is the free algebra generated by Lb. Hence they
are isomorphic. Furthermore

term(G) 7→∏{ v1 ·v2 | (v1,v2) ∈ G } (55)

corresponds to (110) with the above defined δ. So that, by Proposition A.1, the
function term : CLb −→ Ct

Lb is an homomorphism.

Furthermore, let f be a function that recursively maps each label l to the
atomic causal graphs { (l, l) } and compounded terms to their correspond-
ing operations. It is easy to see that f ◦ term(G) = G for all G in CLb. Then
term(G1) = term(G2) implies f ◦ term(G1) = f ◦ term(G2) which, in its turn im-
plies G1 = G2, that is, term is an injective function.

Finally note every term t can be rewritten as x1 ∗ x2 . . . ∗ xn where each xi
only contains applications by successive application of the distributive equa-
tion. Note as well that each xi can be rewritten as l1 · l2 ∗ l2 · l3 ∗ . . . ∗ ln−1 · ln
by application of the transitive equation if they are formed by more than two

249



A proofs

labels and as l · l by the label idempotence equation if they are formed by a
single label l. Furthermore, each pair li ·lj ∗ lj ·lk is equivalent to li ·lj ∗ lj ·lk ∗ li ·lk.
That is, every term t = term(G) for some causal graph G. So that, term(G) is
subjective function, and therefore a bijection too. �

Proof of Theorem 6.1

Lemma 9. Given a completely labelled program P, graph(π) is acyclic for any non-
redundant proof π. �

Proof . It is clear that, if π has not direct subproofs, then graph(π) = {(lR, lA)},
and so, it is acyclic. Assume as induction hypothesis, that for every sub-proof
of π the statement holds, but graph(π) has a cycle. Then one of the following
holds.

• (lR, lA) and (lA, lR) are edges of graph(π). Note that, the edge (lR, lA)
implies that head(R) = A and the edge (lA, lR) implies that A is in the
body of R. Hence for every subproof πR of π with rule R there is a
subproof πA of the atom A. Note that πR is also a proof of the atom A.
Let π′ be the result of replacing each occurrence of πR by πA. Then π′ is
proof of the same atom than π and subproo f s(π′) ⊂ subproo f s(π) which
contradicts the assumption that π is non-redundant.

• (lB, lR) and (lR, lB) are edges of graph(π). Note that this case is symmet-
rical to the previous one.

Hence graph(π) is acyclic. �

Note that graph(π) is not necessary a transitive reduction as can be shown
by the following program.

a← b, c b← c c

Proposition A.2. Given a completely labelled program P, for any non-redundant proof
π, cgraph(π) is acyclic, that is, it does not contain any cycle but the reflexive ones. �

Proof of Proposition A.2. By Lemma 9, it follows that graph(π) is acyclic. Then
its transitive closure does not contain cycles and its reflexive one only contains
the reflexive cycles. Hence cgraph(π) is acyclic. �
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Definition A.1 (Proof heigh). Given a proof π its height is given by

height(π) = 1 + max{ height(π′) | π′ is a direct sub-proof of π }

If π has no direct subproofs, then height(π) = 1.

Lemma 10. Let P be a positive program and π = π(A) be a proof of A w.r.t. P with
height(π) = h, Then cgraph(π) ≤ Th

P(A). �

Proof . In case that h = 1 the antecedent of π(A) is empty, i.e.

π(A) =
>
A

(R)

Then cgraph(π) = lR · lA. Furthermore, since the fact (lR : A) is in the program
P, it follows that lR · lA ∈ T1

P(A).

In the remain cases, we proceed by structural induction assuming that for every
natural number h ≤ n− 1, literal Bi and proof πi = π(Bi) of Bi w.r.t. P whose
height(πi) = h it holds that graph(πi)≤ Th

P(Bi) and we will show it in case that
h = n.

Since height(π) > 1 it has a non empty antecedent, i.e.

π(p) =
π1(ψ1 :: B1), . . . ,πm(ψm :: Bm)

A
(R)

Note that height(πi) ≤ n − 1 and then, by induction hypothesis, it holds that
graph(πi) ≤ Th−1

P (Bi). Note also that, by since πi is a proof of (ψi :: Bi), then
ψi(graph(πi)) = 1 for all 1≤ i ≤ m. Hence, by TP definition,

∏{ graph(πi) | 1≤ i ≤ m }· lR · lA ≤ Th
P(A)

Finally note that, by Proposition 3.5, this is just, cgraph(π). �

Lemma 11. Let P be a completely labelled positive program. For every literal A and
≤-maximal causal graph G ≤ Tω

P (A) there is a non-redundant proof π = π(A) of A
w.r.t. P such that cgraph(π) = G.

Proof . For any causal graph G≤max Tk
P(A), there is a positive rule R of the form

(92) with n = 0 and maximal graphs G1, . . . , Gm such that ψi(Gi) = 1 and each
Gi is maximal holding Gi ≤ Th−1

P (Bi) and

G = (G1 ∗ . . . ∗ Gm) · lR · lA
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A proofs

We assume as induction hypothesis that for every literal Bi there is a non-
redundant proof πi = π(Bi) of Bi w.r.t. P such that graph(πi) = Gi. Let
π = π(A) defined as

π(p) =
π1, . . . ,πm

A
(R)

a proof of A w.r.t. P. Furthermore, by Proposition 3.5, cgraph(π) = G. More-
over, since G is ≤-maximal (alternatively ⊆-minimal), by Proposition 3.1, it
follows that π is non-redundant. �

Lemma 12. Given a completely labelled, positive program P, a proof π = π(A) is a
non-redundant proof of A iff cgraph(π) is a cause of A w.r.t. its least model. �

Proof . Let I be the least causal model of the positive program P. For the only if
direction. Let π = π(A) be a non-redundant proof of A. Then, by Lemma 10,
cgraph(π)≤ Th

P(A)≤ Tω
P (A). Recall that, by Theorem 4.1, the least model I of P

is Tω
P (A). Consequently cgraph(π) ≤ I(A). Moreover, if cgraph(π) is not max-

imal, then there is G′ such that cgraph(π) < G′ (alternatively cgraph(π) ⊃ G′)
which, by Proposition 3.1, implies that π is redundant which is a contradiction
with the assumption. Hence cgraph(π) is maximal, and so, a sufficient cause
of A.

For the if direction. If G be a sufficient cause of A, the, by Lemma 11 there is a
non-redundant proof π = π(A) such that cgraph(π) = G. �

Lemma 13. Given a completely labelled program P, a proof π = π(A) is a proof of A
w.r.t. a causal stable model (resp. answer set) I of P iff π is a non-redundant proof of
A w.r.t. the least model of PI . �

Proof . For the only if direction. Let π = π(A) be a proof of A w.r.t. a causal
stable model (resp. answer set) I. Since π is a proof w.r.t. I, every rule R appear-
ing in π holds that I |= body−(R) and, therefore, R is in PI and, consequently
π is a proof of A w.r.t. PI .

The other way around. Let π = π(A) be a proof of A w.r.t. PI . It is clear
that every rule R appearing in PI and so in π holds that I |= body−(R) and,
therefore π is a proof of A w.r.t. P and I. �

Proof of Theorem 6.1. By Lemma 13 π is a proof of A w.r.t. P and I iff is a
proof of A w.r.t. the least model of PI . Furthermore, by Lemma 12, π is a proof
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of A w.r.t. the least model of PI iff cgraph(π) is a cause of A w.r.t. the least
model of PI , which since I is an stable model (resp. answer set) of P must be I
itself. That is, π is a proof of A w.r.t. P and I iff cgraph(π) is a cause of A w.r.t.
interpretation I. �

Proof of Theorem 3.1

Lemma 14. Let 〈P,≤,+,∗〉 partial lattice corresponding to the semilattice 〈P,∗〉, and
(Is)s∈S a family of ideals of P. Let

AS = { I′ ∈ IP | Is ⊆ I′ for some s ∈ S }
BS = { I′ ∈ IP |

⋂
s∈S

Is ⊆ I′ }

Then AFI
S = BS �

Proof . We will show first that AFI
S = BS. Suppose there is I′ ∈ BS such that

I′ /∈ AFI
S , then there is F ∈ AF

S such that I′ ∩ F = ∅, and furthermore, since
F ∈ AF

S , it holds that I′′ ∩ F 6= ∅ for all I′′ ∈ AS. Let G be the causal graph given
by

G = ∏{ G′ | G′ ∈ Is ∩ F for all s ∈ S }

Note that G′ ∈ Is ∩ F implies G ∈ F (filters are close under defined infimum) and
G ∈ Is (G ≤ G′ and ideals is down close under ≤). Furthermore, G ∈ Is ∩ F for
every Is also implies G ∈ ⋂s∈S Is ⊆ I′ because I′ ∈ BS. Hence G ∈ I′ ∩ F which
contradicts the fact that from the assumption it follows I′ ∩ F = ∅. Hence
BS ⊆ AFI

S . Suppose now that there is I′ ∈ AFI
S such that I′ /∈ BS, then I′ ∩ F 6= ∅

for all F ∈ AF
S but

⋂
s∈S Is 6⊆ I′. Let G be a causal graph in

⋂
s∈S Is\I′ and F = ↑G.

It is clear that F∈FP and F∩ I′′ 6= ∅ for all I′′ ∈ AS because G∈⋂s∈S Is⊆ Is⊆ I′′.
Hence F ∈ AF

S . Furthermore F∩ I′ = ∅, because G 6∈ I′, which is a contradiction
with the assumption. Therefore AFI

S = BFI
S . �

Proposition A.3. Given a partial lattice 〈P,≤,+,∗〉 corresponding to the semilattice
〈P,∗〉, the map εI : BP −→ IP given by (IF, I) 7→ ⋂

I is an isomorphism between the
completely distributive lattices 〈BP,≤,+,∗〉 and 〈IP,⊆,∪,∩〉. �
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A proofs

The proof Proposition A.3 will rely on the following auxiliary Lemma:

Proof of Proposition A.3. We will show first that the function f : IP −→ BP
given by I 7→ (IF, I) with I = { I′ ∈ IP | I ⊆ I′ } is the inverse of εI . By the above
Lemma 14, it follows that

{ I′ ∈ IP | Is ⊆ I′ for some s ∈ S }FI = { I′ ∈ IP |
⋂
s∈S

Is ⊆ I′ }

Furthermore, taking (Is)s∈S = I follows

{ I′ ∈ IP | Is ⊆ I′ }FI = { I′ ∈ IP | Is ⊆ I′ }

Then the image of f is a subset of BP. Furthermore

εI ◦ f (I) = εI(IF, I) =
⋂

I =
⋂
{ I′ ∈ IP | I ⊆ I′ } = I

Moreover

f ◦ εI(IF, I) = f
(⋂

I
)
= (IF

2 , I2)

where I2 =
{

I′ ∈ IP
∣∣ ⋂ I⊆ I′

}
⊇ I because every I′ ∈ I holds

⋂
I⊆ I′. Suppose

there is I′ ∈ I2 such that I′ /∈ I. Since I = IFI , then there is F ∈ IF s.t.
• I′ ∩ F = ∅ and that

• I′′ ∩ F 6= ∅ for all I′′ ∈ I because F ∈ IF, and

• F /∈ IF
2 (otherwise it would be I′ /∈ IFI

2 = I2).

But, since F /∈ IF
2 , there is some I′′ ∈ I2 such that F ∩ I′′ = ∅. Furthermore,

I′′ ∈ I2 implies
⋂

I ⊆ I′′ which, in its turn implies F ∩ ⋂ I = ∅. However,
G = ∏{ G′ | G′ ∈ I′′ ∩ F for some I′′ ∈ I } holds that G ∈ I′′ for all I′′ ∈ I. Note
that G ≤ G′ for some G′ ∈ I′′ and all I′′ ∈ I and ideals are down close. So that
G ∈ F ∩ ⋂ I = ∅ which is a contradiction. Hence I = I2 and therefore f is the
inverse of εI , and so, we denote it by ε−1

I . We will show now that

∑
s∈S

(IF
s , Is) = (IF, I) iff

⋃
s∈S

Is =
⋂

I

Recall that, by definition,

I =
⋂
s∈S

Is =
⋂
s∈S
{ I′ ∈ IP | Is ⊆ I′ }

= { I′ ∈ IP | Is ⊆ I′ for all s ∈ S }

=
{

I′ ∈ IP

∣∣∣ ⋃
s∈S

Is ⊆ I′
}
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Note that also that ε−1
I ◦ εI(IF

s , Is) = (IF
s , Is) implies I = { I′ ∈ IP |

⋂
I ⊆ I′ }

and this holds if and only if
⋃

s∈S Is =
⋂

I. That is, the function εI maps the ∑
operation into

⋂
. Next we show that εI also preserves the ∏ operation. Let

now

∏
s∈S

(IF
s , Is) = (IF, I)

by definition

I =
(⋃

s∈S
Is

)FI
= { I′ ∈ IP | Is ⊆ I′ for some s ∈ S }FI

and then, by the above Lemma 14, it follows that

I =
{

I′ ∈ IP

∣∣∣ ⋂
s∈S

Is ⊆ I′
}

which holds if and only if
⋂

s∈S Is =
⋂

I. That is, the function εI maps the ∏
operation into

⋂
. Finally note that, as usual (IF

1 , I1) ≤ (IF
2 , I2) if and only if

(IF
1 , I1) ∗ (IF

2 , I2) = (IF
1 , I1) and

⋂
I1 ⊆

⋂
I2 if and only if

⋂
I1 ∩

⋂
I2 =

⋂
I1. So

that εI also maps ≤ into ⊆. Hence εI is an bijective homomorphism between
〈BP,≤,∑,∏〉 and 〈IP,⊆,∪,∩〉, that is an isomorphism. �

Proposition A.4. The mapping ↓ : CLb −→ VLb is an injective homomorphism be-
tween structures 〈CLb,≤,+,∗, ·〉 and 〈VLb,≤,+,∗, ·〉 where the sum of causal graphs
is the least upper bound of ≤ when it is defined. �

Proof . By Proposition 3.10 it follows that ↓ is an isomorphism between struc-
tures 〈CLb,≤,∗, ·〉 and 〈⇓CLb,≤,∗, ·〉. Since ⇓CLb ⊆ VLb it follows that ↓ is injec-
tive, so that it just remain to show that ↓ preserves sums. Note that, if ∑G∈U G
is defined, then ∑G∈U G = Gu with G≤ Gu for all G ∈U. Hence ∑G∈U ↓G = ↓Gu
and then

↓∑
G∈U

G = ↓Gu = ∑
G∈U
↓G

So that ↓ is an injective homomorphism. �

Proposition A.5. Given a set of labels Lb, the structure 〈VLb,+,∗〉 is isomorphic to
the free completely distributive (complete) lattice generated by the principal ideals ⇓CLb.
that is, for any set S and homomorphism δ : CLb −→ S, there exists a homomorphism
term : VLb −→ S given by

term(U) 7→∑{ δ(G) | G ∈U } (111)

such that δ(G) = term(G) for all causal graphs G ∈ CLb. �
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A proofs

Proof . By Theorem 2.2, for each order-preserving map δ from 〈⇓CLb,≤〉 to
a completely distributive complete lattice S, there exists a homomorphism
h : BCLb −→ S such that δ = h ◦ εCLb . Furthermore, by Proposition A.3, the func-
tion εI : BCLb −→ ICLb is an isomorphism between structures 〈BP,≤,+,∗〉 and
〈ICLb ,⊆,∪,∩〉, and hence, the function h ◦ ε−1

I : IP −→ S is an homomorphism.
Note that by definition causal values are the ideals of CLb and are closed under
defined suprema because it is only defined when it is the maximum, that is
VLb = IP.

Let I1 and I2 such that I1 = {I ∈ IP | G ∈ I} and I2 = {I ∈ IP | ↓G ⊆ I} for
some causal graph G. Then εCLb(G) = (IF

1 , I1) and ε−1
I (↓G) = (IF

2 , I2) Note that
G ∈ I implies that ↓G ⊆ I because ideals are down close and conversely is
trivial because G ∈ ↓G, so that I1 = I2, and then, εCLb(G) = ε−1

I (↓G). Hence
δ(G) = h ◦ ε−1

I (↓G) for all causal graph G. Then

term(U) = ∑{ δ(G) | G ∈U } = ∑{ h ◦ ε−1
I (↓G) | G ∈U }

= h ◦ ε−1
I

(
∑{ ↓G | G ∈U }

)
= h ◦ ε−1

I (U)

for all causal value U, and hence term is an homomorphism. �

Proof of Theorem 3.1. Note that Theorem 3.1 is just a less technical rephrasing
of the statement of the above Proposition A.5. �

Proof of Theorem 3.4

Definition A.2 (Term function). For every set S and homomorphism δ : ALb −→ S
we denote by termv

δ : VLb −→ S the function given by

termv
δ(U) 7→∑{ termg

δ(G) | G ∈U }

where termg
δ : CLb −→ S is the function given by (110) and ALb is the set of the

principal ideals of atomic causal graphs. �

Proposition A.6. Given a set of labels Lb, 〈VLb,≤,+,∗, ·〉 is isomorphic to the free
algebra generated by the principal ideals of atomic causal graphs ALb, that is, termv

δ is
an homomorphism for any set S and homomorphism δ : ALb −→ S. �
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Proof . Notice that, by Proposition A.5, the homomorphism termv
δ preserves

sums and products, so that

termv
δ(U) = termv

δ

( ⋃
G∈U
↓G
)

= termv
δ

(
∑

G∈U
↓G
)

= ∑
G∈U

termv
δ

(
↓G
)

Furthermore

termv
δ(↓G) = ∑

G′≤G
termc

δ(G
′) = termc

δ(G)

so that, termv
δ(↓G) = termc

δ(G). Recall that, from Proposition A.1, the func-
tion termc

δ, and so now also termv
δ , is an homomorphism between structures

〈CLb,∗, ·〉 and 〈S,∗, ·〉. Since termv
δ preserves sums, it remains to show that is

preserves ≤, but note that when sums or products are preserved, then ≤ is also
preserved. �

Proof of Theorem 3.4. Note that since 〈VLb,≤,+,∗, ·〉 and 〈Vt
Lb,≤,+,∗, ·〉 are

structures of the same class (they have the same operations following the equa-
tions in Figures 13, 14 and 15), by Proposition A.6, it follows that termv

δ is an
homomorphism. Notice that when we take S = Vt

Lb and δ as δ(G) 7→ v such
that v is the only vertex of G as in Theorem 3.2, it follows that the image of
termc

δ is Ct
Lb which is the subset of Vt

Lb formed by term without sums. Recall
that, from Theorem 3.2, termc

δ : CLb −→ Ct
Lb is an isomorphism. That is, every

term without sums t hold that (termc
δ)
−1(t) = Gt for some causal graphs Gt. Let

f be a function that maps each term t without sums to the principal ideal ↓Gt
and sums to set unions. It is easy to see that f ◦ termv

δ(U) = U for all U in VLb
which implies that termv

δ is an injective function. Finally note that, by succes-
sive application of the distributive equations, every term t can be rewritten as
∑Gi∈U termc

δ(Gi) where each termc
δ(Gi) is a term without sums that represents

a causal graph Gi. Then ⇓U is a causal value, and

term(⇓U) = ∑
Gi∈U

∑
G′≤G

termc
δ(G

′) = ∑
Gi∈U

termc
δ(Gi) = t

That is, every term t = termv
δ(U) for some causal value U. So that, termv

δ is
subjective function, and therefore a bijection too. For convenience we avoid
the subindex and superindices and denote by term both functions termv

δ and
termc

δ. �
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A proofs

Proof of Proposition 3.11

Proof of Proposition 3.11. For properties of product (∗) and sum (+) just note
that by definition product, sum and sufficient relation respectively correspond
to set intersection, union and subset relation.

In order to show that application (·) is continuous let t, v1 ≤ v2 be causal values.
Then for all G ∈ t · v1 there exists Gt ∈ t and Gv1 ∈ v1 such that G ≤ Gt · Gv1 .
Furthermore, since v1 ≤ v2, there exists Gv2 ∈ v2 such that Gv1 ≤ Gv2 and, since
application is monotonic for causal graphs (Proposition 3.6, it follows that G ≤
Gt · Gv1 ≤ Gt · Gv2 and, therefore, G ∈ t · v2. In a similar manner it follows that
v1 · t ≤ v2 · t.

Let now G be a causal graph and U be a directed set of causal values. Note
that u ≤ ∑u∈U u for all u ∈ U. Then, since application is monotonic, it follows
that ↓{G} · u ≤ ↓{G} ·∑u∈U u for all u ∈U. Thus,

∑
u∈U
↓{G} · u ≤ ↓{G} · ∑

u∈U
u

The other way around. Pick G′ ∈ ↓{G} · ∑u∈U u. Then there exists Gt ∈ ↓{G}
and Gu ∈ ∑u∈U u such that G′ ≤ Gt · Gu. Furthermore, since Gu ∈ ∑u∈U u, it
follows that Gu ∈ u for some u ∈ U. Hence G′ ∈ ↓{G} · u for some u ∈ U and,
therefore G′ ∈ ∑u∈U ↓{G} · u. Consequently

∑
u∈U
↓{G} · u = ↓{G} · ∑

u∈U
u

In a similar manner it follows that

∑
u∈U

u · ↓{G} =
(

∑
u∈U

u
)
· ↓{G}

Moreover, let T and U be two directed sets of causal values. Then

(
∑
t∈T

t
)
·
(

∑
u∈U

u
)
= (∑

t∈T
∑
G∈t
↓{Gt}) · ∑

u∈U
∑

Gu∈U
↓{Gu})
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and since application distributes over sums, it follows that(
∑
t∈T

t
)
·
(

∑
u∈U

u
)
= ∑

t∈T
∑

Gt∈t
(↓{G} · ∑

u∈U
∑

Gu∈U
↓{Gu})

= ∑
t∈T

∑
Gt∈t

∑
u∈U

∑
Gu∈U

(↓{Gt} · ↓{Gu})

= ∑
t∈T

∑
u∈U

∑
Gt∈t

∑
Gu∈U

(↓{G} · ↓{Gu})

= ∑
t∈T

∑
u∈U

( ∑
Gt∈t
↓{G} · ∑

Gu∈U
↓{Gu})

= ∑
t∈T

∑
u∈U

(t · u)

= ∑
(t,u)∈T×U

t · u

Finally to show that u · u′ ≤ u ∗ u′ note that, by definition

u · u′ def= ⇓{ G · G′ | G ∈ u and G′ ∈ u′ }

and that G · G′ ≤ G and G ≤ G′, so that u · u′ ≤ u and u · u′. Since u ∗ u′ is the
greatest lower bound of ≤, it follows that u · u′ ≤ u ∗ u′. �

259



A proofs

chapter 4: causal semantics

Proof of Theorem 4.3

Lemma 15. Let P and Q two positive labelled programs respectively over signatures
〈Lit, Lb,δ〉 and 〈Lit, Lb,δ′〉.

• If Q is the result of unlabelled rules with label l in P, that is Q = P[l 7→ 1], then
(Tk

P)
cl = (Tk

Q)
cl .

• If δ′(A) = 1 for some literal A and δ′(B) = δ(B) for all literal B 6= A, then
(Tk

P)
cl = (Tk

Q)
cl . �

Proof . In case that k = 0, by definition, Tk
P = Tk

Q = 0 and 0cl = 0. Otherwise the
proof follows by induction assuming that the statement holds for the case k− 1.

For every literal A, (Tk
P)

cl(A) 6= 0 iff Tk
P(A) 6= 0 iff there is some causal graph

G ≤ Tk
P(A) iff there is a labelled rule of the form lR : A ← B1, . . . , Bm in P,

there are causal graphs G1, . . . , Gm such that Gi ≤ Tk−1
P (Bi) for all 1≤ i ≤ m and

G = (G1 ∗ . . . ∗ Gm) · lR ·δ(A).

Note that, for 1≤ i ≤ m, Gi ≤ Tk−1
P (Bi) iff Tk−1

P (Bi) 6= 0 iff (Tk−1
P )cl(Bi) 6= 0. By

induction hypothesis this holds iff (Tk−1
Q )cl(Bi) 6= 0 iff Tk−1

Q (Bi) 6= 0 iff there is

a causal graph G′i ≤ Tk−1
Q (Bi).

Note also that there is a rule of the form lR : A ← B1, . . . , Bm in P iff there is
a rule of the form l′R : A ← B1, . . . , Bm in Q where l′R = 1 iff lR = l and l′R = lR
otherwise.

Hence, (Tk
P)

cl(A) 6= 0 iff G′ = (G′1 ∗ . . . ∗ G′m) · l′R ·δ(A)≤ Tk
Q(A) iff Tk

Q(A) 6= 0 iff
(Tk

Q)
cl(A) 6= 0. Consequently (Tk

P)
cl = (Tk

Q)
cl .

In case that k = ω, for X ∈ {P, Q} Tk
X(A) = ∑i≤ω Ti

X(A), and therefore Tk
P(A) = 0

iff Ti
P(A) = 0 for some i≤ ω iff Ti

Q(A) = 0 iff Tk
Q(A) = 0. Hence (Tk

P)
cl = (Tk

Q)
cl .

It is easy to see that if the modification is done in δ(A) instead of lR the same
reasoning is applicable. �

Proof of Theorem 4.3. Let P0 = P and Pi+1 the result of unlabelled some rule
in Pi. From Lemma 15, it follows that

(Tω
P )cl = (Tω

P0
)cl = (Tω

P1
)cl = . . . = (Tω

Pn
)cl
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where n is the number of labelled rules in P. Let Q0 = Pn and Qi+1 a program
of a signature 〈Lit, Lb,δi+1〉 such that δi+1(A) = 1 for some literal A such that
δi+1(A) 6= 1 and δi+1(B) = δi(B) for all literal B 6= A. From Lemma 15 again, it
follows that

(Tω
Q0
)cl = (Tω

Q1
)cl = . . . = (Tω

Qm
)cl

where m is the number of literals in Lit such that δ(A) 6= 1. That is, it holds
that (Tω

P )cl = (Tω
Qm

)cl . Furthermore, from Theorem 4.1 these are respectively
the least models I and J of P and Qm. Note that, Qm is a completely unlabelled
program such that δm(A) = 1 for all literal A. That is, Qm is an standard pro-
gram and J is the standard least model of Qm which is the unlabelled version
of P, and J = Jcl = Icl . �

Proof of Theorem 4.4

Proof of Theorem 4.4. By definition I and Icl assigns 0 to the same atoms, so
that PI = PIcl

. Furthermore let Q (instead of P′ for clarity) be the unlabelled
version of P. Then QIcl

is the unlabelled version of PI .

1. Let I be a stable model of P and J be the least model of QIcl
. Then, I is the

least model of PI and, from Theorem 4.3, it follows that Icl = J, that is Icl is
a stable model of Q.

2. Let I′ is a stable model of Q and I be the least model of PI′ . Since I′ is a
stable model of Q, by definition it is the least model of QI′ , furthermore,
since QI′ is the unlabelled version of PI′ it follows, from Theorem 4.3, that
Icl = I′. Note that PI = PIcl

= PI′ . Thus I is a stable model of P. �

Proof of Theorem 4.5

Proof of Theorem 4.5. By definition, if I is consistent causal answer set, it is an
stable model. Then, by Theorem 4.4, Icl is an stable model of P′. Furthermore,
since I is consistent, I(A) = 0 or I(A) = 0 for all literal A, so Icl(A) = 0 or
Icl(A) = 0 for all literal A, that is, Icl is a answer set of P′. On the contrary, if
I is an inconsistent answer set, there is an atom a such that PI |= a and PI |= a.
Hence, by Corollary 4.1, P′ I |= a and P′ I |= a, and then Icl is an inconsistent
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answer set of P′ I . Note that P′ I = P′ I
cl

and consequently Icl is an inconsistent
answer set of P′.

Note that, if either I(A) = 0 or I(A) = 0 for all literal A, then Icl(A) = 0 or
Icl(A) = 0 for all literal A, and if I(A) 6= 0 for all literal A, then Icl(A) = 1 for
all literal A. Hence I is an answer set of P as well.

The other way around, if I′ is a answer set of P′, then it is an stable model of P′

and, by Theorem 4.4, there is a unique causal stable model and a unique causal
answer set I of P s.t. I′ = Icl . If otherwise I′ is an inconsistent answer set of P′,
then there is an atom a such that P′ I

′
|= a and P′ I

′
|= a. Then, by Corollary 4.1,

it follows that PI′ |= a and PI′ |= a. Therefore, I = I′ is an inconsistent answer
set of P. �

Proof of Theorem 4.6

Proof of Theorem 4.6. From the only if direction, note that, by Definition 4.9,
it follows that every proof π holds I |= body−(R) for all R in π, and hence, π
is a proof w.r.t. PI . Then, from Theorem 4.2, graph(π) is a cause of A w.r.t. I
and PI , and since I is a stable model of P, then graph(π) is a cause of A w.r.t.
interpretation I and program P.

From the if direction, note that, since I is an stable model of P, then I is the
least model of PI . Hence, from Theorem 4.2, π is a proof of A w.r.t. PI . Note
that every rule R in PI holds I |= body−(R), so that, π is also proof w.r.t. inter-
pretation I and program P. �

Lemma 16. Let P be a head labelled program and π be a non-redundant proof of some
literal. If cgraph(π) contains an edge (l1, ln), then there are subproofs π1 and πn of π
such that

• π1 is a sub-proof of πn,

• either li is the label of the rule in πi or li is the label of the literal in the conclusion
πi with i ∈ {1,n}. �

Proof . Let us denote by π ≺ π′ that π is a sub-proof of π′.

Assume that (l1, ln) ∈ cgraph(π). Then there is a sequence of edges such that
{(l1, l2), (l2, l3), . . . , (ln−1, ln)} ⊆ graph(π).
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By definition of graph(π) it follows, for 2≤ i≤ n, that there are proofs πAi and
πBi such that πAi is a proof of Ai, πBi is a proof of Bi, πBi is a direct sub-proof
of πAi , πAi ≺ π and either

1. li is the label of the rule in πAi and li+1 = δ(Ai), or

2. li = δ(Bi) and li+1 is the label of the rule in πAi

Note that for every edge in the for of (li, li+1) there is an edge of the form
(li+1, li+2) for 1≤ i ≤ n− 2.

If (1), then li+1 = δ(Ai), and then, since every literal A has an associated label
δ(A) different from the label of any rule, it follows that li+1 = δ(Ai) implies
li+1 = δ(Bi+1) for 1≤ i≤ n− 2. Furthermore, since different literals have differ-
ent labels, it must hold that Ai = Bi+1.

Otherwise (2), li+1 is the label of the rule in πAi and also of the rule in πBi+1 .
Since the program is head labelled — that is, rules with different heads has
different labels — it follows that πAi and πBi+1 are proof of the same literal,
that is Ai = Bi+1.

Then, since π is non-redundant, it follows that there are not different subproofs
with the same consequent, and hence Ai = Bi+1 implies πAi = πBi+1 . Hence,
since πBi+1 is a direct sub-proof of πAi+1 , it follows that πAi ≺ πAi+1 .

If l1 is the label of the rule of πA1 , then let π1 = πA1 . Otherwise, l1 = δ(B1), and
let π1 be the direct sub-proof of πA1 with conclusion B1.

Let also πn = πAn−1 . Then π1 ≺ πn. Furthermore, either li = δ(Ai) with Ai the
conclusion of πi or li is the label in the rule of πi with i ∈ {1,n}. �

Lemma 17. Let l and l′ be two labels. Let S be a set of causal graphs. Let also

S′ =
{

G[l 7→ l′]
∣∣ G ∈ S

}
Then ∏ S′ = ∏ S[l 7→ l′]. �

Proof . Pick an edge (v′1,v′n) in ∏ S′. Then there are edges and graphs such that
(v′1,v′2) ∈ G1[l 7→ l′], . . . , (v′n−1,v′n) ∈ Gn−1[l 7→ l′] and Gi ∈ S. Hence, there are
edges (v1,v2) ∈ G1, . . . , (vn−1,vn) ∈ Gn−1 such that v′i = vi[l 7→ l′] for 1≤ i ≤ n,
and consequently (v1,vn) ∈∏ S and (v′1,v′n) ∈∏ S[l 7→ l′].

The other way around. Pick an edge (v′1,v′n) in ∏ S[l 7→ 1]. Similarly, there are
edges (v1,v2) ∈ G1, . . . , (vn−1,vn) ∈ Gn−1 such that v′i = vi[l 7→ l′] for i ∈ {1,n}.
Hence, there are edges (v′1,v′2) ∈ G1[l 7→ l′], . . . , (v′n−1,v′n) ∈ Gn−1[l 7→ l′] such
that v′i = vi[l 7→ l′] for 1≤ i ≤ n. Consequently (v′1,v′n) ∈∏ S′. �
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Proof of Theorem 4.7

Lemma 18. Let P and Q two, positive programs such that Q is the result of replacing
the label l by the label l′ in all the in P, that is Q = P[l 7→ l′]. Then, it holds that
Tk−1

Q = Tk−1
P [l 7→ l′] for all 0≤ k ≤ ω. �

Proof . In case that k = 0, and it follows that Tk
Q(A) = 0 and Tk

P(A) = 0. Hence,
0 = 0[l 7→ t]. Otherwise, the proof follows by induction assuming as induction
hypothesis that both condition holds for the case k− 1.

For any literal A and causal graph G ≤max Tk
P(A) there are causal graphs

G1, . . . , Gm such that Gi ≤max Tk−1
P (Bi) and G = (G1 ∗ . . . ∗Gm)·lR ·δ(A) for some

labelled rule lR : A ← B1, . . . Bm.

Hence, if lR 6= l, it follows that G[l 7→ l′] = (G1 ∗ . . . ∗Gm)[l 7→ 1]· lR ·δ(A). Other-
wise, lR = l and it follows that G[l 7→ 1] = (G1 ∗ . . . ∗ Gm)[l 7→ l′] · l′R ·δ(A) where
l′R = lR[l 7→ l′]. By Lemma 17, it follows that

(G1 ∗ . . . ∗ Gm)[l 7→ l′] = (G1[l 7→ l′] ∗ . . . ∗ Gm[l 7→ l′])

and, by induction hypothesis Gi[l 7→ l′] ≤ Tk−1
Q . Hence G[l 7→ l′] ≤ Tk

Q, and
consequently Tk

P[l 7→ l′] ≤ Tk
Q.

The other way around. For any literal A and causal graph G ≤max Tk
Q(A) there

are causal graphs G1, . . . , Gm such that Gi ≤max Tk−1
Q (Bi) for 1≤ i ≤ m and G =

(G1 ∗ . . . ∗Gm)·l′R ·δ(A) for some labelled rule lR,Q : A ← B1, . . . Bm. Since Tk−1
Q =

Tk−1
P [l 7→ t], for each Gi there is a G′i ≤ Tk−1

P (Bi) such that Gi ≤ G′i [l 7→ l′]. Let
G′ = (G′1 ∗ . . . ∗ G′m) · lR ·δ(A). Then G′ ≤ Tk

P(A). As above

G′[l 7→ 1] = (G′1[l 7→ l′] ∗ . . . ∗ G′m[l 7→ l′]) · l′R ·δ(A)

so that, G≤ G′[l 7→ l′], and consequently Tk
Q ≤ Tk

P[l 7→ l′] and Tk
Q = Tk

P[l 7→ l′]. �

Lemma 19. Let l and l′ be two different labels. Let S be a set of causal graphs such
that for every causal graph G ∈ S and every edge (v, l) ∈ G (resp. (l,v) ∈ G) with
v 6= l′ there are an edges (v, l′) ∈ G (resp. (l′,v) ∈ G). Then

For every edge of the form (v, l) ∈ ∏ S (resp. (l,v) ∈ ∏ S) with v 6= l′ there is
an edge (v, l′) ∈∏ S (resp. (l′,v) ∈∏ S).
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Proof . Pick (v, l) ∈∏ S such that (v, l′) /∈∏ S. Since (v, l) ∈∏ S there are causal
graphs G1, . . . , Gn−1 in S and edges (vi,vi+1) ∈ Gi such that v1 = v and vn = l.
Note that, by hypothesis, (vn−1, l′) ∈ Gn−1, and consequently (v, l′) ∈∏ S.

Similarly, pick (l,v) ∈ ∏ S such that (l′,v) /∈ ∏ S. There are causal graphs
G1, . . . , Gn−1 in S and edges (vi,vi+1) ∈ Gi such that v1 = l and vn = v. Note
that, by hypothesis, (l′,v2) ∈ G1, and consequently (l′,v) ∈∏ S. �

Lemma 20. Let P a positive, head labelled program with a unique atom labelling. Let
l ∈ Lb be a label not in the image of δ and k be an non-negative integer. Then

For every literal A, causal graph G ≤max Tk
P(A) and label v in P, if the edge

(v, l) ∈ G (resp. (l,v) ∈ G) with v 6= l, there is an edge (v, l′) ∈ G (resp. (l′,v) ∈
G) where l′ is the label assigned by δ to the head of all the rules labelled with l. �

Proof . In case that k = 0, Tk
Q(A) = 0, and therefore the statement holds vacuous.

Otherwise, the proof follows by induction assuming as induction hypothesis
that both condition holds for the case k− 1.

For any literal A and every causal graph G ≤max Tk
P(A) there are causal graphs

G1, . . . , Gm such that Gi ≤max Tk−1
P (Bi) and G = (G1 ∗ . . . ∗Gm)·lR ·δ(A) for some

labelled rule lR : A ← B1, . . . Bm.

If l /∈ Gi for all 1 ≤ i ≤ m and l 6= lR, then l /∈ G, so that the statement holds
vacuous.

If l ∈ Gi for some 1 ≤ i ≤ m, by induction hypothesis, for each Gi and edge
(v, l) ∈ Gi (resp. (l,v)) there is an edge (v, l′) ∈ Gi (resp. (l′,v) ∈ Gi). Hence, by
Lemma 19, for every edge (v, l) (resp. (l,v) in G1 ∗ . . . ∗ Gm, there is an edge
(v, l′) (resp. (l′,v)).

Suppose there is an edge (v, l) ∈ G such that (v, l′) /∈ G. From the above state-
ment, it follows that (v, l) /∈ G1 ∗ . . . ∗ Gm. Furthermore l is not in the image of
δ, so that l = lR, and consequently l′ = δ(A). But for every vertex v ∈ G there is
an edge (v, l′) ∈ G which is a contradiction with the assumption.

Suppose there is an edge (l,v) ∈ G such that (l′,v) /∈ G. In the same way as
above, l = lR and the only edge of the form (l,v) ∈ G\(G1 ∗ . . . ∗ Gn) are (l, l)
and (l, l′). The edge (l′, l) is exclude by hypothesis and the edge (l′, l′) ∈ G
because it is reflexive closed.

Suppose now that there exists some literal A′ and graph G′ ≤max Tk
P(A′) such

that (v, l) ∈ G′ but (v, l′) /∈ G′. In the same way as above, l = lR and, since the
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program is head labelled, it follows that A = A′ and l′ = δ(A). Hence (v, l′)∈G′

following the same reasoning as above. The same applies to an edge of the form
(l,v). �

Lemma 21. Let l and l′ be two different labels. Let S be a set of causal graphs such
that for every causal graph G ∈ S and every edge (v, l) ∈ G (resp. (l,v)) with v 6= l
there are an edges (v, l′) ∈ G (resp. (l′,v) ∈ G). Let also

S′ =
{

G[l 7→ 1]
∣∣ G ∈ S

}
Then ∏ S′ = ∏ S[l 7→ 1]. �

Proof . Pick an edge (v1,vn) ∈ ∏ S′. Then there are edges and graphs such
that (v1,v2) ∈ G1[l 7→ 1], . . . , (vn−1,vn) ∈ Gn−1[l 7→ 1] and Gi ∈ S. Note that
Gi[l 7→ 1]⊆ Gi. Then (vi,vi+1) ∈ Gi for for 1≤ i≤ n− 1, and then (v1,vn) ∈∏ S,
Note furthermore that, since (vi,vi+1)∈Gi[l 7→ 1] neither v1 = l nor vn = l holds,
Consequently the edge (vi,vi+1) ∈∏ S[l 7→ 1].

The other way around. Pick an edge (v1,vn) ∈∏ S[l 7→ 1]. Then there are edges
and graphs (v1,v2)∈G1, . . . , (vn−1,vn)∈Gn−1 such that Gi ∈ S. We may assume
without lose of generality that vi 6= vj for 1≤ i < j ≤ n + 1. Furthermore, since
(v1,vn) ∈ ∏ S[l 7→ 1], neither v1 = l nor vn = l. Suppose that (v1,vn) /∈ ∏ S′.
Then there is some (vi,vi+1) /∈ Gi[l 7→ 1]. That is, either vi = l or vi+1 = l.

If vi = l, then (l′,vi+1) ∈ Gi, and then (l′,vi+1) ∈ Gi[l 7→ 1]. Furthermore, the
edge (vi−1,vi) ∈ Gi−1, and then (vi−1, l′) ∈ Gi−1. Hence (vi−1, l′) ∈ Gi−1[l 7→ 1].
Then (vi−1,vi+1)∈∏ S′, and consequently (v1,vn)∈∏ S′ too. Otherwise, vi+1 =
l, following the same reasoning it holds that (vi,vi+2) ∈∏ S′, and consequently
(v1,vn) ∈∏ S′ too, which is a contradiction. �

Lemma 22. Let P and Q two, positive head labelled programs over a signature 〈Lit, Lb,δ〉
such that δ maps each literal to a different label and different of any label in P and
Q, and such that Q is the result of unlabelled the rules with label l in P, that is
Q = P[l 7→ 1]. Then, it holds that Tk−1

Q = Tk−1
P [l 7→ 1]. �

Proof . In case that k = 0, and it follows that Tk
Q(A) = 0 and Tk

P(A) = 0. Hence,
0 = 0[l 7→ t]. Otherwise, the proof follows by induction assuming as induction
hypothesis that both condition holds for the case k− 1.

For any literal A and causal graph G ≤max Tk
P(A) there are causal graphs

G1, . . . , Gm such that Gi ≤max Tk−1
P (Bi) and G = (G1 ∗ . . . ∗Gm)·lR ·δ(A) for some

labelled rule lR : A ← B1, . . . Bm.
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Hence, if lR 6= l, it follows that G[l 7→ 1] = (G1 ∗ . . . ∗Gm)[l 7→ 1] · lR ·δ(A). Other-
wise, lR = l and G[l 7→ 1] = (G1 ∗ . . . ∗Gm)[l 7→ 1]·δ(A). By Lemma 20, it follows
that for every Gi and edge (v, l) ∈ G (resp. (l,v) ∈ G) with v 6= l, there is an edge
(v, l′) ∈ G (resp. (l′,v) ∈ G) where l′ = δ(A). Therefore, by Lemma 21, it follows
that

(G1 ∗ . . . ∗ Gm)[l 7→ 1] = (G1[l 7→ 1] ∗ . . . ∗ Gm[l 7→ 1])

and, by induction hypothesis Gi[l 7→ 1] ≤ Tk−1
Q . Hence G[l 7→ 1] ≤ Tk

Q, and
consequently Tk

P[l 7→ 1] ≤ Tk
Q.

The other way around. For any literal A and causal graph G ≤max Tk
Q(A) there

are causal graphs G1, . . . , Gm such that Gi ≤max Tk−1
Q (Bi) for 1≤ i ≤ m and G =

(G1 ∗ . . . ∗ Gm) · lR,Q · δ(A) for some labelled rule lR,Q : A ← B1, . . . Bm. Since
Tk−1

Q = Tk−1
P [l 7→ 1], for each Gi there is a G′i ≤ Tk−1

P (Bi) such that Gi ≤ G′i [l 7→ 1].
Let G′ = (G′1 ∗ . . . ∗G′m)·lR,P ·δ(A). Then G′ ≤ Tk

P(A). Note that lR,Q = lR,P[l 7→ 1],
that is, lR,Q = lR,P if lR,P 6= l and 1 otherwise. As above

G′[l 7→ 1] = (G′1[l 7→ 1] ∗ . . . ∗ G′m[l 7→ 1]) · lR,Q ·δ(A)

so that, G ≤ G′[l 7→ 1], and consequently Tk
Q ≤ Tk

P[l 7→ 1] and Tk
Q = Tk

P[l 7→ 1]. �

Lemma 23. Let P and Q two, positive head labelled programs over a signature 〈Lit, Lb,δ〉
such that δ maps each literal to a different label and different of any label in P and Q,
and such that Q is the result of replacing the label of l in P by t ∈ Lb∪ {1}, with t not
in the image of δ, that is Q = P[l 7→ t]. Let I and J be respectively the least models of
P and Q. Then, it holds that J = I[l 7→ t]. �

Proof . Note that, from Theorem 4.1, I and J are respectively Tω
P and Tω

Q . Af-
ter this observation, if t ∈ Lb, then the result follows directly from Lemma 18.
Otherwise, t = 1, and then the result follows directly from Lemma 22. �

Proof of Theorem 4.7. Let Q = P[l 7→ t]. If I is an stable model of P, then, by
definition, I is the least model of PI . Furthermore QI = PI [l 7→ t], and therefore,
by Lemma 23, J = I[l 7→ t] is the least model of QI . Note furthermore that
I(A) = 0 iff I[l 7→ t] = 0, and therefore QI = QJ , so that J is a stable model of P.

Let J = I′. If J is an stable model of Q = P[l 7→ t], then J is the least model of
QJ and, by Lemma 22, the least model I of PJ holds J = I[l 7→ t] and J(A) = 0
iff I(A) = 0. Therefore PI = PJ , and consequently I is a causal stable model of
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P. Furthermore, since J(A) = 0 iff I(A) = 0, if J is an answer set, then I is an
answer set.

Finally note that if I a answer set, it is an stable model and the statement holds.
Otherwise I(A) = 1 for all atom A, and I[l 7→ t] = I will still be an inconsistent
answer set of P[l 7→ t]. �

Proof of Proposition 4.1

Proof of Proposition 4.1. Just note that if I is an stable model then ΓP(I) = I
and consequently also Γ2

P(I) = I. That is, I is a fixpoint of Γ2
P and consequently

it must be between the least and the greatest fixpoint lfp(Γ2
P)≤ I ≤ gfp(Γ2

P). �

Proof of Theorem 4.8

Proof of Theorem 4.8. Let I be an stable model of P such that G is a sufficient
cause of A w.r.t. I and let P′ be a completely labelled program with the same
rules than P and let $ the replacing necessary to transform P′ in P. That is,
P′[$] = P. From Theorem 4.7, there is a exactly one stable model I′ of P′ such
that I′[$] = I.

Furthermore, from Theorem 3.4, I′(A) may be rewritten as I′(A) = ∑G∈S G for
some set S of incomparable causal graphs. Moreover, from Theorem 4.6, it
follows that every cause G of A w.r.t. I′ holds G = cgraph(π′) for some non-
redundant proof π of A. That is, we may rewrite the above term as I′(A) =

∑π′∈Π cgraph(π′)′ for some set of non-redundant proofs Π′ w.r.t. P′. Hence
I(A) = I′(A)[$] = ∑π′∈Π′ cgraph(π′)[$] and G = cgraph(π′)[$] for some non-
redundant proof π′ of A w.r.t. P′. Note that, but for labels P and P′ are the
same program, so that a proof in non-redundant w.r.t. P′ iff it is w.r.t. P.
Consequently G = cgraph(π) for some non-redundant proof π = π′[$] of A
w.r.t. P.

Suppose that cgraph(π) is not acyclic, that is, it contains a non-reflexive cycle
formed by the (l1, l2), (l2, l3), . . . , (ln−1, ln). Since cgraph(π′) is transitive close
by definition, it follows that (l1, ln) and (ln, l1) are edges of cgraph(π′). Since,
furthermore P′ is head labelled, by Lemma 16 it follows that there are proofs
π1, π′1, πn, and π′n, such that π1 is a sub-proof of πn, π′n is a sub-proof of π′1, l1
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is a label either in the rule or in the consequent of π1 and π′1 and ln is a label
either in the rule or in the consequent of πn and π′n.

Note that, since π1 and π′1 has the same label and P′ is completely labelled it
follows that π1 = π′1. Similarly, πn = πn. Hence π1 is a sub-proof of πn and
vice-versa which is a contradiction. Consequently, cgraph(π) is acyclic. �

Proof of Theorem 4.9

Proof of Theorem 4.9. Let Q = P′ in the sake of clarity. Recall that by definition
ΓP(I) and ΓP′(J) are respectively the least model of PI and QJ . If I = Jcl , then
I(A) = 0 iff J(A) = 0 for all literal A and consequently QJ is the unlabelled
version of PI . Then, by Theorem 4.3, it follows that the least models ΓP(I) and
ΓP′(J) respectively of PI and QJ hold that ΓP′(J) = ΓP(I)cl . Hence, it also holds
that Γ2

P′(J) = Γ2
P(I)cl .

Then note that 0 = 0cl and so Γ2i
P′(J) = Γ2i

P (I)cl for all non-negative integer i ≥ 0.
That is, lfp(Γ2

P′) = lfp(Γ2
P)

cl . Finally note that gfp(Γ2
P′) = ΓP′(lfp(Γ2

P′)) =

ΓP(lfp(Γ2
P)

cl)cl = gfp(Γ2
P)

cl .

Recall furthermore that the reduct of a program with respect to a causal inter-
pretation I and with respect to its two-valued version Icl is the same. Hence,
ΓP(I) = ΓP(Icl) holds for every interpretation I. Then,

lfp(Γ2
P) = ΓP(gfp(Γ2

P)) = ΓP(gfp(Γ2
P)

cl) = ΓP(gfp(Γ2
P′)

Similarly, it can be shown that gfp(Γ2
P) = ΓP(lfp(Γ2

P′)). That is, we can obtain
the causal well-founded model of a program just by apply the Γ2

P one time to
its standard well-founded model. �

Proof of Theorem 4.10

Proof of Theorem 4.10. Let I = gfp(Γ2
P). Then lfp(Γ2

P) = ΓP(I) is the least
model of PI . If π is a proof of A with respect to gfp(Γ2

P) and P, then, by
Definition 4.9, π is a proof of A with respect to PI and, from Theorem 4.2, it
follows that cgraph(π) is a cause of A with respect to the least model PI , that
is lfp(Γ2

P). Hence, by Definition 4.15, cgraph(π) is a cause of A under the
well-founded semantics.
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The other way around. If cgraph(π) is a cause of A under the well-founded
semantics, then cgraph(π) is a cause of A with respect to the least model PI

and from Theorem 4.2, it follows that π is a proof of A with respect to PI . Note
that every rule R in PI holds that I |= body−(R), and consequently π is a proof
of A with respect to I = gfp(Γ2

P) and P. �

chapter 6: causal literals

Proof of Proposition 6.1

Proof of Proposition 6.1. For the if direction. Assume there is some sufficient
cause G of A w.r.t. I such that ψ(G) = 1. Since G is a sufficient cause of
A w.r.t. I, it follows that G ≤ I(A) and, then, since ψ(G) = 1, it follows that
I(ψ :: A) ≥ G. That is, I(ψ :: A) 6= 0.

For the only if direction. Assume that I |= (ψ :: A), then there is G′ ≤ I(A) such
that ψ(G′) = 1. Let G be a causal graph such that G′ ≤ G ≤max I(A). Then G is
a sufficient cause of A w.r.t. I and, since ψ is monotonic and G′ ≤ G, it follows
that ψ(G) = 1. �

Proof of Proposition 6.2

Proof of Proposition 6.2. Let S be a directed set of causal values, that is, for
every pair of values {u1,u2} ⊆ S there is a value u3 ∈ S such that u1 ≤ u3 and
u2 ≤ u3. Let also uS be the supremum of S, that is, uS

def= ∑u∈S u.

Pick G′ ≤ fψ(uS). Then G′ ≤ uS and ψ(G′) = 1 and, hence, G′ ≤ u for some
u ∈ S. Hence G′ ≤ fψ(u) and, therefore G′ ≤ ∑u∈S f (u) for all G′ ≤ fψ(uS), that
is, fψ(uS)≤ ∑u∈S fψ(u). The other way around, pick G′ ≤ fψ(u) for some u ∈ S
and let u′ any causal value such that u ≤ u′. Since G′ ≤ fψ(u) it follows that
ψ(G′) = 1 and G′ ≤ u≤ u′ and, therefore G′ ≤ fψ(u′), i.e. fψ is monotonic. Then
uS ≥ u implies fψ(uS) ≥ ∑u∈S fψ(u), and therefore, fψ(uS) = ∑u∈S fψ(u). That
is fψ is monotonic and continuous.

Finally note that by definition

fψ(I(A)) def= ∑
{

G ∈ CLb
∣∣ G ≤ I(A) and ψ(G) = 1

}
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which, by Definition 6.3, is equal to I(ψ :: A). �

Proof of Proposition 6.4

Proof of Proposition 6.4. Note that, by Definition 6.7,

fR
(

I(B1), . . . , I(Bm)
)
≤ I(A)

iff

(
f1( I(B1)), . . . , fm( I(Bm))

)
· lR ·δ(A) ≤ I(A)

and, form Proposition 6.2, iff

(
I(ψ1 :: B1) ∗ . . . ∗ I(ψ1 :: Bm)

)
· lR · δ(A) ≤ I(A)

which, by Definition 4.2, holds iff I |= R. �

Proof of Proposition 6.5

Proof of Proposition 6.5. Note that, from Proposition 6.4, it follows that I |= R
iff fR

(
I(B1), . . . , I(Bm)

)
≤ I(A) and I |=r R iff fR(µ1, . . . ,µm) ≤ I(A) for all

µi ≤ I(A).

Since I(Bi) ≤ I(Bi) for all lBi, by taking µi = I(Bi), it is clear that that I |=r R
implies I |= R.

The other way around, let µi any causal value such that µi ≤ I(Ai) and assume
that I |= R. Since fR is monotonic (Proposition 6.3), it follows that

fR(µ1, . . . ,µm) ≤ fR
(

I(A1), . . . , I(Am)
)

and, since I |= R, it follows that fR
(

I(B1), . . . , I(Bm) ≤ I(A). Hence I |=r R. �
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Proof of Proposition 6.6

Proof of Proposition 6.6. Note that Si
def= {µi | µi ≤ I(Bi)} has the clearly upper

bound I(Bi), it is a directed set. Hence, since fR is continuous, it follows that

∑
µ1∈S1,...,µm∈Sm

fR(µ1, . . . ,µm) = fR( ∑
µ1∈S1

µ1, . . . , ∑
µm∈Sm

µm)

= fR(I(B1), . . . , I(Bm))

and, thus, TP(I)(A) is equal to

∑
{

fR(µ1, . . . ,µm)
∣∣ R ∈ P , head(R) = A and µ1 ≤ I(B1), . . . ,µm ≤ I(Bm)

}
which in its turn is the definition of RP(I)(A). �

Proof of Proposition 6.7

Lemma 24. Let P be a positive uniquely labelled causal program, A be a literal, k ∈
{0, . . . ,ω} be an ordinal and G be a causal graph. Let λ be the number of unlabelled
rules in P. If G ≤max Tk

P(A) and h = height(G) + λ ≤ k then G ≤ Th
P(A). �

Proof . In case that h = 0, G must be the empty graph. Hence, if G ≤max Tk
P(A),

there must be an unlabelled rule of the form R = (A← B1, . . . , Bm) such that
Tk−1

P (Bi) = i for 1≤ i ≤ m. But, if there is some unlabelled rule, then λ≥ 1 and
so h ≥ 1, which is a contradiction with the assumption that h = 0.

In case that h ≥ 1, we proceed by induction assuming as hypothesis that the
lemma statement holds for any h′ < h. If G ≤max Tk

P(A), there must be an
causal rule of the form R = (lR : A← B1, . . . , Bm) such that Gi ≤max Tk−1

P (Bi) for
1≤ i ≤ m and G = GR · lR ·δ(lR) with GR = G1 ∗ . . . ∗ Gm.

If m = 0 then GR = 1, and then G = lR ·δ(A), and then height(G)≤ 2. Note that
R is then a fact, and therefore G ≤ Ti

P(A) for all i ≥ 1. Since h ≥ 1, it follows
that G ≤ Th

P(A).

Otherwise, if lR = 1, let λ′ = λ− 1 and h′i = height(Gi) + λ′ for 1 ≤ i ≤ m and
Q = P\{R}. Then h =max{h′1, . . . , h′m}+ 1 and λ′ the number of unlabelled rule
in Q, and then, by induction hypothesis, Gi ≤ Thi

Q (Bi) ≤ Thi
P (Bi). Consequently

G ≤ Th
P(A).
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If otherwise lR 6= 1. Let h′i = height(Gi) + λ for 1 ≤ i ≤ m. Then, since any
path in Gi is also a path G, it is clear that height(Gi)≤ height(G), and therefore
h′i ≤ h. Suppose that h′i = h for some Gi. Then there is a simple path l1, . . . , lh−λ

of rule labels of length h− λ in Gi. Since lR 6= 1, since G = GR · lR ·δ(A), there is
an edge (lh−λ, lR) ∈ G. That is l1, . . . , lh−λ, lR is a walk of length h− λ + 1 in G.
Furthermore, since lR /∈ Gi because the program is uniquely labelled, it follows
that lj 6= lR with 1 ≤ j ≤ h− λ. Hence l1, . . . , lh−λ, lR is a simple path of length
h− λ + 1 which contradicts the assumption that height(G) = h− λ.

Thus h′i < h for all Gi and then, by induction hypothesis, Gi ≤ Th′i
P (Bi). Hence

G ≤ Th′
P (A) where h′ = 1 + max{h′1, . . . , h′m}. Furthermore h′ ≤ h, and conse-

quently G ≤ Th′
P (A) ≤ Th

P(A). �

In case that k = ω, by definition Tω
P (A) = ∑i<ω Ti

P(A). Thus, if G ≤max Tω
P (A)

and height(G) = h then there is some i < ω s.t. G ≤max Ti
P(A) and h≤ i, and as

we already show, then G ≤ Th
P(A). �

Proof of Proposition 6.7. Let Q be a uniquely labelled program with the same
rules than P but for the labels such that for every rule Ri ∈ P
• If Ri is unlabelled in P, then Ri is unlabelled in Q.

• Otherwise, R is labelled in Q with a label lR different from any other rule
in Q.

Then P is the result of replacing in Q each label lR by the original label it has
in P. Let $ such replacing, that is P = Q[$]. Then, from Lemma 18, it follows
that Tk

P = Tk
Q[$] for all 0 ≤ k ≤ ω. Furthermore, since Q is a uniquely labelled

program, from Lemma 24, it follows that G ≤ Th
Q(A) = Th

P(A) holds whenever
G ≤max Tk

Q(A) = Tk
P(A). �
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chapter 7: queries and complexity

Proof of Proposition 7.1

Proof of Proposition 7.1.

1. If a vertex v is labelled with the operation (∗) or (·) and one of its children
vi is labelled with 0, then

term(T̃,v) = term(T̃,v1) ∗ . . . ∗ term(T̃,vi) ∗ . . . ∗ term(T̃,v1)

= term(T̃,v1) ∗ . . . ∗ 0 ∗ . . . ∗ term(T̃,v1)

= 0

Hence, the label of the vertex v may be replaced by 0 and their children
removed. Check whether the label of some children is 0 is clearly feasible
in polynomial time.

2. If v is labelled with the operation (+) and one of its children is labelled
with 0, then

term(T̃,v) = term(T̃,v1) + . . . + term(T̃,vi) + . . . + term(T̃,v1)

= term(T̃,v1) + . . . + 0 + . . . + term(T̃,v1)

= term(T̃,v1) + . . . + term(T̃,v1)

and consequently the child labelled with 0 may be removed.

3. If a vertex v is labelled with the operation (∗) and one of its children is
labelled with 1, then

term(T̃,v) = term(T̃,v1) ∗ . . . ∗ term(T̃,vi) ∗ . . . ∗ term(T̃,v1)

= term(T̃,v1) ∗ . . . ∗ 1 ∗ . . . ∗ term(T̃,v1)

= term(T̃,v1) ∗ . . . ∗ term(T̃,v1)

and the child may be removed.

4. If a vertex v labelled with the operation (∗) and its has no children,
term(T̃,v) = ∏ ∅ = 1, that is, it may be replaced by 1.

5. If a vertex v is labelled with the operation (·) and one of its children is
labelled with 1, then either term(T̃,v) = 1 · term(T̃,vr) = term(T̃,vr) or
term(T̃,v) = term(T̃,vl) · 1 = term(T̃,vl), that is, the last may be removed
and v replaced to the other children.
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6. If a vertex v is labelled with the operation (+) and one of its children is
labelled with 1, then

term(T̃,v) = term(T̃,v1) + . . . + term(T̃,vi) + . . . + term(T̃,v1)

= term(T̃,v1) + . . . + 1 + . . . + term(T̃,v1)

= 1

and then the label of v may be replaced by 1 and all its children removed.

7. If the root v is labelled with 0, then it may be removed because ∑ ∅ = 0.

It is easy to see that all the these checks and their correspondent transforma-
tions are feasible in polynomial time. �

Proof of Proposition 7.3

Proof of Proposition 7.3. The fact that T̃P( Ĩ) = TP(I) is immediately from the
fact that operators ∑ and ∏ and (·) in Definition 4.3 are just mapped into they
corresponding labelled vertex.

To see that T̃P( Ĩ) is computable in polynomial time, note that ∑ S and ∏ S over
a set of t-graphs S is feasible in polynomial time. In fact, it is only necessary a
linear number of set unions. Compute T̃ · l for some label l only takes constant
number of set unions. �

Proof of Proposition 7.6

Proof of Proposition 7.6. The proof follows by structural induction assuming
that it holds for every children of a vertex and showing that then it holds for
such vertex.

1. If fV(v) = u ∈ Lb∪ {1} and (wu,wl) ∈ G with ψAc(u) = wu and ψAc(l) =
wl .
Then term(T̃,v) = u and then term(T̃,v) · l = u · l.
Note also that u · l ∈ CLb.
Hence G′ = u · l is the only causal graph that holds G′ ≤max term(T̃,v) · l.
Since (wu,wl) ∈ G, then G ≤ ψAc(G′) = wu ·wl
Hence caused(Ac, G, T̃,v, l) = G′ = u · l = T̃l(T̃u).

275



A proofs

2. If fV(v)∈ {·} and (wu,wl)∈G with {(v,vl)
l , (v,vu

r )
r}⊆ E(T̃) and fV(vr) =

u, ψAc(u) = wu and ψAc(l) = wl .
By induction hypothesis,

caused(G, T̃,vl ,u) =

∑{G′ | G ≤ ψAc(G′) and G′ ≤ term(T̃,vl) ·u}
(112)

and by application monotonicity

caused(G, T̃,vl ,u) · l = ∑{ G′ | G ≤ ψAc(G′)

and G′ ≤ term(T̃,vl) ·u }· l

Note that, by the above caused definition

caused(G, T̃,v, l) = T̃l( caused(G, T̃,vl ,u)) = caused(G, T̃,vl ,u) · l

so that, (112) can be rewritten as

caused(G, T̃,v, l) = ∑{ G′ | G ≤ ψAc(G′) and G′ ≤ term(T̃,vl) ·u }· l

which, since application distributes over sum can be rewritten as

caused(G, T̃,v, l) = ∑
{

G′ · l
∣∣ G ≤ ψAc(G′) and G′ ≤ term(T̃,vl) ·u

}
Furthermore, written down term(T̃,vl) ·u as a sum of causal graphs, it
follows that term(T̃,vl) ·u = G1 ·u + . . . + Gn ·u.
We then assume, without of generality, that G′ ≤max term(T̃,vl) ·u.
Then G′ = Gi ·u for some Gi, and then G′ · l = Gi ·u · l = Gi ·u ∗ u · l.
Hence G ≤ ψAc(G′ · l)
iff G ≤ ψAc(Gi ·u ∗ u · l)
iff G ≤ ψAc(Gi ·u) and G ≤ ψAc(u · l).
Note that, by assumption (wu,wl) ∈ G, so that, G ≤ ψAc(u · l), and then
G ≤ ψAc(Gi ·u) and G ≤ ψAc(u · l)
iff G ≤ ψAc(Gi ·u)
iff G ≤ ψAc(G′).
That is, G ≤ ψAc(G′ · l) iff G ≤ ψAc(G′) and consequently

caused(G, T̃,v, l) = ∑
{

G′ · l
∣∣ G ≤ ψAc(G′ · l) and G′ ≤ term(T̃,vl) ·u

}
In addition, by application monotonicity, it follows that
G′ ≤ term(T̃,vl) ·u implies G′ · l ≤ term(T̃,vl) ·u · l. Then

caused(G, T̃,v, l) ≤ ∑
{

G′ · l
∣∣ G ≤ ψAc(G′ · l)

and G′ · l ≤ term(T̃,vl) ·u · l
}
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Moreover, since term(T̃,vl) ·u · l ≤ term(T̃,vl) ·u, it follows that
G′ · l ≤ term(T̃,vl) ·u · l implies G′ · l ≤ term(T̃,vl) ·u.
and, since G′ · l · l = G′ · l, then it follows that

caused(G, T̃,v, l) = ∑
{

G′ · l
∣∣ G ≤ ψAc(G′ · l)

and G′ · l ≤ term(T̃,vl) ·u · l
}

Note also that, term(T̃,vl) ·u · l = term(T̃,v) · l, and then

caused(G, T̃,v, l) = ∑
{

G′ · l
∣∣ G ≤ ψAc(G′ · l) and G′ · l ≤ term(T̃,v) · l

}
and rewritten G′ · l as G′′, it follows that

caused(G, T̃,v, l) = ∑
{

G′′
∣∣ G ≤ ψAc(G′′) and G′′ ≤ term(T̃,v) · l

}
Note that, term(T̃,v) · l = G′1 · l + . . . + G′n · l, so that, G′′ ≤max term(T̃,v) · l
implies G′′ = G′i · l for some G′i .

3. If fV(v) ∈ {+}, then by definition

caused(Ac, G, T̃,v, l) def= T̃+ { caused(G, T̃,v′, l) | (v,v′) ∈ E(T̃) }

that corresponds to

caused(Ac, G, T̃,v, l) def= ∑{ caused(G, T̃,v′, l) | (v,v′) ∈ E(T̃) }

Furthermore, by induction hypothesis

caused(G, T̃,v′, l) = ∑{G′ | G ≤ ψAc(G′) and G′ ≤ term(T̃,v′) · l}

for all v′ such that (v,v′) ∈ E(T̃). Hence caused(Ac, G, T̃,v, l) is equal to

∑
(v,v′)∈E(T̃)

∑{G′ | G ≤ ψAc(G′) and G′ ≤ term(T̃,v′) · l}

which, in its turn, can be rewritten as

∑
{

G′
∣∣ G ≤ ψAc(G′) and G′ ≤ ∑

(v,v′)∈E(T̃)

term(T̃,v′) · l
}

Note that ∑(v,v′)∈E(T̃) term(T̃,v′) · l = term(T̃,v) · l. Hence

caused(Ac, G, T̃,v, l) = ∑
{

G′
∣∣ G ≤ ψAc(G′)

and G′ ≤ term(T̃,v) · l
}
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4. The case that fV(v) ∈ {∗} is symmetrical to the case that fV(v) ∈ {+} until
reach that caused(Ac, G, T̃,v, l) is equal to

∏
(v,v′)∈E(T̃)

∑{G′ | G ≤ ψAc(G′) and G′ ≤ term(T̃,v′) · l}

Then, this equivalent to⋂
(v,v′)∈E(T̃)

⇓{G′ | G ≤ ψAc(G′)} ∩ ⇓{G′ | G′ ≤ term(T̃,v′) · l}

which, in its turn, is equivalent to

⇓{G′ | G ≤ ψAc(G′)} ∩
⋂

(v,v′)∈E(T̃)

⇓{G′ | G′ ≤ term(T̃,v′) · l}

Note that⋂
(v,v′)∈E(T̃)

⇓{G′ | G′ ≤ term(T̃,v′) · l} = ∏
(v,v′)∈E(T̃)

term(T̃,v′) · l

and ∏(v,v′)∈E(T̃) term(T̃,v′) · l = term(T̃,v) · l. Then

caused(Ac, G, T̃,v, l) = ∑{G′ | G ≤ ψAc(G′) and G′ ≤ term(T̃,v) · l}

5. Otherwise, fV(v) = u∈ Lb∪{1} or fV(v)∈ {·} but (wu,wl) /∈G. Then there
not exists G′ such that G ≤ ψAc(G′) and G′ ≤ term(T̃,v) · l because every
causal graph G′ ≤ term(T̃,v) · l must contain the edge (u, l) and therefore
(wu,wl) ∈ ψAc(G′) which would contradict that G≤ ψAc(G′) (G⊇ ψAc(G′))
since, by assumption, (wu,wl) /∈ G.

Note furthermore that in order to compute caused(A, G, T̃,v, l), each vertex of
the t-graph T̃ only needs to be visit one time, and each visit only implies check
whether some elements belong to the sets A and G (causal graphs are repre-
sents by the set of their edges) and the application of the constructors. Hence
this procedure is feasible in polynomial time. �

Proof of Proposition 7.5

Proof of Proposition 7.5. We recall that, from Proposition 7.4, deciding whether
G ≤ T̃ is feasible in polynomial time. Furthermore, by definition if G ≤ T̃ and
G 6≤max T̃, then there is a causal graph G′ such that G < G′ ≤ T̃.
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Notice that since G is acyclic and finite, its transitive and reflexive reduction GR

is unique [Aho et al., 1972, Theorem 1]. Let e1, . . . , em the edges of GR and let
G1, . . . , Gm causal graphs such that each Gi is the transitive and reflexive closure
of G\{ei}. It is clear that each Gi ⊆ G. Furthermore, if Gi = G for some Gi, then
GR would not be the unique transitive and reflexive reduction of G which is
a contradiction with the assumption. Hence Gi ⊂ G, that is Gi > G, for all Gi.
Moreover, G′ ⊂ G implies G′ ⊆ G\{ei} for some ei, and hence, G′ ⊆ Gi, that is
G′ ≥ Gi for some Gi. In words, if there exists some G′ such that G < G′ ≤ T̃
then there also exists some Gi such that Gi ≤ T̃.

Hence, G ≤max T̃ iff G ≤ T̃ and Gi 6≤ T̃ for all Gi. Therefore, G ≤max T̃ may be
decided by m + 1 calls to the procedure to decide whether G ≤ T̃, and since
m + 1 is bounded by the size of G, then it is feasible in polynomial time. �
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chapter 8: related work

Proof of Theorem 8.1

Proof of Theorem 8.1. Note that the definition of CP direct consequences op-
erator (Definition 8.6) is the same as the definition of the causal direct conse-
quences operator (Definition 4.3). Furthermore, since every CP-term can be
transformed in an equivalent in negation normal form, we may replace each
atomic CP-term containing a negation by a new label. The result is a causal
term and, therefore, by Theorem 4.1 it follows that

1. lfp(T̃P) is the least model of P, and

2. lfp(T̃P) = Tω
P (0̃).

3. If furthermore P is finite and has n rules, then lfp(T̃P) = T̃n
P(0̃).

Finally, once replaced again the auxiliary labels by their corresponding atomic
CP-terms are equivalences are preserved. �

Lemma 25. Let t be a term. Then λp(∼t) = ¬λp(t). �

Proof . We proceed by structural induction assuming that t is in negated normal
form. In case that t = a is atomic, it follows that λp(∼a) = ¬a = ¬λp(a). In case
that t = ∼a with a atomic, λp(∼t) = λp(∼∼a) and

λp(∼∼a) = a = ¬¬a = ¬λp(∼a) = λp(t)

In case that t = ∼∼a, with a atomic, λp(∼t) = λp(∼∼∼a) and

λp(∼∼∼a) = λp(∼a) = ¬a = ¬λp(∼∼a) = ¬λp(t)

In case that t = u + v. Then

λp(∼t) = λp(∼u ∗∼v) = λp(∼u) ∧ λp(∼v)

By induction hypothesis λp(∼u) = ¬λp(u) and λp(∼v) = ¬λp(v). Then, it fol-
lows that λp(∼t) = ¬λp(u) ∧ ¬λp(v). Furthermore, it also holds that ¬λp(t) =
¬(λp(u) ∨ λp(v)) = ¬λp(u) ∧ ¬λp(v) = λp(∼t).

In case that t = u⊗ v with ⊗∈ { ∗, · }. Then λp(∼t) = λp(∼u+∼v) = λp(∼u)∨
λp(∼v) and by induction hypothesis λp(∼u) = ¬λp(u) and λp(∼v) = ¬λp(v).
Consequently it holds that λp(∼t) = ¬λp(t). �
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Lemma 26. Let t be a term φ a provenance term. If φ ≤ λp(t), then λp(∼t) ≤ ¬φ
and if λp(t) ≤ φ, then ¬φ ≤ λp(∼t). �

Proof . If φ ≤ λp(t), then φ = λp(t) ∗ φ and then ¬φ = ¬λp(t) + ¬φ and, by
Lemma 25, it follows that ¬φ = λp(∼t) + ¬φ. Hence λp(∼t) ≤ ¬φ.

Furthermore if λp(t) ≤ φ, then φ = λp(t) + φ and then ¬φ = ¬λp(t) ∗ ¬φ and,
by Lemma 25, it follows that ¬φ = λp(∼t) ∗ ¬φ. Hence ¬φ ≤ λp(∼t). �

Lemma 27. Let P be a labelled program, Ũ and V respectively be a CP and a causal
interpretation such that V ≤ λc(Ũ). Let also Ĩ and J respectively be a CP and a causal
interpretation such that J ≤ Ĩ. Then TPV (J) ≤ T̃PŨ ( Ĩ). �

Proof . For all E ≤ TPV (J)(p) there is a rule in PV of the form

ri : p← B1, . . . , Bm

that corresponds to a rule of the form (92) in P and furthermore E ≤ (EB1 ∗
. . . ∗ EBm) · ri with each EBj ≤ J(Bj) and V(Cj) = 0 for all Bj and Cj in body(ri).

Hence there is a rule in PŨ of the form (92) and, by hypothesis, EBj ≤ Ĩ(Bj)

for all Bj. Furthermore, clearly V(Cj) = 0≤ ∼Ũ(Cj) for all Cj. Hence E ≤
( Ĩ(B1) ∗ . . . ∗ Ĩ(Bm) ∗∼Ũ(C1) ∗ . . . ∗∼Ũ(Cm)) · ri ≤ T̃PŨ ( Ĩ). �

Lemma 28. Let P be a labelled logic program, Ũ and V respectively be a CP and a
causal interpretation such that V(p)≤ λc(Ũ). Let also Ĩ and J respectively be the least
model of programs PŨ and PV . Then J ≤ Ĩ. �

Proof . Since Ĩ and J are the least models respectively of programs PŨ and PV it
follows that Ĩ = T̃ω

PŨ and J = Tω
PV . We proceed by induction on the number of

iterations k. When k = 0, it follows that T0
PV (p) = 0≤ T̃0

PŨ (p). When 0 < k < ω,
we assume as induction hypothesis the statement holds for the case k− 1. Then,
by Lemma 27, it follows for the case k.

Finally when k = ω, for all E ≤ Tω
PV (p)) there is some i such that E ≤ Ti

PV (p))
and then, by induction hypothesis, E ≤ λc(Ti

PV (p)) ≤ λc(T̃ω
PŨ (p)). Therefore

J ≤ Ĩ. �

Lemma 29. Let P be a labelled program, Ĩ and J respectively be a CP and a causal
interpretation such that V(p) ≤ λc(Ũ). Then Γ(J) ≤ Γ̃( Ĩ). �
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Proof . By Lemma 27 it follows that J′ ≤ Ĩ′ with Ĩ′ and J′ respectively the least
models of P Ĩ and P J̃ and by definition Γ(J) = J′ and Γ̃( Ĩ) = Ĩ′. Hence Γ(J) ≤
Γ̃( Ĩ). �

Lemma 30. Let P be a labelled program, Ũ and V respectively be a CP and a causal
interpretation such that V = λp(Ũ). Let also Ĩ and J respectively be a CP and a CG
interpretation such that J ≥ λc( Ĩ). Then TPV (J) = λc(T̃PŨ ( Ĩ)). �

Proof . For all explanation F ≤ T̃PŨ (J)(p) there is a rule rŨ
i in PŨ of the form

(102) and so a rule of the form (92) in P and there are justifications FBj ≤ Ĩ(Bj)

and FCj ≤ ∼Ũ(Cj) for all Bj and Cj such that

F ≤ (FB1 ∗ . . . ∗ FBm ∗ FC1 ∗ . . . ∗ FCn) · ri

If FCj contains a negative label for some Cj, then λc(FCj) = 0 and consequently it
follows that λc(F) = 0≤ TPV (J)(p). Thus, we assume that FCj does not contain
negated labels, i.e. it only contains double negated labels, for all Cj. Therefore
λc(FCj = 1 and there is not positive justification of Cj w.r.t. Ũ for all atom Cj

and so V(Cj) = 0 for all Cj. Thus there is a rule in PV in the form of

ri : p← B1, . . . , Bm

Note now that, by hypothesis, λc(FBj) ≤ TPV (Bj) for all Bj. Hence λc(F) ≤
TPV (p) for all atom p and so TPV (J) ≥ λc(T̃PŨ (I)). Furthermore, by Lemma 27,
it follows that TPV (J) ≤ T̃PŨ (I). Hence TPV (J) = λc(T̃PŨ (I)). �

Lemma 31. Let P be a labelled logic program, Ũ and V respectively be a CP and a
causal interpretation such that V = λc(Ũ) for all atom p. Let also Ĩ and J respectively
be the least model of programs PŨ and PV . Then J = λc( Ĩ). �

Proof . Since Ĩ and J are the least models respectively of programs PŨ and PV

it follows that Ĩ = T̃ω
PŨ and J = Tω

PV . We proceed by induction on the number
of iterations k. When k = 0, it follows that T0

PV (p) = 0 ≥ λc(0) = λc(T̃0
PŨ (p)).

When 0 < k < ω, we assume as induction hypothesis the statement holds for
the case k− 1. Then, by Lemma 30, it follows for the case k.

Finally when k = ω, for all F ≤ T̃ω
PŨ (p)) there is some i s.t. F ≤ T̃i

PŨ (p)) and

then, by induction hypothesis, λc(F) ≤ Ti
PV (p) and, since furthermore it holds

that Ti
PV (p)) ≤ Tω

PV (p), then λc(F)≤ Tω
PV (p). That is J ≥ λc( Ĩ). Furthermore, by

Lemma 27, it follows that J ≤ Ĩ. Hence J = λc( Ĩ). �
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Proof of Proposition 8.1

Lemma 32. Let P be a labelled logic program, Ĩ and J respectively be a CP and a causal
interpretation such that V = λc(Ũ). Then ΓP(J) ≥ λc(Γ̃P( Ĩ)). �

Proof . By Lemma 31 it follows that J′ = Ĩ′ with Ĩ′ and J′ respectively the least
models of P Ĩ and P J̃ and by definition Γ(J) = J′ and Γ̃( Ĩ) = Ĩ′. Hence Γ(J) ≥
λc(Γ̃( Ĩ)). �

Proof of Proposition 8.1. Let P′ the result of replacing each label of the form
not A by 1 in P(P). Then, it follows that P′ = P ∪ Q where every fact in Q is
of the form (0 : A). It is easy to see that every CP-interpretation J is a model of
(0 : A) and, so that, the least models of P(PI) and PI are the same for every
CP-interpretation I. That is, G2

P(I) =G2
P(I) for every CP-interpretation I and,

consequently, the CP well-founded models of P′ and P are the same. �

Proof of Theorem 8.4

Lemma 33. Let P be a labelled logic program, Ũ and U respectively be a CP and a
provenance interpretation such that U≤ λp(Ũ). Let also Ĩ and I respectively be a CP
and provenance interpretation such that λp(I) ≤ I. Then, λp(T̃PŨ (I)) ≤ TPU(I). �

Proof . Suppose not and let the atom a and the CP justification E be the wit-
nesses. Since E ≤ T̃PŨ (I)(a), there is a rule ri ∈ P of the form (92) and

E = (EB1 ∗ . . . ∗ EB1 ∗ EC1 ∗ . . . ∗ EC1) · ri

where EBj ≤ Ĩ(Bj) and ECj ≤ ∼Ũ(Cj). Note that, by hypothesis λp( Ĩ) ≤ I and
U≤ λp(Ũ). Since λp( Ĩ) ≤ I and EBj ≤ Ĩ(Bj), it follows that, λp(EBj) ≤ I(Bj).
Furthermore, since U≤ λp(Ũ), by Lemma 26, it follows that λp(∼Ũ)≤ ¬U and
then, since ECj ≤ ∼Ũ(Cj), it follows that λp(ECi ) ≤ ¬U(Cj) for all Cj. Therefore
λp(E) ≤ TPU(I)(a) which is a contradiction with the assumption. �

Lemma 34. Let P be a labelled program, Ũ and U respectively be a CP and a prove-
nance interpretation such that λp(Ũ) ≤ U. Let also Ĩ and I respectively be a CP and
provenance interpretation such that I≤ λp( Ĩ). Then, TPU(I) ≤ λp(T̃PŨ ( Ĩ)). �

283



A proofs

Proof . Suppose not and let the atom a and the provenance justification D be the
witness. Since D ≤ TPU( Ĩ)(a), there is some rule ri ∈ PU of the form (92) and

D = Db1 ∗ . . . ∗ Dbm ∗ Dc1 ∗ . . . ∗ Dcn ∗ ri

where Dbj
≤ I(bj) for each bj and Dcj ≤ ¬U(cj) for each cj. By hypothesis,

λp(Ũ) ≤ U and I ≤ λp( Ĩ). Since Dbj
≤ I(bj) and I ≤ λp( Ĩ), it follows that

Dbj
≤ λp( Ĩ)(bj). Furthermore, since λp(Ũ) ≤ U, by Lemma 26, it follows that

¬U≤ λp(∼Ũ) and then, since Dcj ≤ ¬U(cj), it follows that Dcj ≤ λp(∼Ũ)(cj).
Therefore E def= (EB1 ∗ . . . ∗ EB1 ∗ EC1 ∗ . . . ∗ EC1) · ri ≤ T̃PŨ (I)(a) such that DBj ≤
λp(EBj) and DCj ≤ λp(ECj). Then D ≤ λp(E) which contradicts the assump-
tion. �

Lemma 35. Let P be a labelled program, Ũ and U respectively be a CP and a prove-
nance interpretation such that λp(Ũ) = U. Let also Ĩ be CP interpretation. Then it
holds that TPU(λp( Ĩ)) = λp(T̃PŨ ( Ĩ)). �

Proof . The proof directly follows by combining the two directions from Lem-
mas 33 and 34. �

Lemma 36. Let P be a labelled program, Ũ and U respectively be a CP and a prove-
nance interpretation such that λp(Ũ) = U. Let also Ĩ be the least model of the program
PŨ . Then λp( Ĩ) is the least model of PU. �

Proof . Since Ĩ and I respectively are the least fixpoints of T̃PŨ and TPU , it
follows, by Theorems 8.1 and 8.3, that Ĩ = T̃ω

PŨ and I= Tω
PU . We proceed by in-

duction on the number of iterations k. When k = 0, it follows that λp(T̃0
PŨ )(p) =

λp(0) and T0
PU(p) = 0 and, since λp(0) = ⊥, then it λp(T̃0

PŨ )(p) = T0
PU(p).

When 0 < k < ω, we assume as induction hypothesis that the statement holds
for the case k− 1. Then, by Lemma 35, it follows for the case k. Finally when
k = ω, for all justification E ≤ T̃ω

PŨ (p)) (resp. for all D ≤ Tω
PU(p)) ) there is

some i < ω s.t. E ≤ T̃i
PŨ (p)) (resp. D ≤ Ti

PU(p)) ). By induction hypothesis,

λp(E) ≤ Ti
PU(p) (resp. D ≤ λp(T̃i

PŨ (p))) ). Therefore it holds that λp(E) ≤
Tω

PU(p) (respectively D ≤ λp(T̃ω
PŨ (p)) ). That is λp(T̃ω

PŨ (p)) = Tω
PU(p). �

Proof of Theorem 8.4. Let Ũ and U respectively be a CP and a provenance inter-
pretation such that λp(Ũ) = U. Since P is positive, it follows that P = PŨ = PU.
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That is, Ĩ and I are respectively the least CP-model and least provenance model
of PŨ and PU and, consequently, by Lemma 36 it follows that I= λp( Ĩ). �

Proof of Theorem 8.5

Lemma 37. Let P be a labelled logic program and Ĩ be a CP interpretation. Then
GP(λ

p( Ĩ)) = λp(Γ̃P( Ĩ)). �

Proof . By definition Γ̃P( Ĩ) is the least models of P Ĩ . Then, by Lemma 36,
it follows that λp(Γ̃P( Ĩ)) is the least model of Pλp( Ĩ) therefore GP(λ

p( Ĩ)) =
λp(Γ̃P( Ĩ)). �

Lemma 38. Let P be a labelled logic program and Ĩ and J̃ be two fixpoints of the
operator Γ̃2

P such that λp( J̃) = λp( Ĩ). Then Ĩ = J̃. �

Proof . Since λp( J̃) = λp( Ĩ), then ¬λp( J̃) = ¬λp( Ĩ) and by Lemma 26, λp(∼ J̃) =
λp(∼ Ĩ), furthermore, this implies ∼ J̃ = ∼ Ĩ. Hence P Ĩ = P J̃ and Γ̃P( Ĩ) = Γ̃P( J̃).
Then it is clear that Γ̃2

P( Ĩ) = Γ̃2
P( J̃), i.e. Ĩ = J̃. �

Lemma 39. Let P be a labelled logic program and I be a provenance interpretation.
Then I is a fixpoint of the operator G2

P if and only if there is a CP fixpoint Ĩ of Γ̃2
P such

that I= λp( Ĩ). Furthermore, given I, then Ĩ is unique. �

Proof . By Lemma 37, for any interpretation J̃ such that J̃ = λp(I) it holds that
GP(λ

p( J̃)) = λp(Γ̃P( J̃)). Then

Γ̃2
P(I) = λp(Γ̃P(λ

p(Γ̃P( J̃))))

Since, for all J̃, it holds that Γ̃P(λ
p( J̃)) = Γ̃P( J̃), then

Γ̃2
P(I) = λp(Γ̃2

P( J̃))

Hence, if I is a fixpoint of Γ̃2
P, i.e. Γ̃2

P(I) = I

I= λp(Γ̃2
P( J̃))

Therefore, for Ĩ def= Γ̃2∞
P ( J̃), it holds that

I= λp(Γ̃2∞
P ( J̃))
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Furthermore, let J̃ be fixpoint such that Ĩ 6= J̃ and λp( J̃) = I. By Lemma 38, it
follows that Ĩ = J̃ which is a contradiction. So that Ĩ is unique. The other way
around. Since Ĩ = Γ̃2

P( Ĩ), by Lemma 37, λp( Ĩ) = λp(Γ̃2
P( Ĩ)) =G2

P(λ
p( Ĩ)). �

Proof of Theorem 8.5. By Lemma 39, there is a fixpoint Ĩ of Γ̃2
P such that

lfp(G2
P) = λp( Ĩ). Then lfp(G2

P) ≥ λp(lfp(Γ̃2
P)). By Lemma 39, it also fol-

lows that λp(lfp(Γ̃2
P)) is a fixpoint of G2

P. Thus, lfp(G2
P) ≤ λp(lfp(Γ̃2

P))

and, consequently, lfp(G2
P) = λp(lfp(Γ̃2

P)). By following the same reasoning
we conclude that gfp(G2

P) = λp(gfp(Γ̃2
P)). Note that by definition W̃ and W

are respectively equal to 〈lfp(Γ̃2
P),gfp(Γ̃

2
P)〉 and 〈lfp(G2

P),gfp(G
2
P)〉. Hence

W= λp(W̃). �

Proof of Proposition 8.2

Proof of Proposition 8.2. Let I be the CP well-founded model of P. From
Lemma 8.1, it follows that Ĩ is each occurrence of labels of the form not A by 1.
Furthermore, from Theorem 8.2 it follows that W = λc( Ĩ). �

Proof of Theorem 8.6

Proof of Theorem 8.6. From the only if direction. If D ≤WhyP(A), then, by
Definition 8.15, it follows that D ≤ lfp(G2

P)(A). Furthermore, by Theorem 8.5,
it follows that lfp(G2

P)(A) = λp(lfp(Γ̃2
P))(A). Hence, there is some CP-term

with no sums E such that D ≤ λp(E) and E ≤ lfp(Γ̃2
P))(A). Note that, λp only

maps to 1 such labels corresponding to δ(B) for some literal B. Therefore D
contains all the labels in E but for those corresponding to δ(B) for some literal B.
Furthermore, if D does not contain negations, then E only may contains double
negations, but not single negations. Let G = λc(E). The G is a causal term with
no sums and, since E does not contains single negations, it also holds that G 6= 0.
Hence G is a causal graph. Furthermore, G does not contain any label not in E
and, so that, D contains all the labels in G but for those corresponding to δ(B)
for some literal B. Moreover, from Lemma 8.2, it follows that lfp(Γ2

P) = λc(Γ̃2
P)

and, therefore, G = λc(E) ≤ λc(Γ̃2
P) = lfp(Γ2

P).

For the if direction. Let G ≤ lfp(Γ2
P)(A). Then, there is some CP-term with no

sums E such that G ≤ λc(E) and E ≤ lfp(Γ̃2
P)(A) and E contains all the labels
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in G. Let D = λp(E). Then D is a conjunction containing all the labels in E
— and so in G — but for those corresponding to δ(B) for some literal B and
D ≤ lfp(G2

P)(A) = WhyP(A). �

Proof of Proposition A.7

Proposition A.7. Let P be a labelled logic program with no two-valued (standard)
well founded model (i.e. there is some undefined atom). Then there is not any real
answer set why-not provenance justification for any atom. �

Proof of Proposition A.7. Since p is undefined in the (standard) well-founded
model of P, by Theorem 3 in Damásio et al. [2013], it follows that there is not
positive justification of neither p nor not p.

Let WhyP(A) = D1 ∨ . . . ∨ Dn and WhyP(not A) = E1 ∨ . . . ∨ Em such that each
Di and Ei are prime. Then for all Di and Ej there are negative literals ¬LCi and
¬LEi such that Di |= ¬LCi and Ei |= ¬LEi .

Let F′ def= LC1 ∧ . . . ∧ LCn ∧ LE1 ∧ . . . ∧ LEm . Then F′ |= ¬Di and F |= ¬Ei for all Di
and Ei. Hence

F′ |= ¬WhyP(A) = ¬D1 ∧ . . . ∧ ¬Dn

F′ |= ¬WhyP(A) = ¬E1 ∧ . . . ∧ ¬En

Consequently F′ |= WhyP(undef A) ≡ ¬WhyP(A) ∧WhyP(not A). Then let F
be a prime implicant of WhyP(undef A) such that F′ |= F. By construction F is
a positive conjunction such that F |= WhyP(undef A). Note that F′ is positive,
and hence F must be too. Consequently ¬WhyP(undef A) |= ¬F. Note that,
since F is a positive conjugation, ¬F is a disjunction of negative literals, and
consequently every answer set why-not provenance must contain at least one
negative literal. �
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A proofs

chapter 9: implementation

Proof of Proposition 9.1

Proof of Proposition 9.1. If I is a causal stable model of P, then I is the least
model of PI and so I = Tω

PI . Let t = I(A) be a causal term and J be the least
model of the program I. Then t = u · δ(A) for any atom A. Then J(A) =
t ·δ(A) = u ·δ(A) ·δ(A). Since δ(A) ∈ Lb ∪ 1, it follows that δ(A) ·δ(A) = δ(A).
Hence J(A) = u ·δ(A) = t = I(A) for any atom A. That is, J = I. �

Proof of Theorem 9.1

Lemma 40. Let P be a positive program, R be a rule and Q = P∪ {R}. Then Tk
P ≤ Tk

Q
for all k. �

Proof . In case that k = 0, Tk
P = Tk

Q = 0. Otherwise the proof follows by induction
assuming that the statement holds for the case k− 1. Tk

Q(A) is given by

∑
{ (

Tk−1
Q (B1) ∗ . . . ∗ Tk−1

Q (Bm)
)
· lR · δ(A)

∣∣ R′ ∈ Q and head(R′) = A
}

If head(R) 6= A, then just note that the rules with head A in P and Q are the
same, so that, since sums, products and applications are monotonic, it follows
that Tk−1

P ≤ Tk−1
Q implies Tk

P ≤ Tk
Q. Otherwise, Q has a an extra rule, so that

Tk
P ≤ Tk

Q also holds. The case ω is just a sum, so it follows from monotonicity. �

Lemma 41. Let P1 and P2 be two positive programs such that no atom occurring in
P1 is a head atom of P2. Then Tω

P1∪P2
(A) = Tω

P1
(A) for all atom A not in the head of

any rule in P2. �

Proof . By monotonicity, it is clear that Tω
P1∪P2

(A)≥ Tω
P1
(A) or all literal A. In case

that k = 0, it holds that Tk
I1∪P2

= Tk
P1∪P2

= 0. Otherwise, we assume as induction
hypothesis that it holds for the case k− 1. Suppose Tk

P1∪P2
6≤ Tk

P1
. Then there is

a literal A and a rule R in P1 ∪ P2 such that

t def=
(

Tk−1
P1∪P2

(B1) ∗ . . . ∗ Tk−1
P1∪P2

(Bm)
)
· lR · δ(A) 6≤ Tk

P1
(A)
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Note that A is not in the head of any rule in P2, so R must be in P1, and
by hypothesis, it follows that no literal in the body of R is in P2. Hence, by
induction hypothesis, Tk−1

P1∪P2
(Bi) ≤ Tk−1

P1
(Bi) for all Bi. Hence, since R in P1, it

follows that, t ≤ Tk
P1
(A). Finally note that, in case that k = ω, this is just the

sum for i ≤ k and the sum operator is monotonic. �

Lemma 42. Let P1 and P2 be two positive programs such that no literal occurring in
P1 is a head atom of P2. Let I1 be the least model of P1. Then Tω

I1∪P2
= Tω

P1∪P2
, that is

the least model of I1 ∪ P2 is the same than of P1 ∪ P2. �

Proof . From Lemma 40, Tω
P1
≤ Tω

P1∪P2
. Furthermore, Tω

I1
= Tω

P1
. So that Tω

I1
≤

Tω
P1∪P2

. Again from Lemma 40, Tω
I1∪P2

≤ Tω
P1∪P2∪P2

, that is Tω
I1∪P2

≤ Tω
P1∪P2

.

Furthermore, in case that k = 0, it holds that Tk
I1∪P2

= Tk
P1∪P2

= 0. Otherwise,
we assume as induction hypothesis that it holds for the case k − 1. Suppose
Tk

I1∪P2
6≥ Tk

P1∪P2
, then there is a literal A and a rule R in P1 ∪ P2 such that

G =
(

Tk−1
P1∪P2

(B1) ∗ . . . ∗ Tk−1
P1∪P2

(Bm)
)
· lR · δ(A) 6≤ Tk

I1∪P2
(A)

If R is in P2, then it is also in I1 ∪ P2, and since by induction hypothesis
Tk−1

I1∪P2
(B1) = Tk−1

P1∪P2
(B1) and all three operations are monotonic, the above in-

equality is a contradiction. Hence R must be in P1, and by hypothesis no literal
in R is a head in P2, so thatTk

P1∪P2
(Bi) ≤ I1(Bi) ≤ Tk

I1∪P2
(Bi) for all Bi. There-

fore, by induction hypothesis and operations monotonicity, the above is also a
contradiction.

Otherwise, R is in P1, and then no literal in the body of R is in the head on any
rule in P2. Hence, from Lemma 41, it follows Tk−1

P1∪P2
(Bi)≤ Tk−1

P1
(Bi)≤ I1(Bi) for

all Bi.

Then G ≤ Tk
P1
(A) ≤ TP1(I1)(A) = I1(A) ≤ Tk

I1∪P2
(A). Hence Tk

I1∪P2
≥ Tk

P1∪P2
. In

case that k = ω, just note that is the sum for the cases i ≤ ω and sums are
monotonic. Consequently Tk

I1∪P2
= Tk

P1∪P2
. �

Proof of Theorem 9.1. Let I be a causal stable model of J ∪ P2 and J = I |S
be a causal stable model of P1. Then I is the least model of (J ∪ P2)

I = J ∪ PI
2

and J is the least model of PJ
1 . From Lemma 42, the least models of programs

PJ
1 ∪ PI

2 and J ∪ PI
2 are the same. Hence I is the least model of PJ

1 ∪ PI
2 . Further-

more, J(A) = I |S(A) = I(A) for all A ∈ S, (that is for all literal A occurring in

P1). Hence PJ
1 = PI

1 and, then, I is the least model of PI
1 ∪ PI

2 = (P1 ∪ P2)
I and,

consequently, I is a causal stable model of P1 ∪ P2.
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The other way around. I is the least model of (P1 ∪ P2)
I = PI

1 ∪ PI
2 . Let J be

the least model of PI
1 . Note that I satisfies all rules in PI

1 and, since for all
literal A /∈ S there is no rule in P1 with A in the head, it follows that I |S also
satisfies all rules in PI

1 . That is J ≤ I |S. Moreover, from Lemma 41, it follows
that I(A) = J(A) for all atom A not in the head of any rule in P2. Hence, if it
were the case that J(A) < I |S(A) for some A, atom A would be in the head of
some rule in P2, so A 6∈ S and, consequently, I |S(A) = 0 which is a contradiction
with the assumption that J(A) < I |S(A). Hence J = I |S is the least model of PI

1 .
Note also that, since J(A) = I |S(A) = I(A) for every atom A occurring in P1,

then PI
1 = PJ

1 . That is, J = I |S is a causal stable model of P1. Furthermore, note

that I is the least model of (P1 ∪ P2)
I = PI

1 ∪ PI
2 = PJ

1 ∪ PI
2 . From Lemma 41, the

least models of programs PJ
1 ∪ PI

2 and J ∪ PI
2 are the same, that is I is the least

model of J ∪ PI
2 = I |S ∪ PI

2 and, consequently, a causal stable model of I |S ∪ P2. �

Proof of Proposition 9.3

Proof of Proposition 9.3. Assume that I2 is a causal stable model of P2 and
let P′ = {aux ← Bi, not aux} ∪ {aux ← not aux} be a set of rules. Note that,
I2 ∪ P′ has two causal stable models, I2 ∪ {aux 7→ 1} and I2 ∪ {aux 7→ 1}, if
I(Bi) 6= 0, and it has a unique causal stable model containing I2 ∪ {aux 7→ 1} if
I(Bi) = 0. Since I2(ψi :: Bi) 6= 0 implies I2(Bi) 6= 0, it holds that, in both cases,
I3 is one of the causal stable models of I2 ∪ P′. Furthermore, from Theorem 9.1,
since I2 is a causal stable model of P2 and aux and aux do not occur in P2, it
follows that I3 is a causal stable model of P2 ∪ P′.

Note that, P3 and P2 ∪ P′ are equal but for the rule with label lR. In case that
I3(Cj) 6= 0 for some Cj, then (P3)

I3 = (P2 ∪ P′)I3 . Furthermore by definition,
since I3 is a causal stable model of P2 ∪ P′, it is the least model of (P3)

I3 =
(P2 ∪ P′)I3 , and consequently I3 is a causal stable model of P3.

Similarly, if I(Bj) 6= 0 for for some Bj with j 6= i, the least model of (P3)
I3 and

(P2 ∪ P′)I3 coincide, and therefore I3 is a causal stable model of P3.

Hence, in the following, we assume that I3(Bj) 6= 0 for all Bj with j 6= i and
I3(Cj) = 0 for all Cj.

Note that I3(Bi) = 0 iff I2(Bi) = 0, and then I3(Bi) = 0 implies I2(ψi :: Bi) = 0
and I3(aux) = 0. Consequently the least model of (P3)

I3 and (P2 ∪ P′)I3 coincide
and I3 is a causal stable model of P3.

290



Otherwise, I3(Bi) 6= 0 and either I2(ψi :: Bi) 6= 0 or I2(ψi :: Bi) = 0. If the last,
I2(ψi :: Bi) = 0, then, by definition, I3(aux) = 0, and consequently the least
model of (P3)

I3 and (P2 ∪ P′)I3 coincide and I3 is a causal stable model of
program P3.

Finally if I2(ψi :: Bi) 6= 0, then, by definition I3(aux) = 1 and the least model I′3
of (P3)

I3 holds (I′3)
cl = (I3)

cl . Consequently (P3)
I3 = (P3)

I′3 and I′3 is a causal
stable model of P3. In this case just rename I′3 as I3 for the name used in the
proposition statement.

That is, if I2 is a causal stable model of P2, there is a causal stable model I3 of
P3 holding the proposition statement. �
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B IMPLEMENTAT ION OF
EXAMPLES

This appendix revisits most of the examples used along this dissertation, show-
ing for each of them the corresponding implementation in the input language
of the program cgraphs.

We start with Program 3.1 representing Example 1.4.

1 b : : bomb :− open .
2 o : : open :− up ( a ) , up ( b ) .
3 k : : open :− key .
4 u ( L ) : : up ( L ) :− l i f t ( L ) .
5

6 : : l i f t ( a ) .
7 : : l i f t ( b ) .
8 : : key .

The following listing shows the unique stable model of this program.

Answer 1 :
bomb key l i f t ( a ) l i f t ( b ) open up ( a ) up ( b )

bomb = ( l i f t ( b ) . u ( b ) * l i f t ( a ) . u ( a ) ) . o . b + key . k . b
key = key
l i f t ( a ) = l i f t ( a )
l i f t ( b ) = l i f t ( b )
open = key . k + ( l i f t ( b ) . u ( b ) * l i f t ( a ) . u ( a ) ) . o
up ( a ) = l i f t ( a ) . u ( a )
up ( b ) = l i f t ( b ) . u ( b )

The causal term assigned to bomb is equivalent, after apply distributive to
the following causal term:

li f t(a) ·u(a) ·o ·b ∗ li f t(b) ·u(b) ·o ·b + key ·k ·b (49)

presented when this example was discussed. In the implementation, we have
preferred not fully expand tg-terms in products of causal chains in the sake of
compactness.

Next, Program 3.2 representing Example 3.1.



B implementation of examples

1 a : : alarm :− sw3 , current ( d ) .
2 b : : current ( b ) :− sw1 .
3 b : : current ( b ) :− sw4 , current ( c ) .
4 c : : current ( c ) :− sw2 .
5 c : : current ( c ) :− sw4 , current ( b ) .
6 d : : current ( d ) :− current ( b ) .
7 d : : current ( d ) :− current ( c ) .
8

9 : : sw1 .
10 : : sw2 .
11 : : sw3 .
12 : : sw4 .

Similarly, the following listing shows the unique corresponding stable model:

Answer 1 :
alarm current ( b ) current ( c ) current ( d ) sw1 sw2 sw3 sw4

alarm = ( sw3*sw1 . b . d ) . a + ( sw3*sw2 . c . d ) . a
current ( b ) = sw1 . b + ( sw2 . c *sw4 ) . b
current ( c ) = ( sw4*sw1 . b ) . c + sw2 . c
current ( d ) = sw1 . b . d + sw2 . c . d
sw1 = sw1

sw2 = sw2

sw3 = sw3

sw4 = sw4

Program 3.3 representing Example 3.2.

1 lock ( a ) .
2 lock ( b ) .
3

4 b : : bomb :− open .
5 o : : open :− up ( a ) , up ( b ) .
6 l ( L ) : : up ( L ) :− wire less , lock ( L ) .
7

8 s : : w i r e l e s s .
9 y : : w i r e l e s s .

The following listing shows the corresponding unique stable model:

Answer 1 :
bomb lock ( a ) lock ( b ) open up ( a ) up ( b ) w i r e l e s s

bomb = ( y . l ( a ) * y . l ( b ) ) . o . b + ( s . l ( b ) * s . l ( a ) ) . o . b
open = ( s . l ( b ) * s . l ( a ) ) . o + ( y . l ( b ) * y . l ( a ) ) . o
up ( a ) = s . l ( a ) + y . l ( a )

294



up ( b ) = s . l ( b ) + y . l ( b )
w i r e l e s s = y + s

The evaluation of bomb corresponds to the causal graphs G1 and G2 depicted
in Figure 9. The program cgraphs computes the causes corresponding to a pro-
gram with a unique atom labelling, from which removes the labels introduced
by that mapping. The evaluation of bomb corresponds to causal graphs the sum
of G′1 and G′2 depicted in Figure 12. After removing the vertices in the image
of δ and contract the adjacent vertices from G′1 and G′2 we obtain causal graphs
G1 and G2 depicted in Figure 9.

Program 4.1 representing Example 2.1.

1 t1 : : turn ( 1 ) :− turn ( 2 ) , coupled .
2 t2 : : turn ( 2 ) :− turn ( 1 ) , coupled .
3

4 : : coupled .
5 : : turn ( 1 ) .

In Program 4.1 we use the labels c and s instead of coupled and spinning(1)
due to space reasons. Here, we label facts by an homograph label as usual. The
following listing shows the unique stable model of this program:

Answer 1 :
coupled turn ( 1 ) turn ( 2 )

coupled = coupled
turn ( 1 ) = turn ( 1 )
turn ( 2 ) = ( coupled * turn ( 1 ) ) . t2

Program 4.3 representing Example 1.7.

1 f : : f i r e :− match , oxygen .
2 oxygen :− not noxygen .
3

4 :− oxygen , noxygen .
5

6 : : match .
7 : : oxygen .

In line 2, we use noxygen for representing the strong negation of oxygen, that
is oxygen. The restriction in line 4 states that oxygen cannot be true and false
at the same time. The following listing shows the corresponding unique stable
model:
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B implementation of examples

Answer 1 :
f i r e match oxygen

f i r e = match . f
match = match

On page 98, where we have discussed this program, we have previously anal-
ysed the following variation, where the rule in line 2 has been removed.

1 f : : f i r e :− match , oxygen .
2

3

4 :− oxygen , noxygen .
5

6 : : match .
7 : : oxygen .

The following listing shows the corresponding unique stable model, where we
easily can see that oxygen and match are symmetrically treated as part of the
cause of f ire.

Answer 1 :
f i r e match oxygen

f i r e = ( oxygen * match ) . f
match = match
oxygen = oxygen

Program 4.4 was another variation representing Example 1.7. The following
listening contains this program in the input language of cgraphs.

1 f : : f i r e :− match , not ab .
2 ab : : ab :− noxygen .
3

4 :− oxygen , noxygen .
5

6 : : match .
7 : : oxygen .

The following listing shows the unique stable model of this program that coin-
cides with the above stable model of Program 4.3.

Answer 1 :
f i r e match oxygen
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f i r e = match . f
match = match
oxygen = oxygen

Program 4.6.

1 a : : p :− not q .
2 b : : q :− not p .

The following listing shows the two stable models of this program.

Answer 1 :
p

p = a

Answer 2 :
q

q = b

Each of the two causal stable models showed in above coincidences in the truth
with one standard stable model.

Program 4.7.

1 f : : f i r e :− match , oxygen .
2 d : : oxygen :− not noxygen .
3

4 :− oxygen , noxygen .
5

6 : : match .
7 : : oxygen .

The following listing shows the unique stable model of this program.

Answer 1 :
f i r e match oxygen

f i r e = ( d* match ) . f + ( oxygen * match ) . f
match = match
oxygen = oxygen + d

Program 4.10.
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B implementation of examples

1 a : : p .
2

3 q :− not r .
4 r :− not q .
5 p :− q .
6 p :− r .

The following listing shows the well-founded model of this program by means
of the least and greatest fixpoints of the Γ2

P operator.

Least F ixpoint
p

p = a

Greates t F ixpoint :
p q r

The following listing shows the unique stable model of this program.

Answer 1 :
p q

Answer 2 :
p r

Recall that, true literals whose causal term is not show is 1, that is, I(p) = 1 in
both stable models, while W(p) = a in the well-founded causal mode.

The following listing shows the program representing the Yale Shooting sce-
nario of Example 5.1.

time ( 1 . . 3 ) .

d ( S ) : : dead ( S +1) :− shoot ( S ) , loaded ( S ) .
o ( S ) : : loaded ( S +1) :− load ( S ) .

dead ( S +1) :− dead ( S ) , not ndead ( S +1) , time ( S ) .
loaded ( S +1) :− loaded ( S ) , not nloaded ( S +1) , time ( S ) .

: : load ( 1 ) .
: : shoot ( 3 ) .

The following listing shows the unique stable model of this program.
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Answer 1 :
dead ( 4 ) load ( 1 ) loaded ( 2 ) loaded ( 3 ) loaded ( 4 ) shoot ( 3 ) time ( 1 )
time ( 2 ) time ( 3 )

dead ( 4 ) = ( shoot ( 3 ) * load ( 1 ) . o ( 1 ) ) . d ( 3 )
load ( 1 ) = load ( 1 )
loaded ( 2 ) = load ( 1 ) . o ( 1 )
loaded ( 3 ) = load ( 1 ) . o ( 1 )
loaded ( 4 ) = load ( 1 ) . o ( 1 )
shoot ( 3 ) = shoot ( 3 )

In the following, we show the three different representation of Example 5.2.
We start for the representation that corresponds to loaded and dead following
the symmetrical behaviour.

time ( 1 . . 4 ) .

d ( S ) : : dead ( S +1) :− loaded (A, S ) , shoot (A, S ) .
o (A, S ) : : loaded (A, S +1) :− load (A, S ) .

dead ( S +1) :− dead ( S ) , not ndead ( S +1) , time ( S ) .
loaded (A, S +1) :− loaded (A, S ) , not nloaded (A, S +1) , time ( S ) .

: : load ( suzy , 1 ) .
: : shoot ( suzy , 3 ) .

: : load ( b i l l y , 2 ) .
: : shoot ( b i l l y , 4 ) .

The following listing shows the unique stable model of this program.

Answer 1 :
dead ( 4 ) dead ( 5 ) load ( b i l l y , 2 ) load ( suzy , 1 ) loaded ( b i l l y , 3 )
loaded ( b i l l y , 4 ) loaded ( b i l l y , 5 ) loaded ( suzy , 2 ) loaded ( suzy , 3 )
loaded ( suzy , 4 ) loaded ( suzy , 5 ) shoot ( b i l l y , 4 ) shoot ( suzy , 3 )
time ( 1 ) time ( 2 ) time ( 3 ) time ( 4 )

dead ( 4 ) = ( shoot ( suzy , 3 ) * load ( suzy , 1 ) . o ( suzy , 1 ) ) . d ( 3 )
dead ( 5 ) = ( shoot ( b i l l y , 4 ) * load ( b i l l y , 2 ) . o ( b i l l y , 2 ) ) . d ( 4 )

+ ( shoot ( suzy , 3 ) * load ( suzy , 1 ) . o ( suzy , 1 ) ) . d ( 3 )
load ( b i l l y , 2 ) = load ( b i l l y , 2 )
load ( suzy , 1 ) = load ( suzy , 1 )
loaded ( b i l l y , 3 ) = load ( b i l l y , 2 ) . o ( b i l l y , 2 )
loaded ( b i l l y , 4 ) = load ( b i l l y , 2 ) . o ( b i l l y , 2 )
loaded ( b i l l y , 5 ) = load ( b i l l y , 2 ) . o ( b i l l y , 2 )
loaded ( suzy , 2 ) = load ( suzy , 1 ) . o ( suzy , 1 )
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B implementation of examples

loaded ( suzy , 3 ) = load ( suzy , 1 ) . o ( suzy , 1 )
loaded ( suzy , 4 ) = load ( suzy , 1 ) . o ( suzy , 1 )
loaded ( suzy , 5 ) = load ( suzy , 1 ) . o ( suzy , 1 )
shoot ( b i l l y , 4 ) = shoot ( b i l l y , 4 )
shoot ( suzy , 3 ) = shoot ( suzy , 3 )

It is easy to see that, under the symmetrical behaviour, both Suzy and Billy are
equally alternative causes of dead(5). On the other hand, the following listing
shows the same example under the inertial preference behaviour.

time ( 1 . . 4 ) .

d ( S ) : : dead ( S +1) :− shoot (A, S ) , loaded (A, S ) , not dead ( S ) .
o (A, S ) : : loaded (A, S +1) :− load (A, S ) , not loaded (A, S ) .

dead ( S +1) :− dead ( S ) , not ndead ( S +1) , time ( S ) .
loaded (A, S +1) :− loaded (A, S ) , not nloaded (A, S +1) , time ( S ) .

: : load ( suzy , 1 ) .
: : shoot ( suzy , 3 ) .

: : load ( b i l l y , 2 ) .
: : shoot ( b i l l y , 4 ) .

The following listing shows the unique stable model of this program.

Answer 1 :
dead ( 4 ) dead ( 5 ) load ( b i l l y , 2 ) load ( suzy , 1 ) loaded ( b i l l y , 3 )
loaded ( b i l l y , 4 ) loaded ( b i l l y , 5 ) loaded ( suzy , 2 ) loaded ( suzy , 3 )
loaded ( suzy , 4 ) loaded ( suzy , 5 ) shoot ( b i l l y , 4 ) shoot ( suzy , 3 )
time ( 1 ) time ( 2 ) time ( 3 ) time ( 4 )

dead ( 4 ) = ( shoot ( suzy , 3 ) * load ( suzy , 1 ) . o ( suzy , 1 ) ) . d ( 3 )
dead ( 5 ) = ( shoot ( suzy , 3 ) * load ( suzy , 1 ) . o ( suzy , 1 ) ) . d ( 3 )
load ( b i l l y , 2 ) = load ( b i l l y , 2 )
load ( suzy , 1 ) = load ( suzy , 1 )
loaded ( b i l l y , 3 ) = load ( b i l l y , 2 ) . o ( b i l l y , 2 )
loaded ( b i l l y , 4 ) = load ( b i l l y , 2 ) . o ( b i l l y , 2 )
loaded ( b i l l y , 5 ) = load ( b i l l y , 2 ) . o ( b i l l y , 2 )
loaded ( suzy , 2 ) = load ( suzy , 1 ) . o ( suzy , 1 )
loaded ( suzy , 3 ) = load ( suzy , 1 ) . o ( suzy , 1 )
loaded ( suzy , 4 ) = load ( suzy , 1 ) . o ( suzy , 1 )
loaded ( suzy , 5 ) = load ( suzy , 1 ) . o ( suzy , 1 )
shoot ( b i l l y , 4 ) = shoot ( b i l l y , 4 )
shoot ( suzy , 3 ) = shoot ( suzy , 3 )
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Here, we can see that, under the inertial preference behaviour, only Suzy, who
shoots early, is considered to be a cause of dead(5). Similarly, the following
listing shows this example under the causal preference behaviour.

time ( 1 . . 4 ) .

d ( S ) : : dead ( S +1) :− shoot (A, S ) , loaded (A, S ) .
o (A, S ) : : loaded (A, S +1) :− load (A, S ) .

n o i n e r t i a l ( dead ( S +1) ) :− shoot (A, S ) , loaded (A, S ) .
n o i n e r t i a l ( loaded (A, S +1) ) :− load (A, S ) .

loaded (A, S ) :− caused ( loaded (A, S ) ) .
dead ( S ) :− caused ( dead ( S ) ) .

loaded (A, S +1) :− loaded (A, S ) , time ( S ) ,
not n o i n e r t i a l ( loaded (A, S +1) ) .

dead ( S +1) :− dead ( S ) , time ( S ) ,
not n o i n e r t i a l ( dead ( S +1) ) .

: : load ( suzy , 1 ) .
: : shoot ( suzy , 3 ) .

: : load ( b i l l y , 2 ) .
: : shoot ( b i l l y , 4 ) .

# hide n o i n e r t i a l ( ) .

The following listing shows the unique stable model of this program.

Answer 1 :
dead ( 4 ) dead ( 5 ) load ( b i l l y , 2 ) load ( suzy , 1 ) loaded ( b i l l y , 3 )
loaded ( b i l l y , 4 ) loaded ( b i l l y , 5 ) loaded ( suzy , 2 ) loaded ( suzy , 3 )
loaded ( suzy , 4 ) loaded ( suzy , 5 ) shoot ( b i l l y , 4 ) shoot ( suzy , 3 )
time ( 1 ) time ( 2 ) time ( 3 ) time ( 4 )

dead ( 4 ) = ( shoot ( suzy , 3 ) * load ( suzy , 1 ) . o ( suzy , 1 ) ) . d ( 3 )
dead ( 5 ) = ( shoot ( b i l l y , 4 ) * load ( b i l l y , 2 ) . o ( b i l l y , 2 ) ) . d ( 4 )
load ( b i l l y , 2 ) = load ( b i l l y , 2 )
load ( suzy , 1 ) = load ( suzy , 1 )
loaded ( b i l l y , 3 ) = load ( b i l l y , 2 ) . o ( b i l l y , 2 )
loaded ( b i l l y , 4 ) = load ( b i l l y , 2 ) . o ( b i l l y , 2 )
loaded ( b i l l y , 5 ) = load ( b i l l y , 2 ) . o ( b i l l y , 2 )
loaded ( suzy , 2 ) = load ( suzy , 1 ) . o ( suzy , 1 )
loaded ( suzy , 3 ) = load ( suzy , 1 ) . o ( suzy , 1 )
loaded ( suzy , 4 ) = load ( suzy , 1 ) . o ( suzy , 1 )
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B implementation of examples

loaded ( suzy , 5 ) = load ( suzy , 1 ) . o ( suzy , 1 )
shoot ( b i l l y , 4 ) = shoot ( b i l l y , 4 )
shoot ( suzy , 3 ) = shoot ( suzy , 3 )

In this case, just Billy is considered to be the cause of dead(5).

The following listings shows the program corresponding to the suitcase sce-
nario of Example 1.4. First, we show the representation under the inertial pref-
erence behaviour.

time ( 1 . . 6 ) .

o ( S ) : : open ( S ) :− up ( a , S ) , up ( b , S ) , not open ( S−1) .
k ( S ) : : open ( S +1) :− key ( S ) , not open ( S ) .
u ( L , S ) : : up ( L , S +1) :− l i f t ( L , S ) , not up ( L , S ) .

open ( S +1) :− open ( S ) , not nopen ( S +1) , time ( S ) .

up ( L , S +1) :− up ( L , S ) , not nup ( L , S +1) , time ( S ) .

l i f t ( a , 1 ) : : l i f t ( a , 1 ) .
l i f t ( b , 3 ) : : l i f t ( b , 3 ) .

key ( 4 ) : : key ( 4 ) .

The following listing shows the unique stable model of this program.

Answer 1 :
key ( 4 ) l i f t ( a , 1 ) l i f t ( b , 3 ) open ( 4 ) open ( 5 ) open ( 6 ) open ( 7 )
time ( 1 ) time ( 2 ) time ( 3 ) time ( 4 ) time ( 5 ) time ( 6 ) up ( a , 2 )
up ( a , 3 ) up ( a , 4 ) up ( a , 5 ) up ( a , 6 ) up ( a , 7 ) up ( b , 4 ) up ( b , 5 )
up ( b , 6 ) up ( b , 7 )

key ( 4 ) = key ( 4 )
l i f t ( a , 1 ) = l i f t ( a , 1 )
l i f t ( b , 3 ) = l i f t ( b , 3 )
open ( 4 ) = ( l i f t ( b , 3 ) . u ( b , 3 ) * l i f t ( a , 1 ) . u ( a , 1 ) ) . o ( 4 )
open ( 5 ) = ( l i f t ( b , 3 ) . u ( b , 3 ) * l i f t ( a , 1 ) . u ( a , 1 ) ) . o ( 4 )
open ( 6 ) = ( l i f t ( b , 3 ) . u ( b , 3 ) * l i f t ( a , 1 ) . u ( a , 1 ) ) . o ( 4 )
open ( 7 ) = ( l i f t ( b , 3 ) . u ( b , 3 ) * l i f t ( a , 1 ) . u ( a , 1 ) ) . o ( 4 )
up ( a , 2 ) = l i f t ( a , 1 ) . u ( a , 1 )
up ( a , 3 ) = l i f t ( a , 1 ) . u ( a , 1 )
up ( a , 4 ) = l i f t ( a , 1 ) . u ( a , 1 )
up ( a , 5 ) = l i f t ( a , 1 ) . u ( a , 1 )
up ( a , 6 ) = l i f t ( a , 1 ) . u ( a , 1 )
up ( a , 7 ) = l i f t ( a , 1 ) . u ( a , 1 )
up ( b , 4 ) = l i f t ( b , 3 ) . u ( b , 3 )
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up ( b , 5 ) = l i f t ( b , 3 ) . u ( b , 3 )
up ( b , 6 ) = l i f t ( b , 3 ) . u ( b , 3 )
up ( b , 7 ) = l i f t ( b , 3 ) . u ( b , 3 )

And we also introduce the same scenario under the causal preference behaviour.

time ( 1 . . 6 ) .

o ( S ) : : open ( S ) :− up ( a , S ) , up ( b , S ) .
k ( S ) : : open ( S +1) :− key ( S ) .
u ( L , S ) : : up ( L , S +1) :− l i f t ( L , S ) .

n o i n e r t i a l ( open ( S ) ) :− up ( a , S ) , up ( b , S ) .
n o i n e r t i a l ( open ( S +1) ) :− key ( S ) .
n o i n e r t i a l ( up ( L , S +1) ) :− l i f t ( L , S ) .

open ( S +1) :− open ( S ) , not n o i n e r t i a l ( open ( S +1) ) , time ( S ) .

up ( L , S +1) :− up ( L , S ) , not n o i n e r t i a l ( up ( L , S +1) ) , time ( S ) .

l i f t ( a , 1 ) : : l i f t ( a , 1 ) .
l i f t ( b , 3 ) : : l i f t ( b , 3 ) .

key ( 4 ) : : key ( 4 ) .

# hide n o i n e r t i a l ( ) .

The following listing shows the unique stable model of this program.

Answer 1 :
key ( 4 ) l i f t ( a , 1 ) l i f t ( b , 3 ) open ( 4 ) open ( 5 ) open ( 6 ) open ( 7 )
time ( 1 ) time ( 2 ) time ( 3 ) time ( 4 ) time ( 5 ) time ( 6 ) up ( a , 2 )
up ( a , 3 ) up ( a , 4 ) up ( a , 5 ) up ( a , 6 ) up ( a , 7 ) up ( b , 4 ) up ( b , 5 )
up ( b , 6 ) up ( b , 7 )

key ( 4 ) = key ( 4 )
l i f t ( a , 1 ) = l i f t ( a , 1 )
l i f t ( b , 3 ) = l i f t ( b , 3 )
open ( 4 ) = ( l i f t ( b , 3 ) . u ( b , 3 ) * l i f t ( a , 1 ) . u ( a , 1 ) ) . o ( 4 )
open ( 5 ) = key ( 4 ) . k ( 4 )

+ ( l i f t ( b , 3 ) . u ( b , 3 ) * l i f t ( a , 1 ) . u ( a , 1 ) ) . o ( 5 )
open ( 6 ) = ( l i f t ( b , 3 ) . u ( b , 3 ) * l i f t ( a , 1 ) . u ( a , 1 ) ) . o ( 6 )
open ( 7 ) = ( l i f t ( b , 3 ) . u ( b , 3 ) * l i f t ( a , 1 ) . u ( a , 1 ) ) . o ( 7 )
up ( a , 2 ) = l i f t ( a , 1 ) . u ( a , 1 )
up ( a , 3 ) = l i f t ( a , 1 ) . u ( a , 1 )
up ( a , 4 ) = l i f t ( a , 1 ) . u ( a , 1 )
up ( a , 5 ) = l i f t ( a , 1 ) . u ( a , 1 )
up ( a , 6 ) = l i f t ( a , 1 ) . u ( a , 1 )
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B implementation of examples

up ( a , 7 ) = l i f t ( a , 1 ) . u ( a , 1 )
up ( b , 4 ) = l i f t ( b , 3 ) . u ( b , 3 )
up ( b , 5 ) = l i f t ( b , 3 ) . u ( b , 3 )
up ( b , 6 ) = l i f t ( b , 3 ) . u ( b , 3 )
up ( b , 7 ) = l i f t ( b , 3 ) . u ( b , 3 )

Note that under causal preference behaviour, the causes of open changes from
situation 4 to situation 5 after the key is turned.

The following listing shows the program representing the gears wheel sce-
nario of Example 5.4.

time ( 0 . . 6 ) .

m(W, S ) : : motor (W, S +1) :− s t a r t (W, S ) .
nm(W, S ) : : nmotor (W, S +1) :− stop (W, S ) .
p ( S ) : : coupled ( S +1) :− couple ( S ) .
p ( S ) : : ncoupled ( S +1) :− uncouple ( S ) .

n o i n e r t i a l ( motor (W, S +1) ) :− s t a r t (W, S ) .
n o i n e r t i a l ( motor (W, S +1) ) :− stop (W, S ) .
n o i n e r t i a l ( coupled ( S +1) ) :− couple ( S ) .
n o i n e r t i a l ( coupled ( S +1) ) :− uncouple ( S ) .

r (W, S ) : : turn (W, S ) :− motor (W, S ) , not ab ( turn ,W,W, S ) .
t ( a , S ) : : turn ( a , S ) :− turn ( b , S ) , coupled ( S ) ,

not turn ( a , S−1) , not ab ( turn , b , a , S ) .
t ( b , S ) : : turn ( b , S ) :− turn ( a , S ) , coupled ( S ) ,

not turn ( b , S−1) , not ab ( turn , a , b , S ) .
nt ( a , S ) : : nturn ( a , S ) :− nturn ( b , S ) , coupled ( S ) ,

not nturn ( b , S−1) , not ab ( turn , a , b , S ) .
nt ( b , S ) : : nturn ( b , S ) :− nturn ( a , S ) , coupled ( S ) ,

not nturn ( a , S−1) , not ab ( turn , b , a , S ) .

n o i n e r t i a l ( turn (W, S ) ) :− motor (W, S ) , not ab ( turn ,W,W, S ) .
n o i n e r t i a l ( turn ( a , S ) ) :− turn ( b , S ) , coupled ( S ) , not turn ( a , S−1) ,

not ab ( turn , b , a , S ) .
n o i n e r t i a l ( turn ( b , S ) ) :− turn ( a , S ) , coupled ( S ) , not turn ( b , S−1) ,

not ab ( turn , a , b , S ) .
n o i n e r t i a l ( turn ( a , S ) ) :− nturn ( b , S ) , coupled ( S ) , not nturn ( b , S−1) ,

not ab ( turn , a , b , S ) .
n o i n e r t i a l ( turn ( b , S ) ) :− nturn ( a , S ) , coupled ( S ) , not nturn ( a , S−1) ,

not ab ( turn , b , a , S ) .
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coupled ( S +1) :− coupled ( S ) , not ncoupled ( S +1) , time ( S ) .
ncoupled ( S +1) :− ncoupled ( S ) , not coupled ( S +1) , time ( S ) .

motor (W, S +1) :− motor (W, S ) , not nmotor (W, S +1) , time ( S ) .
nmotor (W, S +1) :− nmotor (W, S ) , not motor (W, S +1) , time ( S ) .

turn (W, S +1) :− turn (W, S ) , not n o i n e r t i a l ( turn (W, S +1) ) , time ( S ) .
nturn (W, S +1) :− nturn (W, S ) , not n o i n e r t i a l ( turn (W, S +1) ) , time ( S ) .

: : nmotor ( a , 0 ) .
: : nmotor ( b , 0 ) .

: : nturn ( a , 0 ) .
: : nturn ( b , 0 ) .

: : ncoupled ( 0 ) .

: : s t a r t ( a , 2 ) .
: : couple ( 3 ) .
: : uncouple ( 5 ) .

:− turn (W, S ) , nturn (W, S ) .

# hide n o i n e r t i a l ( ) .

The following listing shows the unique stable model of this program.

Answer 1 :
couple ( 3 ) coupled ( 4 ) coupled ( 5 ) motor ( a , 3 ) motor ( a , 4 )
motor ( a , 5 ) motor ( a , 6 ) motor ( a , 7 ) ncoupled ( 0 ) ncoupled ( 1 )
ncoupled ( 2 ) ncoupled ( 3 ) ncoupled ( 6 ) ncoupled ( 7 ) nmotor ( a , 0 )
nmotor ( a , 1 ) nmotor ( a , 2 ) nmotor ( b , 0 ) nmotor ( b , 1 ) nmotor ( b , 2 )
nmotor ( b , 3 ) nmotor ( b , 4 ) nmotor ( b , 5 ) nmotor ( b , 6 ) nmotor ( b , 7 )
nturn ( a , 0 ) nturn ( a , 1 ) nturn ( a , 2 ) nturn ( b , 0 ) nturn ( b , 1 )
nturn ( b , 2 ) nturn ( b , 3 ) s t a r t ( a , 2 ) time ( 0 ) time ( 1 ) time ( 2 )
time ( 3 ) time ( 4 ) time ( 5 ) time ( 6 ) turn ( a , 3 ) turn ( a , 4 ) turn ( a , 5 )
turn ( a , 6 ) turn ( a , 7 ) turn ( b , 4 ) turn ( b , 5 ) turn ( b , 6 ) turn ( b , 7 )
uncouple ( 5 )

couple ( 3 ) = couple ( 3 )
coupled ( 4 ) = couple ( 3 ) . p ( 3 )
coupled ( 5 ) = couple ( 3 ) . p ( 3 )
motor ( a , 3 ) = s t a r t ( a , 2 ) .m( a , 2 )
motor ( a , 4 ) = s t a r t ( a , 2 ) .m( a , 2 )
motor ( a , 5 ) = s t a r t ( a , 2 ) .m( a , 2 )
motor ( a , 6 ) = s t a r t ( a , 2 ) .m( a , 2 )
motor ( a , 7 ) = s t a r t ( a , 2 ) .m( a , 2 )
ncoupled ( 0 ) = ncoupled ( 0 )
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B implementation of examples

ncoupled ( 1 ) = ncoupled ( 0 )
ncoupled ( 2 ) = ncoupled ( 0 )
ncoupled ( 3 ) = ncoupled ( 0 )
ncoupled ( 6 ) = uncouple ( 5 ) . p ( 5 )
ncoupled ( 7 ) = uncouple ( 5 ) . p ( 5 )
nmotor ( a , 0 ) = nmotor ( a , 0 )
nmotor ( a , 1 ) = nmotor ( a , 0 )
nmotor ( a , 2 ) = nmotor ( a , 0 )
nmotor ( b , 0 ) = nmotor ( b , 0 )
nmotor ( b , 1 ) = nmotor ( b , 0 )
nmotor ( b , 2 ) = nmotor ( b , 0 )
nmotor ( b , 3 ) = nmotor ( b , 0 )
nmotor ( b , 4 ) = nmotor ( b , 0 )
nmotor ( b , 5 ) = nmotor ( b , 0 )
nmotor ( b , 6 ) = nmotor ( b , 0 )
nmotor ( b , 7 ) = nmotor ( b , 0 )
nturn ( a , 0 ) = nturn ( a , 0 )
nturn ( a , 1 ) = nturn ( a , 0 )
nturn ( a , 2 ) = nturn ( a , 0 )
nturn ( b , 0 ) = nturn ( b , 0 )
nturn ( b , 1 ) = nturn ( b , 0 )
nturn ( b , 2 ) = nturn ( b , 0 )
nturn ( b , 3 ) = nturn ( b , 0 )
s t a r t ( a , 2 ) = s t a r t ( a , 2 )
turn ( a , 3 ) = s t a r t ( a , 2 ) .m( a , 2 ) . r ( a , 3 )
turn ( a , 4 ) = s t a r t ( a , 2 ) .m( a , 2 ) . r ( a , 4 )
turn ( a , 5 ) = s t a r t ( a , 2 ) .m( a , 2 ) . r ( a , 5 )
turn ( a , 6 ) = s t a r t ( a , 2 ) .m( a , 2 ) . r ( a , 6 )
turn ( a , 7 ) = s t a r t ( a , 2 ) .m( a , 2 ) . r ( a , 7 )
turn ( b , 4 ) = ( couple ( 3 ) . p ( 3 ) * s t a r t ( a , 2 ) .m( a , 2 ) . r ( a , 4 ) ) . t ( b , 4 )
turn ( b , 5 ) = ( couple ( 3 ) . p ( 3 ) * s t a r t ( a , 2 ) .m( a , 2 ) . r ( a , 4 ) ) . t ( b , 4 )
turn ( b , 6 ) = ( couple ( 3 ) . p ( 3 ) * s t a r t ( a , 2 ) .m( a , 2 ) . r ( a , 4 ) ) . t ( b , 4 )
turn ( b , 7 ) = ( couple ( 3 ) . p ( 3 ) * s t a r t ( a , 2 ) .m( a , 2 ) . r ( a , 4 ) ) . t ( b , 4 )
uncouple ( 5 ) = uncouple ( 5 )

The next program, adds the possibility of braking the wheels. Furthermore,
the wheel b is braked at situation 6.

time ( 0 . . 6 ) .

m(W, S ) : : motor (W, S +1) :− s t a r t (W, S ) .
nm(W, S ) : : nmotor (W, S +1) :− stop (W, S ) .
p ( S ) : : coupled ( S +1) :− couple ( S ) .
p ( S ) : : ncoupled ( S +1) :− uncouple ( S ) .

n o i n e r t i a l ( motor (W, S +1) ) :− s t a r t (W, S ) .
n o i n e r t i a l ( motor (W, S +1) ) :− stop (W, S ) .
n o i n e r t i a l ( coupled ( S +1) ) :− couple ( S ) .
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n o i n e r t i a l ( coupled ( S +1) ) :− uncouple ( S ) .

r (W, S ) : : turn (W, S ) :− motor (W, S ) , not ab ( turn ,W,W, S ) .
t ( a , S ) : : turn ( a , S ) :− turn ( b , S ) , coupled ( S ) ,

not turn ( a , S−1) , not ab ( turn , b , a , S ) .
t ( b , S ) : : turn ( b , S ) :− turn ( a , S ) , coupled ( S ) ,

not turn ( b , S−1) , not ab ( turn , a , b , S ) .
nt ( a , S ) : : nturn ( a , S ) :− nturn ( b , S ) , coupled ( S ) ,

not nturn ( b , S−1) , not ab ( turn , a , b , S ) .
nt ( b , S ) : : nturn ( b , S ) :− nturn ( a , S ) , coupled ( S ) ,

not nturn ( a , S−1) , not ab ( turn , b , a , S ) .

n o i n e r t i a l ( turn (W, S ) ) :− motor (W, S ) , not ab ( turn ,W,W, S ) .
n o i n e r t i a l ( turn ( a , S ) ) :− turn ( b , S ) , coupled ( S ) , not turn ( a , S−1) ,

not ab ( turn , b , a , S ) .
n o i n e r t i a l ( turn ( b , S ) ) :− turn ( a , S ) , coupled ( S ) , not turn ( b , S−1) ,

not ab ( turn , a , b , S ) .
n o i n e r t i a l ( turn ( a , S ) ) :− nturn ( b , S ) , coupled ( S ) , not nturn ( b , S−1) ,

not ab ( turn , a , b , S ) .
n o i n e r t i a l ( turn ( b , S ) ) :− nturn ( a , S ) , coupled ( S ) , not nturn ( a , S−1) ,

not ab ( turn , b , a , S ) .

coupled ( S +1) :− coupled ( S ) , not ncoupled ( S +1) , time ( S ) .
ncoupled ( S +1) :− ncoupled ( S ) , not coupled ( S +1) , time ( S ) .

motor (W, S +1) :− motor (W, S ) , not nmotor (W, S +1) , time ( S ) .
nmotor (W, S +1) :− nmotor (W, S ) , not motor (W, S +1) , time ( S ) .

turn (W, S +1) :− turn (W, S ) , not n o i n e r t i a l ( turn (W, S +1) ) , time ( S ) .
nturn (W, S +1) :− nturn (W, S ) , not n o i n e r t i a l ( turn (W, S +1) ) , time ( S ) .

: : nmotor ( a , 0 ) .
: : nmotor ( b , 0 ) .

: : nturn ( a , 0 ) .
: : nturn ( b , 0 ) .

: : ncoupled ( 0 ) .

: : s t a r t ( a , 2 ) .
: : couple ( 3 ) .
: : uncouple ( 5 ) .

:− turn (W, S ) , nturn (W, S ) .
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B implementation of examples

# hide n o i n e r t i a l ( ) .

b (W, S ) : : braked (W, S +1) :− brake (W, S ) .
nb (W, S ) : : nbraked (W, S +1) :− unbrake (W, S ) .
nr (W) : : nturn (W, S ) :− braked (W, S ) , not ab ( turn ,W,W, S ) .

n o i n e r t i a l ( turn (W, S ) ) :− braked (W, S ) , not ab ( turn ,W,W, S ) .

braked (W, S +1) :− braked (W, S ) , not n o i n e r t i a l ( braked (W, S +1) ) ,
time ( S ) .

nbraked (W, S +1) :− nbraked (W, S ) , not n o i n e r t i a l ( braked (W, S +1) ) ,
time ( S ) .

brake ( b , 6 ) .

The following listing shows the unique stable model of this program.

Answer 1 :
brake ( b , 6 ) braked ( b , 7 ) couple ( 3 ) coupled ( 4 ) coupled ( 5 )
motor ( a , 3 ) motor ( a , 4 ) motor ( a , 5 ) motor ( a , 6 ) motor ( a , 7 )
ncoupled ( 0 ) ncoupled ( 1 ) ncoupled ( 2 ) ncoupled ( 3 ) ncoupled ( 6 )
ncoupled ( 7 ) nmotor ( a , 0 ) nmotor ( a , 1 ) nmotor ( a , 2 ) nmotor ( b , 0 )
nmotor ( b , 1 ) nmotor ( b , 2 ) nmotor ( b , 3 ) nmotor ( b , 4 ) nmotor ( b , 5 )
nmotor ( b , 6 ) nmotor ( b , 7 ) nturn ( a , 0 ) nturn ( a , 1 ) nturn ( a , 2 )
nturn ( b , 0 ) nturn ( b , 1 ) nturn ( b , 2 ) nturn ( b , 3 ) nturn ( b , 7 )
s t a r t ( a , 2 ) time ( 0 ) time ( 1 ) time ( 2 ) time ( 3 ) time ( 4 ) time ( 5 )
time ( 6 ) turn ( a , 3 ) turn ( a , 4 ) turn ( a , 5 ) turn ( a , 6 ) turn ( a , 7 )
turn ( b , 4 ) turn ( b , 5 ) turn ( b , 6 ) uncouple ( 5 )

braked ( b , 7 ) = b ( b , 6 )
couple ( 3 ) = couple ( 3 )
coupled ( 4 ) = couple ( 3 ) . p ( 3 )
coupled ( 5 ) = couple ( 3 ) . p ( 3 )
motor ( a , 3 ) = s t a r t ( a , 2 ) .m( a , 2 )
motor ( a , 4 ) = s t a r t ( a , 2 ) .m( a , 2 )
motor ( a , 5 ) = s t a r t ( a , 2 ) .m( a , 2 )
motor ( a , 6 ) = s t a r t ( a , 2 ) .m( a , 2 )
motor ( a , 7 ) = s t a r t ( a , 2 ) .m( a , 2 )
ncoupled ( 0 ) = ncoupled ( 0 )
ncoupled ( 1 ) = ncoupled ( 0 )
ncoupled ( 2 ) = ncoupled ( 0 )
ncoupled ( 3 ) = ncoupled ( 0 )
ncoupled ( 6 ) = uncouple ( 5 ) . p ( 5 )
ncoupled ( 7 ) = uncouple ( 5 ) . p ( 5 )
nmotor ( a , 0 ) = nmotor ( a , 0 )
nmotor ( a , 1 ) = nmotor ( a , 0 )
nmotor ( a , 2 ) = nmotor ( a , 0 )
nmotor ( b , 0 ) = nmotor ( b , 0 )
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nmotor ( b , 1 ) = nmotor ( b , 0 )
nmotor ( b , 2 ) = nmotor ( b , 0 )
nmotor ( b , 3 ) = nmotor ( b , 0 )
nmotor ( b , 4 ) = nmotor ( b , 0 )
nmotor ( b , 5 ) = nmotor ( b , 0 )
nmotor ( b , 6 ) = nmotor ( b , 0 )
nmotor ( b , 7 ) = nmotor ( b , 0 )
nturn ( a , 0 ) = nturn ( a , 0 )
nturn ( a , 1 ) = nturn ( a , 0 )
nturn ( a , 2 ) = nturn ( a , 0 )
nturn ( b , 0 ) = nturn ( b , 0 )
nturn ( b , 1 ) = nturn ( b , 0 )
nturn ( b , 2 ) = nturn ( b , 0 )
nturn ( b , 3 ) = nturn ( b , 0 )
nturn ( b , 7 ) = b ( b , 6 ) . nr ( b )
s t a r t ( a , 2 ) = s t a r t ( a , 2 )
turn ( a , 3 ) = s t a r t ( a , 2 ) .m( a , 2 ) . r ( a , 3 )
turn ( a , 4 ) = s t a r t ( a , 2 ) .m( a , 2 ) . r ( a , 4 )
turn ( a , 5 ) = s t a r t ( a , 2 ) .m( a , 2 ) . r ( a , 5 )
turn ( a , 6 ) = s t a r t ( a , 2 ) .m( a , 2 ) . r ( a , 6 )
turn ( a , 7 ) = s t a r t ( a , 2 ) .m( a , 2 ) . r ( a , 7 )
turn ( b , 4 ) = ( couple ( 3 ) . p ( 3 ) * s t a r t ( a , 2 ) .m( a , 2 ) . r ( a , 4 ) ) . t ( b , 4 )
turn ( b , 5 ) = ( couple ( 3 ) . p ( 3 ) * s t a r t ( a , 2 ) .m( a , 2 ) . r ( a , 4 ) ) . t ( b , 4 )
turn ( b , 6 ) = ( couple ( 3 ) . p ( 3 ) * s t a r t ( a , 2 ) .m( a , 2 ) . r ( a , 4 ) ) . t ( b , 4 )
uncouple ( 5 ) = uncouple ( 5 )

If we brake wheel b at situation 4 instead of at situation 6, we obtain no model.
At situation 4 wheel b must be spinning because it is coupled to wheel a which
is spinning, and it must be stopped because it is braked.

Next, the World Block Scenario of Example 5.3.

time ( 0 . . 4 ) .
block ( B ) :− on ( B , L , 0 ) .

m( B , L , S ) : : on ( B , L , S +1) :− move( B , L , S ) , not on ( B , L , S ) .

n o i n e r t i a l ( on ( B , L , S +1) ) :− move( B , L , S ) , not on ( B , L , S ) .

on ( B , L , S +1) :− on ( B , L , S ) , not n o i n e r t i a l ( on , B , S +1) , time ( S ) .

:− on ( B1 , B , S ) , on ( B2 , B ) , B1 != B2 , block ( B ) .
:− move( B1 , B2 , S ) , move( B2 , L , S ) .

on (bA, tab le , 0 ) .
on ( bB , tab le , 0 ) .
on (bC , tab le , 0 ) .
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B implementation of examples

: : move( bB , bA, 0 ) .
: : move(bC , bB , 2 ) .

# hide n o i n e r t i a l ( ) .

The following listing shows the unique stable model of this program.

Answer 1 :
block (bA) block ( bB ) block (bC) move( bB , bA, 0 ) move(bC , bB , 2 )
on (bA, tab le , 0 ) on (bA, tab le , 1 ) on (bA, tab le , 2 ) on (bA, tab le , 3 )
on (bA, tab le , 4 ) on (bA, tab le , 5 ) on ( bB , bA, 1 ) on ( bB , bA, 2 )
on ( bB , bA, 3 ) on ( bB , bA, 4 ) on ( bB , bA, 5 ) on ( bB , tab le , 0 )
on ( bB , tab le , 1 ) on ( bB , tab le , 2 ) on ( bB , tab le , 3 ) on ( bB , tab le , 4 )
on ( bB , tab le , 5 ) on (bC , bB , 3 ) on (bC , bB , 4 ) on (bC , bB , 5 )
on (bC , tab le , 0 ) on (bC , tab le , 1 ) on (bC , tab le , 2 ) on (bC , tab le , 3 )
on (bC , tab le , 4 ) on (bC , tab le , 5 ) time ( 0 ) time ( 1 ) time ( 2 ) time ( 3 )
time ( 4 )

move( bB , bA, 0 ) = move( bB , bA, 0 )
move(bC , bB , 2 ) = move(bC , bB , 2 )
on ( bB , bA, 1 ) = move( bB , bA, 0 ) .m( bB , bA, 0 )
on ( bB , bA, 2 ) = move( bB , bA, 0 ) .m( bB , bA, 0 )
on ( bB , bA, 3 ) = move( bB , bA, 0 ) .m( bB , bA, 0 )
on ( bB , bA, 4 ) = move( bB , bA, 0 ) .m( bB , bA, 0 )
on ( bB , bA, 5 ) = move( bB , bA, 0 ) .m( bB , bA, 0 )
on (bC , bB , 3 ) = move(bC , bB , 2 ) .m(bC , bB , 2 )
on (bC , bB , 4 ) = move(bC , bB , 2 ) .m(bC , bB , 2 )
on (bC , bB , 5 ) = move(bC , bB , 2 ) .m(bC , bB , 2 )

In the following, we will show the implementation of those programs consid-
ered in Chapter 8. We start by Program 8.1, which is a variation of Program 4.4:

f : : f i r e :− match , not ab .
ab : : ab :− noxygen .

:− oxygen , noxygen .

: : match .

The following listing shows the unique stable model of this program.

Answer 1 :
f i r e match

f i r e = match . f
match = match
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The following listing shows Program 7.1.

len ( 1 . . 2 ) .

m( I ) : : p ( I +1) :− p ( I ) , q ( I ) , len ( I ) .
n ( I ) : : q ( I +1) :− p ( I ) , q ( I ) , len ( I ) .

a : : p ( 1 ) .
b : : p ( 1 ) .

c : : q ( 1 ) .
d : : q ( 1 ) .

The following listing shows the unique stable model of this program.

Answer 1 :
len ( 1 ) len ( 2 ) p ( 1 ) p ( 2 ) p ( 3 ) q ( 1 ) q ( 2 ) q ( 3 )

p ( 1 ) = b + a
p ( 2 ) = ( d* a ) .m( 1 ) + ( c * a ) .m( 1 ) + ( d* b ) .m( 1 ) + ( c * b ) .m( 1 )
p ( 3 ) = ( ( d* a ) . n ( 1 ) * ( d* a ) .m( 1 ) ) .m( 2 )

+ ( ( d* b ) . n ( 1 ) * ( d* b ) .m( 1 ) ) .m( 2 )
+ ( ( c * a ) . n ( 1 ) * ( c * a ) .m( 1 ) ) .m( 2 )
+ ( ( c * b ) . n ( 1 ) * ( c * b ) .m( 1 ) ) .m( 2 )

q ( 1 ) = c + d
q ( 2 ) = ( d* b ) . n ( 1 ) + ( c * a ) . n ( 1 ) + ( d* a ) . n ( 1 ) + ( c * b ) . n ( 1 )
q ( 3 ) = ( ( c * a ) . n ( 1 ) * ( c * a ) .m( 1 ) ) . n ( 2 )

+ ( ( c * b ) . n ( 1 ) * ( c * b ) .m( 1 ) ) . n ( 2 )
+ ( ( d* a ) . n ( 1 ) * ( d* a ) .m( 1 ) ) . n ( 2 )
+ ( ( d* b ) . n ( 1 ) * ( d* b ) .m( 1 ) ) . n ( 2 )

Recall that the interesting feature of this example was that the number of causes
of a literal p(n) was 22n−1

. Note however, that cgraphs computes the causes mak-
ing use of unique atom labelling. In such case, there are a constant number 4

of causes of p(n). The following program shows that even with a unique atom
labelling, there are examples where the number of causes is exponential in the
size of the program.

len ( 1 . . 2 ) .

m( I ) : : p ( I +1) :− p ( I ) , q ( I ) , len ( I ) .
p ( I ) : : p ( I +1) :− p ( I ) , q ( I ) , len ( I ) .
n ( I ) : : q ( I +1) :− p ( I ) , q ( I ) , len ( I ) .
q ( I ) : : q ( I +1) :− p ( I ) , q ( I ) , len ( I ) .

a : : p ( 1 ) .
b : : p ( 1 ) .
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B implementation of examples

c : : q ( 1 ) .
d : : q ( 1 ) .

The following listing shows the unique stable model of this program.

Answer 1 :
len ( 1 ) len ( 2 ) p ( 1 ) p ( 2 ) p ( 3 ) q ( 1 ) q ( 2 ) q ( 3 )

p ( 1 ) = b + a
p ( 2 ) = ( c * a ) .m( 1 )

+ ( d* a ) .m( 1 )
+ ( c * a ) . p ( 1 )
+ ( c * b ) . p ( 1 )
+ ( d* b ) .m( 1 )
+ ( d* a ) . p ( 1 )
+ ( d* b ) . p ( 1 )
+ ( c * b ) .m( 1 )

p ( 3 ) = ( ( d* a ) . n ( 1 ) * ( d* a ) . p ( 1 ) ) . p ( 2 )
+ ( ( d* a ) . q ( 1 ) * ( d* a ) . p ( 1 ) ) . p ( 2 )
+ ( ( c * a ) . n ( 1 ) * ( c * a ) .m( 1 ) ) .m( 2 )
+ ( ( d* b ) . q ( 1 ) * ( d* b ) . p ( 1 ) ) .m( 2 )
+ ( ( c * b ) . q ( 1 ) * ( c * b ) .m( 1 ) ) .m( 2 )
+ ( ( d* a ) . q ( 1 ) * ( d* a ) .m( 1 ) ) .m( 2 )
+ ( ( c * b ) . q ( 1 ) * ( c * b ) . p ( 1 ) ) . p ( 2 )
+ ( ( d* a ) . n ( 1 ) * ( d* a ) .m( 1 ) ) . p ( 2 )
+ ( ( d* b ) . n ( 1 ) * ( d* b ) . p ( 1 ) ) . p ( 2 )
+ ( ( c * b ) . q ( 1 ) * ( c * b ) . p ( 1 ) ) .m( 2 )
+ ( ( d* b ) . n ( 1 ) * ( d* b ) .m( 1 ) ) . p ( 2 )
+ ( ( d* b ) . n ( 1 ) * ( d* b ) . p ( 1 ) ) .m( 2 )
+ ( ( d* a ) . q ( 1 ) * ( d* a ) .m( 1 ) ) . p ( 2 )
+ ( ( c * b ) . n ( 1 ) * ( c * b ) . p ( 1 ) ) . p ( 2 )
+ ( ( d* b ) . q ( 1 ) * ( d* b ) . p ( 1 ) ) . p ( 2 )
+ ( ( c * b ) . n ( 1 ) * ( c * b ) . p ( 1 ) ) .m( 2 )
+ ( ( d* a ) . q ( 1 ) * ( d* a ) . p ( 1 ) ) .m( 2 )
+ ( ( c * a ) . n ( 1 ) * ( c * a ) .m( 1 ) ) . p ( 2 )
+ ( ( c * a ) . q ( 1 ) * ( c * a ) . p ( 1 ) ) . p ( 2 )
+ ( ( c * b ) . n ( 1 ) * ( c * b ) .m( 1 ) ) . p ( 2 )
+ ( ( c * b ) . n ( 1 ) * ( c * b ) .m( 1 ) ) .m( 2 )
+ ( ( c * a ) . n ( 1 ) * ( c * a ) . p ( 1 ) ) . p ( 2 )
+ ( ( d* a ) . n ( 1 ) * ( d* a ) .m( 1 ) ) .m( 2 )
+ ( ( d* b ) . n ( 1 ) * ( d* b ) .m( 1 ) ) .m( 2 )
+ ( ( d* a ) . n ( 1 ) * ( d* a ) . p ( 1 ) ) .m( 2 )
+ ( ( c * a ) . q ( 1 ) * ( c * a ) .m( 1 ) ) .m( 2 )
+ ( ( d* b ) . q ( 1 ) * ( d* b ) .m( 1 ) ) . p ( 2 )
+ ( ( d* b ) . q ( 1 ) * ( d* b ) .m( 1 ) ) .m( 2 )
+ ( ( c * a ) . q ( 1 ) * ( c * a ) . p ( 1 ) ) .m( 2 )
+ ( ( c * a ) . n ( 1 ) * ( c * a ) . p ( 1 ) ) .m( 2 )
+ ( ( c * b ) . q ( 1 ) * ( c * b ) .m( 1 ) ) . p ( 2 )
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+ ( ( c * a ) . q ( 1 ) * ( c * a ) .m( 1 ) ) . p ( 2 )
q ( 1 ) = c + d
q ( 2 ) = ( d* b ) . n ( 1 )

+ ( c * a ) . q ( 1 )
+ ( d* a ) . n ( 1 )
+ ( c * b ) . q ( 1 )
+ ( d* b ) . q ( 1 )
+ ( d* a ) . q ( 1 )
+ ( c * a ) . n ( 1 )
+ ( c * b ) . n ( 1 )

q ( 3 ) = ( ( d* b ) . n ( 1 ) * ( d* b ) .m( 1 ) ) . n ( 2 )
+ ( ( c * b ) . q ( 1 ) * ( c * b ) . p ( 1 ) ) . n ( 2 )
+ ( ( c * b ) . q ( 1 ) * ( c * b ) .m( 1 ) ) . n ( 2 )
+ ( ( c * b ) . n ( 1 ) * ( c * b ) .m( 1 ) ) . q ( 2 )
+ ( ( d* b ) . q ( 1 ) * ( d* b ) .m( 1 ) ) . n ( 2 )
+ ( ( c * a ) . q ( 1 ) * ( c * a ) .m( 1 ) ) . q ( 2 )
+ ( ( c * b ) . n ( 1 ) * ( c * b ) . p ( 1 ) ) . n ( 2 )
+ ( ( d* a ) . n ( 1 ) * ( d* a ) .m( 1 ) ) . n ( 2 )
+ ( ( c * b ) . q ( 1 ) * ( c * b ) . p ( 1 ) ) . q ( 2 )
+ ( ( c * a ) . q ( 1 ) * ( c * a ) . p ( 1 ) ) . q ( 2 )
+ ( ( c * b ) . n ( 1 ) * ( c * b ) .m( 1 ) ) . n ( 2 )
+ ( ( d* b ) . q ( 1 ) * ( d* b ) .m( 1 ) ) . q ( 2 )
+ ( ( c * a ) . n ( 1 ) * ( c * a ) .m( 1 ) ) . n ( 2 )
+ ( ( c * a ) . q ( 1 ) * ( c * a ) . p ( 1 ) ) . n ( 2 )
+ ( ( c * a ) . n ( 1 ) * ( c * a ) . p ( 1 ) ) . q ( 2 )
+ ( ( d* b ) . q ( 1 ) * ( d* b ) . p ( 1 ) ) . n ( 2 )
+ ( ( d* a ) . n ( 1 ) * ( d* a ) . p ( 1 ) ) . q ( 2 )
+ ( ( d* a ) . n ( 1 ) * ( d* a ) .m( 1 ) ) . q ( 2 )
+ ( ( d* a ) . q ( 1 ) * ( d* a ) . p ( 1 ) ) . n ( 2 )
+ ( ( d* b ) . n ( 1 ) * ( d* b ) . p ( 1 ) ) . q ( 2 )
+ ( ( d* a ) . q ( 1 ) * ( d* a ) .m( 1 ) ) . n ( 2 )
+ ( ( c * a ) . q ( 1 ) * ( c * a ) .m( 1 ) ) . n ( 2 )
+ ( ( c * b ) . q ( 1 ) * ( c * b ) .m( 1 ) ) . q ( 2 )
+ ( ( d* a ) . q ( 1 ) * ( d* a ) . p ( 1 ) ) . q ( 2 )
+ ( ( d* a ) . q ( 1 ) * ( d* a ) .m( 1 ) ) . q ( 2 )
+ ( ( c * a ) . n ( 1 ) * ( c * a ) .m( 1 ) ) . q ( 2 )
+ ( ( d* b ) . n ( 1 ) * ( d* b ) .m( 1 ) ) . q ( 2 )
+ ( ( c * a ) . n ( 1 ) * ( c * a ) . p ( 1 ) ) . n ( 2 )
+ ( ( d* b ) . q ( 1 ) * ( d* b ) . p ( 1 ) ) . q ( 2 )
+ ( ( c * b ) . n ( 1 ) * ( c * b ) . p ( 1 ) ) . q ( 2 )
+ ( ( d* a ) . n ( 1 ) * ( d* a ) . p ( 1 ) ) . n ( 2 )
+ ( ( d* b ) . n ( 1 ) * ( d* b ) . p ( 1 ) ) . n ( 2 )
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B implementation of examples

Program 8.2 representing the load/unload process of the gun of the Yale
Shooting scenario.

time ( 1 . . 3 ) .

o ( S ) : : loaded ( S +1) :− load ( S ) , time ( S ) .
u ( S ) : : nloaded ( S +1) :− unload ( S ) , time ( S ) .

loaded ( S +1) :− loaded ( S ) , not nloaded ( S +1) , time ( S ) .

: : load ( 1 ) .

The following listing shows the unique stable model of this program.

Answer 1 :
load ( 1 ) loaded ( 2 ) loaded ( 3 ) loaded ( 4 ) time ( 1 ) time ( 2 ) time ( 3 )

load ( 1 ) = load ( 1 )
loaded ( 2 ) = load ( 1 ) . o ( 1 )
loaded ( 3 ) = load ( 1 ) . o ( 1 )
loaded ( 4 ) = load ( 1 ) . o ( 1 )

Program 8.4.

r1 : : a :− c , not b .
r2 : : b :− not a .
c : : c .

The following listing shows the unique stable model of this program.

Answer 1 :
a c

a = c . r1

c = c

Answer 2 :
b c

b = r2

c = c

Program 8.5.

r1 : : a :− c , not b .
r2 : : b :− not a .
c : : c .

r3 : : d :− b , not d .
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The following listing shows the unique stable model of this program.

Answer 1 :
a c

a = c . r1

c = c

Program 8.6.

a : : a :− f , not b .
f : : f :− e .
b : : b :− e , not a .
d : : d :− c , e .
e : : e .
c : : c :− c , f .

The following listing shows the unique stable model of this program.

Answer 1 :
a e f

a = e . f . a
e = e
f = e . f

Answer 2 :
b e f

b = e . b
e = e
f = e . f

Next, we show the implementation of Program 8.7 representing the decisions
support system used by Dr. Smith in Example 8.1.

m : : tightOnMoney :− student , not r i c h P a r e n t s .
p : : c a r e s A b o u t P r a c t i c a l i t y :− l i k e s S p o r t s .
r : : c o r r e c t i v e L e n s :− shortSighted , not l a serSurgery .
s : : l a serSurgery :− shortSighted , not tightOnMoney ,

not c o r r e c t i v e L e n s .
g : : g l a s s e s :− correc t iveLens , not c a r e s A b o u t P r a c t i c a l i t y ,

not contactLens .
c : : contactLens :− correc t iveLens , not afraidToTouchEyes ,

not longSighted ,
not g l a s s e s .

i : : i n t r a o c u l a r L e n s :− correc t iveLens , not glasses , not contactLens .
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: : shor tS ighted .
: : afraidToTouchEyes .
: : s tudent .
: : l i k e s S p o r t s .

The following listing shows the unique stable model of this program.

Answer 1 :
afraidToTouchEyes c a r e s A b o u t P r a c t i c a l i t y c o r r e c t i v e L e n s
i n t r a o c u l a r L e n s l i k e s S p o r t s shor tS ighted student tightOnMoney

afraidToTouchEyes = afraidToTouchEyes
c a r e s A b o u t P r a c t i c a l i t y = l i k e s S p o r t s . p
c o r r e c t i v e L e n s = shor tS ighted . r
i n t r a o c u l a r L e n s = shor tS ighted . r . i
l i k e s S p o r t s = l i k e s S p o r t s
shor tS ighted = shortS ighted
student = student
tightOnMoney = student .m

Next, Program 8.10 representing Example 1.5 where Suzy and Billy throw
rocks to a bottle.

time ( 1 . . 3 ) .

: : s h a t t e r e d ( T+1) :− throw (X , T ) , not s h a t t e r e d ( T ) .
s h a t t e r e d ( T+1) :− s h a t t e r e d ( T ) , time ( T ) .

: : throw ( suzy , 2 ) .
: : throw ( b i l l y , 4 ) .

The following listing shows the unique stable model of this program.

Answer 1 :
s h a t t e r e d ( 3 ) s h a t t e r e d ( 4 ) throw ( b i l l y , 4 ) throw ( suzy , 2 ) time ( 1 )
time ( 2 ) time ( 3 )

s h a t t e r e d ( 3 ) = throw ( suzy , 2 ) . s h a t t e r e d ( 3 )
s h a t t e r e d ( 4 ) = throw ( suzy , 2 ) . s h a t t e r e d ( 3 )
throw ( b i l l y , 4 ) = throw ( b i l l y , 4 )
throw ( suzy , 2 ) = throw ( suzy , 2 )

Next, the variation of this program where John throws before Suzy.
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time ( 1 . . 3 ) .

: : s h a t t e r e d ( T+1) :− throw (X , T ) , not s h a t t e r e d ( T ) .
s h a t t e r e d ( T+1) :− s h a t t e r e d ( T ) , time ( T ) .

: : throw ( suzy , 2 ) .
: : throw ( b i l l y , 4 ) .

: : throw ( john , 0 ) .

The following listing shows the unique stable model of this program.

Answer 1 :
s h a t t e r e d ( 1 ) s h a t t e r e d ( 2 ) s h a t t e r e d ( 3 ) s h a t t e r e d ( 4 )
throw ( b i l l y , 4 ) throw ( john , 0 ) throw ( suzy , 2 ) time ( 1 ) time ( 2 )
time ( 3 )

s h a t t e r e d ( 1 ) = throw ( john , 0 ) . s h a t t e r e d ( 1 )
s h a t t e r e d ( 2 ) = throw ( john , 0 ) . s h a t t e r e d ( 1 )
s h a t t e r e d ( 3 ) = throw ( john , 0 ) . s h a t t e r e d ( 1 )
s h a t t e r e d ( 4 ) = throw ( john , 0 ) . s h a t t e r e d ( 1 )
throw ( b i l l y , 4 ) = throw ( b i l l y , 4 )
throw ( john , 0 ) = throw ( john , 0 )
throw ( suzy , 2 ) = throw ( suzy , 2 )

Program 8.11 representing the desert traveller scenario of Example 1.8.

: : death :− shoot , poison .
: : death :− shoot .
: : shoot .
: : poison .

The following listing shows the unique stable model of this program.

Answer 1 :
death poison shoot

death = shoot . death
poison = poison
shoot = shoot

Program 8.16 representing the same scenario, but including the intermediate
variables dehydration and intake.
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: : death :− dehydration .
: : death :− in take .
: : dehydration :− shoot .
: : in take :− nshoot , poison .
: : shoot .
: : poison .

The following listing shows the unique stable model of this program.

Answer 1 :
death dehydration poison shoot

death = shoot . dehydration . death
dehydration = shoot . dehydration
poison = poison
shoot = shoot

Program 8.18 representing Example 8.2.

: : death :− shoot ( suzy ) , load ( john ) .
: : death :− shoot load ( b i l l y ) .

: : shoot ( suzy ) .
: : load ( john ) .
: : shoot load ( b i l l y ) .

The following listing shows the unique stable model of this program.

Answer 1 :
death load ( john ) shoot ( suzy ) shoot load ( b i l l y )

death = shoot load ( b i l l y ) . death
+ ( shoot ( suzy ) * load ( john ) ) . death

load ( john ) = load ( john )
shoot ( suzy ) = shoot ( suzy )
shoot load ( b i l l y ) = shoot load ( b i l l y )

Next, the program representing the variation of Example 8.3 in which Suzy
does not shoot.

death : : death :− shoot ( suzy ) , load ( john ) .
death : : death :− shoot load ( b i l l y ) .

load ( john ) : : load ( john ) .
shoot load ( b i l l y ) : : shoot load ( b i l l y ) .
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The following listing shows the unique stable model of this program.

Answer 1 :
death load ( john ) shoot load ( b i l l y )

death = shoot load ( b i l l y ) . death
load ( john ) = load ( john )
shoot load ( b i l l y ) = shoot load ( b i l l y )

Program 8.21 representing Example 8.4.

: : survive :− a n t i d o t e .
: : survive :− not poison .

: : a n t i d o t e .

The following listing shows the unique stable model of this program.

Answer 1 :
a n t i d o t e survive

a n t i d o t e = a n t i d o t e
survive = survive

And the variation in which the victim is poisoned.

: : survive :− a n t i d o t e .
: : survive :− not poison .

: : a n t i d o t e .
: : poison .

The following listing shows the unique stable model of this program.

Answer 1 :
a n t i d o t e poison survive

a n t i d o t e = a n t i d o t e
poison = poison
survive = a n t i d o t e . survive

Next, Program 8.22 representing Example 8.5.
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agent ( b i l l y ) .
agent ( putin ) .

death :− not ndeath , not promise .
ndeath :− not death , not npromise .

water :− water (X) .
promise :− promise (X) .

npromise :− not promise .

: : ndeath :− water (X) .
: : death :− nwater (X) , not npromise (X) , not water .

npromise (X) :− not promise (X) , agent (X) .

: : promise ( b i l l y ) .
: : nwater ( b i l l y ) .

The following listing shows the unique stable model of this program.

Answer 1 :
agent ( b i l l y ) agent ( putin ) death npromise ( putin ) nwater ( b i l l y )
promise promise ( b i l l y )

death = nwater ( b i l l y ) . death
nwater ( b i l l y ) = nwater ( b i l l y )
promise = promise ( b i l l y )
promise ( b i l l y ) = promise ( b i l l y )

The variation in which Putin is considered, but does not promise to water the
plant.

agent ( b i l l y ) .
agent ( putin ) .

death :− not ndeath , not promise .
ndeath :− not death , not npromise .

water :− water (X) .
promise :− promise (X) .

npromise :− not promise .

: : ndeath :− water (X) .
: : death :− nwater (X) , not npromise (X) , not nwater .

npromise (X) :− not promise (X) , agent (X) .
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: : promise ( b i l l y ) .
: : nwater ( b i l l y ) .

: : nwater ( putin ) .

The following listing shows the unique stable model of this program.

Answer 1 :
agent ( b i l l y ) agent ( putin ) death npromise ( putin ) nwater ( b i l l y )
nwater ( putin ) promise promise ( b i l l y )

death = nwater ( b i l l y ) . death
nwater ( b i l l y ) = nwater ( b i l l y )
nwater ( putin ) = nwater ( putin )
promise = promise ( b i l l y )
promise ( b i l l y ) = promise ( b i l l y )

And the variation in which Putin promises to water the plant.

agent ( b i l l y ) .
agent ( putin ) .

death :− not ndeath , not promise .
ndeath :− not death , not npromise .

water :− water (X) .
promise :− promise (X) .

npromise :− not promise .

: : ndeath :− water (X) .
: : death :− nwater (X) , not npromise (X) , not nwater .

npromise (X) :− not promise (X) , agent (X) .

: : promise ( b i l l y ) .
: : nwater ( b i l l y ) .

: : promise ( putin ) .
: : nwater ( putin ) .
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The following listing shows the unique stable model of this program.

Answer 1 :
agent ( b i l l y ) agent ( putin ) death nwater ( b i l l y ) nwater ( putin )
promise promise ( b i l l y ) promise ( putin )

death = nwater ( putin ) . death + nwater ( b i l l y ) . death
nwater ( b i l l y ) = nwater ( b i l l y )
nwater ( putin ) = nwater ( putin )
promise = promise ( putin ) + promise ( b i l l y )
promise ( b i l l y ) = promise ( b i l l y )
promise ( putin ) = promise ( putin )

Finally, Program 8.24 representing Example 8.6.

: : a r r i v e :− l e f t .
: : a r r i v e :− r i g h t .
: : l e f t :− t r a i n , switch .
: : r i g h t :− t r a i n , not switch .

: : t r a i n .
: : switch .

The following listing shows the unique stable model of this program.

Answer 1 :
a r r i v e l e f t switch t r a i n

a r r i v e = ( switch * t r a i n ) . l e f t . a r r i v e
l e f t = ( switch * t r a i n ) . l e f t
switch = switch
t r a i n = t r a i n
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C RESUMEN

Causalidad es un concepto presente en todo tipo de escenarios cotidianos y
firmemente asentado en el razonamiento de sentido común. De hecho, ha
aparecido en diferentes culturas, distantes tanto geográfica como temporal-
mente, y es uno de los objetivos centrales de muchos estudios en las ciencias
fı́sicas, conductuales, sociales y biológicas. El hecho de que la intuición sobre
relaciones causa-efecto no sólo afecte al sentido común, sino que también se
encuentra implı́citamente presente en la ciencia o en el razonamiento formal,
demuestran la importancia de la obtención de una formalización del concepto
de causalidad. Sin embargo, su formalización ha sido un asunto difı́cil de alcan-
zar que genera desacuerdo entre expertos de diferentes campos. Pearl [2000]
ilustra la importancia de ésta clase de relaciones poniendo como ejemplo la
segunda ley de la mecánica de Newton, y como esta describe la manera en que
una fuerza aplicada a un objeto cambiará su estado de movimiento:

“El cambio de movimiento es proporcional a la fuerza motriz impresa y ocurre
según la lı́nea recta a lo largo de la cual aquella fuerza se imprime.”

Esta ley es capturada por la bien conocida ecuación matemática:

a =
f
m

(113)

La manera en que (113) está escrita contiene implı́cita una relación causa-efecto
entre la fuerza f y la aceleración a que no se refleja en la semántica de la
ecuación. De hecho, de acuerdo con las leyes del álgebra, esta ecuación se
puede reescribir de forma equivalente como f = m · a o como m = f /a. Sin
embargo, decimos que “la relación f /a nos ayuda a determinar la masa m” o
que “la masa calculada m explica por qué una fuerza f dada ha provocado la
aceleración observada,” pero no que “esta fuerza f ha causado la masa m.” Del
mismo modo, la ecuación f = m · a nos ayuda a planear lo que tenemos que
hacer para imprimir una determinada aceleración a un objeto de masa dada,
pero esto no significa que las aceleraciones causen fuerzas. Generalmente, es-
tas consideraciones causales son tenidas en cuenta cuando los fı́sicos usan (113),
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pero, según explica Pearl, “tales distinciones no están soportadas por las ecua-
ciones de la fı́sica.” Pearl [1988] también ha señalado que algo similar sucede
cuando estamos formalizando una amplia clase de conocimiento abstracto en
un formalismo lógico. Para ilustrar este hecho, considere el siguiente escenario
introducido por Lin [1995]:

Ejemplo C.1 (La maleta). Una maleta tiene dos cerraduras y un muelle que abre la
maleta cuando ambas cerraduras se elevan. �

Una representación directa de este escenario podrı́a ser la implicación:

up(a) ∧ up(b) ⊃ open (114)

indicando que cuando ambas cerraduras están en posición up, la maleta se abre.
Una teorı́a de lógica clásica que consista en la conjunción de la implicación
anterior más el hecho de que ambas cerraduras están en posición up:

up(a) ∧ up(b)

nos conduce a la conclusión de que la maleta se abrió. Una lectura de izquierda
a derecha de la implicación material puede llevarnos a reconocer erróneamente
una relación causal en (114). Sin embargo, como sucede con (113), la impli-
cación (114) también la podemos escribir de manera equivalente como:

up(a) ∧ ¬open ⊃ ¬up(b) (115)

o

up(b) ∧ ¬open ⊃ ¬up(a) (116)

En estos casos, debemos cambiar la intuición de estas expresiones: podemos
explicar que una cerradura está up y la maleta está cerrada porque la otra cer-
radura no está up, pero no consideramos que up(a)∧¬open haya causado ¬up(b).

Además, en algunos casos, explicar las causas que han llevado a que algún
evento haya occurrido puede ser tan importante como la predicción de que
vaya a suceder. Por ejemplo, considere la siguiente variación del escenario de
la maleta.

Ejemplo C.2 (Ex. C.1 continuación). La maleta está conectado a un mecanismo que
provoca la explosión de una bomba cuando esta se abre. �
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Podemos representar este nuevo escenario añadiendo la siguiente implicación:

open ⊃ bomb (117)

Solemos estar interesados en asignar la responsabilidad de algún evento ocur-
rido a algún conjunto de hechos, especialmente en aquellos casos en que dicho
evento tiene consecuencias importantes como puede ser el caso de la explosión
de una bomba. Cuando se requiere una explicación de la bomba, podemos usar
la fórmula (117) de nuevo en su lectura de izquierda a derecha para determinar
que elevar ambas cerraduras explica la explosión de la bomba. Por otra parte, si
se requiere una explicación detallada, podemos construir una prueba deductiva,
como la mostrada en la Figura 53.

>
up(a)

>
up(b)

up(a) ∧ up(b)
open

(114)

bomb
(117)

Figure 53: Prueba del átomo bomb correspondiente con el Ejemplo C.2.

Posiblemente un juez no estará satisfecho simplemente con una explicación
fı́sica de la explosión de una bomba, sino que estará más preocupado por la
aplicación de una ley que establece lo siguiente:

Ejemplo C.3 (Ex. C.2 continuación). Aquel que causare la explosión de una bomba
será castigado con pena de prisión. �

La formalización de esta frase es un problema desafiante para la Representación
del Conocimiento (KR del inglés Knowledge Representation) porque habla de “las
causas de una explosión” sin describir explı́citamente las posibles maneras en
las que, eventualmente, la explosión puede ser causada. Si buscamos una solución
tolerante a la elaboración, la formalización de esta ley no debe variar cuando una
nueva forma de causar la explosión sea incluida en la teorı́a. Un formalismo es
tolerante a la elaboración en la medida en que se puede tener en cuenta nuevos
fenómenos o cambios en las circunstancias modificando un conjunto de hechos
expresados en dicho formalismo [McCarthy, 1998]. Con el fin de obtener una
solución que cumpla este criterio, necesitarı́amos una especie de predicado
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modal “hascaused(A,B)” donde A y B puedan ser formulas. Luego podemos
codificar la ley del Ejemplo C.3 como:

hascaused(up(a), bomb) ⊃ prison (118)

Es decir, si up(a) es una causa de bomb, entonces podemos concluir que el
agente que realizó up(a) deberá ir a la cárcel. Obviamente, el problema viene
cuando tratamos de dar un sentido al predicado “hascaused,” ya que su ver-
dad depende de la formalización del resto de la teorı́a. Por ejemplo, podemos
derivar fácilmente hechos de este predicado que se concluyan de los efectos
directos añadiendo las fórmulas:

up(a) ∧ up(b) ⊃ hascaused(up(a), open) (119)

up(a) ∧ up(b) ⊃ hascaused(up(b), open) (120)

También podemos añadir una fórmula de la forma:

open ⊃ hascaused(open,bomb) (121)

de manera que concluyamos una causa de bomb para los efectos indirectos.
Desafortunadamente, este método no tiene en cuenta el comportamiento tran-
sitivo que siguen las relaciones de causa-efecto: los hechos up(a) and up(b)
eventualmente también causan bomb. Por supuesto, también podrı́amos añadir
las siguientes implicaciones:

up(a) ∧ up(b) ⊃ hascaused(up(a), bomb) (122)

up(a) ∧ up(b) ⊃ hascaused(up(b), bomb) (123)

pero, en el caso general, podemos tener muchas pasos intermedios e incluso
interacción con el comportamiento por defecto de la inercia o con fluentes re-
cursivos. En otras palabras, necesitarı́amos un análisis completo de la teorı́a en
su conjunto con el fin de concluir los axiomas correctos para predicado el “has-
caused.” Por ejemplo, bajo la anterior representación, la adición de un nuevo
mecanismo que permita abrir la maleta no se puede lograr con sólo añadir
nuevos hechos, sino que también se requiere la inclusión de nuevas fórmulas
que relacionen este mecanismo con la explosión, es decir, nos vemos obligados a
añadir nuevas fórmulas en forma de efectos directos que conecten causalmente
estas nuevas formas de abrir la maleta y la explosión, bomb. Este es un ejemplo
del llamado problema de ramificación, identificado por Kautz [1986], que consiste
en verse forzado a representar los efectos indirectos de las acciones como efectos
directos.
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Un segundo inconveniente de (114), viene de la asignación de una lectura
de izquierda a derecha de la implicación material. Es importante resaltar que la
diferencia entre (114), (115) y (116) simplemente atañe a su escritura, pero todas
ellas son equivalentes, ya que la implicación material es simplemente un caso
de disyunción, en este caso:

open ∨ ¬up(a) ∨ ¬up(b)

Usar la correcta lectura causal de (114) se vuelve ahora crucial debido a que
estamos fijando la verdad del predicado “hascaused” en función de ello. Para
ser preciso, mientras que de (114) queremos concluir que:

(114) ∧ up(a) ∧ up(b) |= hascaused(up(a),open) (124)

Una lectura similar de (115) nos llevarı́a a concluir que:

(115) ∧ up(a) ∧ ¬open |= hascaused(¬open,¬up(b)) (125)

algo que no deberı́a cumplirse cuando (115) es remplazada por (114) en (125): la
lectura causal deseada de (114) deberı́a ir del antecedente (las cerraduras) hacia
el consecuente (open) y no en la otra dirección. Desafortunadamente, ambas
fórmulas son equivalentes en lógica clásica, y por eso, esta distinción no se
pueden hacer.

Al contrario que la implicación clásica, las reglas en Programación Lógica (LP
del inglés Logic Programming) son direccionales. Por ejemplo, (114) se escribirı́a
como la regla:

open ← up(a), up(b) (126)

El sı́mbolo de implicación (⊃) es sustituido por una flecha (←), el sı́mbolo de
conjunción (∧) por una coma (,) y la posición de antecedente y consecuente se
invierten. Podemos leer (126), de manera top-down, como “para obtener open
podemos mover up ambas cerraduras” o, de manera bottom-up, como “subiendo
ambas cerraduras se deriva que la maleta se abre.” Incluso podemos asignarle
una lectura causal: “moviendo up ambas cerraduras causará la apertura de la
maleta.” Por otro lado, siguiendo este mismo método de reescritura, (115) nos
llevará a una regla diferente:

up(b) ← up(a), open (127)

donde la negación clásica de un átomo ¬α es reescrita como α. La regla (127)
se leerı́a como “para mover up la cerradura b podemos mover up la cerradura
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a y cerrar de alguna manera la maleta” o “mover up la cerradura y cerrar la
maleta harán que la segunda cerradura se mueva hacia abajo,” algo claramente
erróneo con respecto a nuestra percepción causal del Ejemplo C.1. Está claro
que las lecturas de las reglas (126) y (127) son muy distintas, y de hecho todas
las semántica de LP las tratarán como dos fórmulas claramente diferentes. Esta
distinción hace que las reglas de LP sean una herramienta adecuada para la
representación de leyes causales.

En Inteligencia Artificial (AI del ingles Artificial Intelligence), el problema de
causalidad se ha abordado principalmente dos maneras diferentes y comple-
mentarias: por un lado, la literatura de actual causation se han centrado en
determinar el concepto común de causa sin poner demasiada atención a los
problemas de tolerancia a la elaboración que puedan surgir; por otro lado, los
enfoques basados en suficiencia se han centrado en el uso de causalidad para
resolver algunos problemas de tolerancia a la elaboración sin poner mucha
atención en la posibilidad de concluir hechos de la forma “A ha causado B.” El
núcleo de esta tesis se centra en la representación y razonamiento con explica-
ciones causales. Como punto de partida, vamos a representar a los sistemas
como programas lógicos, y vamos a leer las reglas de la forma A← B como “el
evento B causa efecto A.” Las explicaciones causales consisten en fórmulas en
forma normal disyuntiva mı́nima en las que cada disjunto representa un causa
en forma de grafo. En nuestro ejemplo, el átomo bomb estará justificado por la
siguiente causa:(

up(a) ∗ up(b)
)
· o · b (128)

donde o y b se corresponden con las reglas (126) y

bomb ← open (129)

respectivamente. Intuitivamente, (128) significa que up(a) y up(b) han causado
bomb por medio de las reglas o y b (es decir (126) y (129), respectivamente).
Esta representación permite fácilmente reconocer diferentes relaciones causales
como son: causa suficiente, necesaria y contributiva.

metodologı́a

La metodologı́a utilizada en esta propuesta es la estándar en investigación en
Ciencias de la Computación, una secuencia cı́clica incluyendo: revisión del es-
tado del arte, definición del problema, planteamiento de hipótesis, y derivación
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de su prueba formal o refutación. En concreto, esta tesis doctoral ha generado
las siguientes publicaciones:

Pedro Cabalar and Jorge Fandinno, Explaining Preferences and Preferring Ex-
planations. In Advances in Knowledge Representation, Logic Program-
ming, and Abstract Argumentation 2014, Essays Dedicated to Gerhard
Brewka on the Occasion of His 60th Birthday. Thomas Eiter, Hannes
Strass, Mirosław Truszczyński and Stefan Woltran (eds). Lecture Notes
in Computer Science, Volume 9060, 2015.

Pedro Cabalar, Jorge Fandinno and Michael Fink. Causal graph justifications
of logic programs. In Theory and Practice of Logic Programming, TPLP
14, (4-5) 603-618, 30th International Conference on Logic Programming,
July 2014.

Pedro Cabalar, Jorge Fandinno and Michael Fink. A complexity assessment for
queries involving sufficient and necessary causes. In Proc. of the 14th Euro-
pean Conf. on Logis in Artificial Inteligence, JELIA’14, Funchal, Madeira,
Portugal, September 24th-26th, 2014. Lecture Notes in Artificial Intelli-
gence (8761), pp. 300-310, Springer-Verlag, 2014.

Pedro Cabalar and Jorge Fandinno, An algebra of causal chains, in Proc. of
the 6th International Workshop on Answer Set Programming and Other
Computing Paradigms, ASPOCP’13, Istambul, Turkey, 2013.

Jorge Fandinno, Algebraic Approach to Causal Logic Programs, Theory and Prac-
tice of Logic Programming 13 (4-5), On-line Supplement (Doctoral Con-
sortium), 2013.

Pedro Cabalar and Jorge Fandinno, Enablers and Inhibitors in Causal Justifica-
tions of Logic Programs, Technical Report, University of Corunna, 2015.

resultados obtenidos

En esta tesis, hemos proporcionado una semántica lógica para representar y ra-
zonar con explicaciones causales. En detalle, nuestras principales aportaciones
pueden resumirse de la siguiente manera:

329



C resumen

i ) Se han definido formalmente los conceptos de grafo causal y valor causal
que extienden la idea de cadena causal introducida por Lewis y que, a
diferencia de ésta, permiten distinguir entre causas alternativas y conjun-
tivas. También se ha definido los conceptos de causa suficiente, necesaria
y contributiva con respecto a estos valores causales. En particular, el con-
cepto de causa suficiente está estrechamente relacionado con la idea de
prueba lógica no redundante: de hecho, se ha demostrado su corresponden-
cia isomorfa para el caso de aquellos programas en los que cada regla
tiene una etiqueta diferente.

ii ) Se han estudiado las propiedades algebraicas de estos valores causales.
En particular, los valores causales pueden ser manipulados por medio
de tres operaciones algebraicas (·), (∗) and (+). Por otra parte, el álgebra
formada por estos valores causales es isomorfo a un retı́culo libre, comple-
tamente distributivo generado por el conjunto de grafo causales. Como
consecuencia, aquellos términos causales sin sumas que además son max-
imales representan el conjunto de causas de un átomo.

iii ) Se han proporcionado semánticas causales para programas lógicos que
son extensiones de la least model, la stable model, la well-founded model y la
answer set semantics. También se han proporcionado métodos para calcu-
lar la información causal con respecto a estas semánticas. En concreto,
la información causal con respecto a la least model semantics se puede cal-
cular mediante una extensión del operador estándar de consecuencias
directas introducido por van Emden and Kowalski [1976]. Para la sta-
ble y la answer set semantics, podemos recurrir a la idea de reducto de un
programa [Gelfond and Lifschitz, 1988] y, finalmente, para la well-founded
semantics, podemos utilizar una extensión de la definición proporcionada
por Van Gelder [1989] en función de un operador de punto fijo alternante.

iv ) Se ha explorado la aplicación de nuestra propuesta a problemas tradi-
cionales de KR. En concreto, se ha aplicado la extensión causal de la an-
swer set semantics para obtener relaciones de causa-efecto en ejemplos de la
literatura de Razonamiento sobre acciones y cambio. La misma semántica
también fúe empleada para representar varios ejemplos provenientes de
la literatura sobre actual causation.

v ) También se ha incorporado un nuevo tipo de literal causal que permite
consultar la información causal asociada con cada literal. Estos literales
permiten, a su vez, la definición de predicados concretos que definan
distintos tipos de relaciones causa-efecto. Por ejemplo, hemos utilizado

330



esta clase de literales para representar el Ejemplo C.3 mediante la regla no
estándar (118) sin caer en problemas de tolerancia a la elaboración [McCarthy,
1998]. Para ello definimos la semántica del predicado hascaused(A, B)
en función de un literal causal de manera que hascaused(A, B) es cierto
cuando “el evento A ha sido suficiente para causar el evento B.”

vi ) Hemos explorado el coste computacional asociado con la solución de los
problemas de decisión correspondientes la obtención de las conclusiones
lógicas, las causas suficientes y las causas necesarias de un programa. Para to-
dos ellos proporcionamos caracterizaciones completas, en concreto: todos
ellos se encuentran dentro del segundo nivel de la jerarquı́a polinómica, y
(bajo supuestos razonables) tanto el coste de la obtención de conclusiones
lógicas, como la obtención de causas suficientes, no se ve incrementada
con respecto a la obtención de conclusiones lógicas en LP estándar.

vii) Comparamos nuestro trabajo con varias aproximaciones en LP que tratan
la obtención de justificaciones. En concreto, obtenemos una corresponden-
cia formal entre nuestras causas suficientes y las justificaciones obtenidas
por la aproximación why-not provenance [Damásio et al., 2013]. También
exploramos, de maneira informal, las similitudes y diferencias entre nue-
stro enfoque y los enfoques seguidos por Pontelli et al. [2009] y Schulz
and Toni [2013, 2014]. Con respecto a la literatura de actual causation obser-
vamos que nuestra aproximación corresponde con la idea de producción
introducida por Hall [2004]. Hall distingue entre dos clases de relaciones
causa-efecto que él llama producción y dependencia. En este sentido, obser-
vamos que la definición de causa contributiva que proponemos coincide
con la definición de actual cause proporcionada por Halpern and Pearl
[2001] en aquellos ejemplos en los que producción y dependencia coinci-
den.

viii) Finalmente, proporcionamos a implementación dun prototipo que cal-
cula as causas suficientes de literales con respecto á well-founded seman-
tics e la stable model semantics. Esta ferramenta incorpora o predicado
hascaused(A, B) que permite tambén razoar coas relaciones de causa-efecto.
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D RESUMO

Causalidade é un concepto presente en todo tipo de escenarios cotiáns, firme-
mente asentado no razoamento de sentido común. De feito, apareceu en difer-
entes culturas, distantes tanto xeográfica como temporalmente, e é un dos obx-
ectivos centrais de moitos estudos nas ciencias fı́sicas, da conduta, sociais e
biolóxicas. O feito de que a intuición sobre relacións causa-efecto non so afecte
ó sentido común, senón que tamén se atope implicitamente presente na cien-
cia ou no razoamento formal, demostran a importancia da obtención dunha
formalización deste concepto. Sen embargo, a súa formalización foi un asunto
difı́cil de acadar, e que xera desacordo entre expertos de diferentes campos.
Pearl [2000] ilustra a importancia desta clase de relacions poñendo como exem-
plo a segunda lei da mecánica de Newton e como esta describe a maneira en
que unha forza aplicada un obxecto cambia o seu estado de movemento:

“O cambio de movemento é proporcional á forza motriz impresa e ocorre na di-
rección da lı́ña recta ó largo da cal dita forza se imprimiu.”

Esta lei é capturada pola ben coñecida ecuación matemática:

a =
f
m

(130)

A maneira en que (130) está escrita contén implı́cita unha relación causa-efecto
entre a forza f e a aceleración a que non se reflexa na semántica da ecuación.
De feito, de acordo coas leis da álxebra, esta ecuación pódese reescribir de
maneira equivalente como f = m · a ou como m = f /a. Sen embargo, dicimos
que “a relación f /a axúdanos a determinar a masa m” ou que “a masa calcu-
lada m explica por que unha forza f dada provocou a aceleración observada,”
pero non que “esta forza f fora a causa da masa m.” Do mesmo xeito, a ecuación
f = m · a axúdanos a planear o que temos que facer para imprimir unha deter-
minada aceleración a un obxecto de masa dada, pero isto non significa que as
aceleracións causen forzas. Xeralmente, estas consideracións causais son tidas
en conta cando os fı́sicos usan (130), pero, segundo explica Pearl, “tales dis-
tincións non están soportadas polas ecuacións da fı́sica.” Pearl [1988] tamén
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sinalou que algo similar sucede cando estamos formalizando unha ampla clase
de coñecemento abstracto nun formalismo lóxico. Para ilustrar este feito, con-
sidere o seguinte escenario introducido por Lin [1995]:

Exemplo D.1 (La maleta). Unha maleta ten dous pechos e un resorte que abre a
maleta cando ambos pechos se elevan. �

Unha representación deste escenario poderı́a ser a implicación:

up(a) ∧ up(b) ⊃ open (131)

indicando que, cando ambos pechos están en posición up, a maleta ábrese.
Unha teorı́a de lóxica clásica que consista na conxunción da implicación ante-
rior mailo feito de que ambos pechos están en posición up:

up(a) ∧ up(b)

condúcenos á conclusión de que a maleta se abre. Unha lectura de esquerda
a dereita da implicación material pode levarnos a recoñecer erroneamente unha
relación causal en (131). Sen embargo, como sucede con (130), a implicación (131)
tamén a podemos escribir de maneira equivalente como:

up(a) ∧ ¬open ⊃ ¬up(b) (132)

ou

up(b) ∧ ¬open ⊃ ¬up(a) (133)

Nestes casos, debemos cambiar a intuición destas expresións: podemos explicar
que un pecho está up e a maleta segue pechada porque o outro pecho non está
up, pero non consideramos que up(a) ∧ ¬open causara ¬up(b).

Ademais, nalgúns casos, explicar as causas que levaron a que certo evento
ocorrera pode ser tan importante como a predición de que vaia ocorrer. Por
exemplo, considere a seguinte variación do escenario da maleta.

Exemplo D.2 (Ex. D.1 continuación). A maleta está conectado a un mecanismo que
provoca a explosión dunha bomba cando esta se abre. �

Podemos representar este novo escenario engadindo a seguinte implicación:

open ⊃ bomb (134)
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Acostumamos a estar interesados en asignar a responsabilidade dalgún feito
ocorrido a algún conxunto de feitos, especialmente naqueles casos nos que dito
feito ten consecuencias relevantes como pode ser o caso da explosión dunha
bomba. Cando se require unha explicación da explosión, podemos usar a
fórmula (134) de novo na súa lectura de esquerda a dereita para determinar
que elevar ambos pechos explica a explosión da bomba. Por outra parte, si
se require una explicación detallada, podemos construı́r unha proba dedutiva,
como a mostrada na Figura 54.

>
up(a)

>
up(b)

up(a) ∧ up(b)
open

(131)

bomb
(134)

Figure 54: Proba do átomo bomb correspondente co Exemplo D.2.

Posiblemente un xuı́z non estará satisfeito simplemente cunha explicación
fı́sica da explosión da bomba, senón que estará máis preocupado pola apli-
cación dunha lei que establece o seguinte:

Exemplo D.3 (Ex. D.2 continuación). Quen causar a explosión dunha bomba será
castigado con pena de prisión. �

A formalización desta frase é un problema desafiante para a Representación de
Coñecemento (KR do inglés Knowledge Representation) porque fala “das causas
dunha explosión” sen describir explicitamente as posibles maneiras en que, even-
tualmente, a explosión pode ser causada. Se buscamos unha solución tolerante á
elaboración, a formalización desta lei non debe variar cando unha nova forma
de causar a explosión sexa incluı́da na teorı́a. Un formalismo é tolerante á elabo-
ración na medida na que se pode ter en conta novos fenómenos ou cambios nas
circunstancias modificando un conxunto de feitos expresados en dito formal-
ismo [McCarthy, 1998]. Co fin de obter unha solución que cumpra este criterio,
necesitarı́amos una especie de predicado modal “hascaused(A,B)” onde A e B
poidan ser formulas. Logo podemos codificar a lei do Exemplo D.3 como:

hascaused(up(a), bomb) ⊃ prison (135)

É dicir, se up(a) é unha causa de bomb, entón podemos concluı́r que o axente
que realizou up(a) deberá ir á cárcere. Claramente, o problema ven cando
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tratamos de dar un sentido ó predicado “hascaused,” xa que a súa verdade de-
pende da formalización do resto da teorı́a. Por exemplo, podemos derivar facil-
mente feitos deste predicado que se conclúan dos efectos directos engadindo
as fórmulas:

up(a) ∧ up(b) ⊃ hascaused(up(a), open) (136)

up(a) ∧ up(b) ⊃ hascaused(up(b), open) (137)

Tamén podemos engadir unha fórmula da forma:

open ⊃ hascaused(open,bomb) (138)

de maneira que conclúamos unha causa de bomb para os efectos indirectos. De-
safortunadamente, este método non ten en conta o comportamento transitivo
que seguen as relacións de causa-efecto: os feitos up(a) and up(b) eventualmente
tamén causan bomb. Por suposto, tamén poderı́amos engadir as seguintes im-
plicacións:

up(a) ∧ up(b) ⊃ hascaused(up(a), bomb) (139)

up(a) ∧ up(b) ⊃ hascaused(up(b), bomb) (140)

pero, no caso xeral, podemos ter moitos pasos intermedios e incluso interacción
co comportamento por defecto da inercia ou con flúentes recursivos. Noutras
palabras, necesitarı́amos un análise completo da teorı́a no seu conxunto co fin
de concluı́r os axiomas correctos para o predicado “hascaused.” Por exemplo,
baixo a anterior representación, engadir un novo mecanismo que permita abrir
a maleta non se pode acadar só con engadir novos feitos, senón que tamén
se require a inclusión de novas fórmulas que relacionen este mecanismo coa
explosión, é dicir, vémonos forzados a engadir novas fórmulas na forma de
efectos directos que conecten causalmente estas novas formas de abrir a maleta
e a explosión, bomb. Este é un exemplo do chamado problema de ramificación,
identificado por Kautz [1986], que consiste en verse na obriga de representar
os efectos indirectos das accións como efectos directos.

Un segunda inconveniente de (131), ven da asignación dunha lectura de es-
querda a dereita da implicación material. É importante resaltar que a diferencia
entre (131), (132) y (133) simplemente atane a súa escritura, pero todas elas
son equivalentes, xa que a implicación material é simplemente un caso de dis-
xunción, neste caso:

open ∨ ¬up(a) ∨ ¬up(b)
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Usar a correcta lectura causal de (131) volvese agora crucial debido a que esta-
mos fixando a verdade do predicado “hascaused” en función de elo. Para ser
precisos, mentras que de (131) queremos concluı́r que:

(131) ∧ up(a) ∧ up(b) |= hascaused(up(a),open) (141)

Unha lectura similar de (132) levarianos a concluı́r que:

(132) ∧ up(a) ∧ ¬open |= hascaused(¬open,¬up(b)) (142)

algo que non deberı́a cumprirse cando (132) é substituida por (131) en (142): a
lectura causal desexada de (131) deberı́a ir de antecedente (os pechos) cara
o consecuente (open) e non na outra dirección. Desafortunadamente, ambas
fórmulas son equivalentes en lóxica clásica, e polo tanto, esta distinción non é
posible.

Ó contrario que a implicación clásica, as regras en Programación Lóxica (LP
do inglés Logic Programming) son direccionais. Por exemplo, (131) escribirı́ase
como a regra:

open ← up(a), up(b) (143)

O sı́mbolo de implicación (⊃) é substituı́do por unha frecha (←), o sı́mbolo de
conxunción (∧) por unha coma (,) e a posición de antecedente e consecuente
invértense. Podemos ler (143), de maneira top-down, como “para obter open
podemos mover up ambos pechos” ou, de maneira bottom-up, como “subindo
ambos pechos derivase que a maleta se abre.” Incluso podemos asignarlle unha
lectura causal: “movendo up ambos pechos causará a apertura da maleta.” Por
outro lado, seguindo este mesmo método de reescritura, (132) levaranos a una
regra diferente:

up(b) ← up(a), open (144)

onde a negación clásica dun átomo ¬α é rescrita como α. A regra (144) lerı́ase
como “para mover up o pecho b podemos mover up o pecho a e cerrar dal-
gunha maneira a maleta” ou “mover up o pecho e pechar a maleta farán que
o segundo pecho se mova cara abaixo,” algo claramente erróneo con respecto a
nosa percepción causal do Exemplo D.1. Está claro que as lecturas das regras
(143) e (144) son moi distintas, e de feito todas as semántica de LP vanas tratar
como dúas fórmulas claramente diferentes. Esta distinción fai que as regras de
LP sexan una ferramenta adecuada para a representación de leis causais.
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En Intelixencia Artificial (AI do ingles Artificial Intelligence), o problema de
causalidad abordouse principalmente de dúas maneiras diferentes e comple-
mentarias: por un lado, a literatura de actual causation centrouse en determi-
nar o concepto común de causa sen por demasiada atención ós problemas de
tolerancia a la elaboración que puideran xurdir; por outro lado, na area de Ra-
zoamento sobre Accións e Cambio, centráronse no uso de causalidade para re-
solver algúns problemas de tolerancia a elaboración sen por moita atención na
posibilidade de concluı́r feitos da forma “A causou B.” O núcleo desta tese cen-
trase na representación e razoamento con explicaciones causais. Como punto
de partida, imos representar ós sistemas como programas lóxicos, e imos ler as
regras da forma A← B como “o fetio B causa o feito A.” As explicacións cau-
sais consisten en fórmulas en forma normal disxuntiva mı́nima nas que cada
disxunto representa un causa en forma de grafo. No noso exemplo, o átomo
bomb estará xustificado pola seguinte causa:(

up(a) ∗ up(b)
)
· o · b (145)

onde o y b correspóndense coas regras (143) e

bomb ← open (146)

respectivamente. Intuitivamente, (145) significa que up(a) y up(b) causou bomb
por medio das regras o e b (é dicir (143) e (146), respectivamente). Esta repre-
sentación permite facilmente recoñecer diferentes relacións causais como son:
causa suficiente, necesaria e contributiva.

metodoloxı́a

A metodoloxı́a empregada nesta proposta é a estándar en investigación nas
Ciencias da Computación, unha secuencia cı́clica incluı́ndo: revisión do estado
da arte, definición do problema, formulación de hipóteses, e derivación da súa
proba formal ou refutación. En concreto, esta tese doutoral xerou as seguintes
publicacións:

Pedro Cabalar and Jorge Fandinno, Explaining Preferences and Preferring Ex-
planations. In Advances in Knowledge Representation, Logic Program-
ming, and Abstract Argumentation 2014, Essays Dedicated to Gerhard
Brewka on the Occasion of His 60th Birthday. Thomas Eiter, Hannes
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Strass, Mirosław Truszczyński and Stefan Woltran (eds). Lecture Notes
in Computer Science, Volume 9060, 2015.

Pedro Cabalar, Jorge Fandinno and Michael Fink. Causal graph justifications
of logic programs. In Theory and Practice of Logic Programming, TPLP
14, (4-5) 603-618, 30th International Conference on Logic Programming,
July 2014.

Pedro Cabalar, Jorge Fandinno and Michael Fink. A complexity assessment for
queries involving sufficient and necessary causes. In Proc. of the 14th Euro-
pean Conf. on Logis in Artificial Inteligence, JELIA’14, Funchal, Madeira,
Portugal, September 24th-26th, 2014. Lecture Notes in Artificial Intelli-
gence (8761), pp. 300-310, Springer-Verlag, 2014.

Pedro Cabalar and Jorge Fandinno, An algebra of causal chains, in Proc. of
the 6th International Workshop on Answer Set Programming and Other
Computing Paradigms, ASPOCP’13, Istambul, Turkey, 2013.

Jorge Fandinno, Algebraic Approach to Causal Logic Programs, Theory and Prac-
tice of Logic Programming 13 (4-5), On-line Supplement (Doctoral Con-
sortium), 2013.

Pedro Cabalar and Jorge Fandinno, Enablers and Inhibitors in Causal Justifica-
tions of Logic Programs, Technical Report, University of Corunna, 2015.

resultados obtidos

Nesta tese, proporcionamos unha semántica lóxica para representar e razoar
con explicacións causais. En detalle, as nosas principais aportacións poden
resumirse da seguinte maneira:

i ) Definı́ronse formalmente os conceptos de grafo causal e valor causal que
amplı́an a idea de cadea causal introducida por Lewis e que, a diferencia
desta, permiten distinguir entre causas alternativas e conxuntivas. Tamén
se definiron os conceptos de causa suficiente, necesaria e contributiva con
respecto a estes valores causais. En particular, o concepto de causa sufi-
ciente está estreitamente ligado coa idea de proba lóxica non redundante: de
feito, demostrouse a súa correspondencia isomorfa para o caso daqueles
programas nos que cada regra ten una etiqueta diferente.
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ii ) Estudáronse as propiedades alxébricas destes valores causais. En partic-
ular, os valores causais poden ser manipulados por medio de tres op-
eracións alxébricas (·), (∗) e (+). Por outra parte, a álxebra formada por
estes valores causais é isomorfa a un retı́culo libre, completamente dis-
tributivo xerado polo conxunto de grafos causais. Como consecuencia,
aqueles termos causais sen sumas que ademais son maximais represen-
tan o conxunto de causas dun átomo.

iii ) Proporcionáronse semánticas causais para programas lóxicos que son am-
pliacións da least model, a stable model, a well-founded model e a answer set
semantics. Tamén se proporcionaron métodos para calcular a información
causal con respecto a estas semánticas. En concreto, a información causal
con respecto á least model semantics pode obterse mediante unha extensión
dó operador estándar de consecuencias directas introducido por van Em-
den and Kowalski [1976]. Para a stable e a answer set semantics, pode-
mos recorrer á idea de reduto dun programa [Gelfond and Lifschitz, 1988]
e, finalmente, para a well-founded semantics, podemos empregar unha ex-
tensión da definición proporcionada por Van Gelder [1989] en función
dun operador de punto fixo alternante.

iv ) Explorouse a aplicación da nosa proposta a problemas tradicionais de
KR. En concreto, aplicouse a extensión causal da answer set semantics para
obter relacións de causa-efecto en exemplos da literatura de Razoamento
sobre accións e cambio. A mesma semántica tamén foi empregada para
representar varios exemplos provintes da literatura sobre actual causation.

v ) Tamén se incorporou un novo tipo de literal causal que permite consul-
tar a información asociada con cada literal. Estes literais permiten, a súa
vez, a definición de predicados concretos que definan distintos tipos de
relaciones causa-efecto. Por exemplo, empregamos esta clase de literais
para representar o Exemplo D.3 mediante a regra non estándar (135) sen
caer en problemas de tolerancia á elaboración [McCarthy, 1998]. Para elo, a
semántica do predicado hascaused(A, B) é definida en función dun literal
causal de maneira que hascaused(A, B) é certo cando “o evento A foi sufi-
ciente para causar o evento B.”

vi ) Exploramos o coste computacional asociado ca solución dos problemas
de decisión correspondentes á obtención das conclusións lóxicas, as causas
suficientes e as causas necesarias dun programa. Para todos eles propor-
cionamos caracterizacións completas, en concreto: todos estes problemas
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atópanse dentro do segundo nivel da xerarquı́a polinómica, e (baixo su-
postos razoables) tanto o coste da obtención de conclusións lóxicas, como
a obtención de causas suficientes, non se ve incrementada con respecto á
obtención de conclusións lóxicas en LP estándar.

vii) Comparamos o noso traballo con varias aproximaciones en LP que tratan
a obtención de xustificacións. En concreto obtivemos unha correspon-
dencia formal entre as nosas causas suficientes e as xustificacións obtidas
pola aproximación why-not provenance [Damásio et al., 2013]. Tamén ex-
ploramos de maneira informal as similitudes e diferencias entre o noso
enfoque e os enfoques seguidos por Pontelli et al. [2009] e Schulz and
Toni [2013, 2014]. Con respecto á literatura de actual causation observa-
mos que a nosa aproximación corresponde coa idea de produción intro-
ducida por Hall [2004]. Hall distingue entre dúas clases de relaciones
causa-efecto que el chama produción e dependencia. Neste sentido, observa-
mos que a nosa definición de causa contributiva coincide coa definición
de actual cause proporcionada por Halpern and Pearl [2001] naqueles ex-
emplos nos que produción e dependencia coinciden.

viii) Por último, proporcionamos a implementación dun prototipo que calcula
as causas suficientes de literais con respecto á well-founded semantics e a sta-
ble model semantics. Esta ferramenta incorpora o predicado hascaused(A, B)
que permite tamén razoar coas relacións de causa-efecto.
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