
Basic TCP/IP networking

Basic TCP/IP networking
Grado en Informática 2024/2025

Departamento de Ciencias de la Computación
y Tecnologás de la Información

Facultad de Informática
Universidad de Coruña

Antonio Yáñez Izquierdo

Basic TCP/IP networking

Contents I
1 Basic network configuration

solaris 11
openbsd
FreeBSD
NetBSD
linux
ubuntu and devuan linux
fedora linux
linux: Interacting with Network Manager
linux’s nmcli
linux’s netplan

2 Routes

3 Network interface aliasing

4 Access control
stopping and disabling services

Basic TCP/IP networking

Contents II
Access control at the packet level
Access control at the application level
Access control without inetd

5 inetd
inetd configuration

6 inetd and tcpwrappers
tcpwrappers
inetd and tcpwrappers in Solaris

Basic TCP/IP networking

Basic network configuration

Basic network configuration

Basic TCP/IP networking

Basic network configuration

basic IP v4 configuration

to properly configure a machine using ipv4 we have to
configure

the machine name
the Network Interface Cards
the routes
the dns (if using it)

Basic TCP/IP networking

Basic network configuration

basic NIC configuration

The basic things we have to configure for a Network Interface
Card are

its ip address
its netmask (number of bits in its ip address that correspond
to network address)
its broadcast address

Basic TCP/IP networking

Basic network configuration

ways to configure the network

there are two ways to configure the network

manual configuration: we configure manually each of the
paramaters, either directly using the comand line or through
the boot scripts
using dhcp: the network interface card asks for its
configuration to a machine in the network (the dhcp server).
This can be done directly through the comand line or using the
boot scripts

most systems have a graphic utility to configure the network,
which can be used to configure either manually or via dhcp.
We won’t deal with those utilities, neither will we deal with
the wireless configuration options

Basic TCP/IP networking

Basic network configuration

ifconfig

the comand ifconfig used to be the chosen way to configure
network interfaces. It has been superseded in a number of
unix flavours (ip in linux, ipadm solaris 11)

it is usually still available, either installed in the base system
or a separate package

it is usually located at /sbin/ifconfig

it can configure interfaces both manually or using dhcp

ifconfig -a (or -A, depending on the unix variant) shows
the actual configuration of the Network Interface Cards

Basic TCP/IP networking

Basic network configuration

configuring the dns

the configuration of the dns resides on the file
/etc/resolv.conf

this file has the options to the resolver configuration. The
most common options are

nameserver to specify the address of a domain name server,
up to 3 can be defined
domain (optional) to sepecify the local domain. Short names
are supposed to be from this domain

Basic TCP/IP networking

Basic network configuration

configuring the dns

example of /etc/resolv.conf file

domain dc.if.udc.es.

nameserver 193.144.51.10

nameserver 192.144.48.30

Solaris 11 has that file, but the resolver sevice is configured
through svccfg. Some linux distrbutions (for example,
ubuntu) use systemd-resolved, making that file a symbolic
link to /run/systemd/resolve/stub-resolv.conf

Basic TCP/IP networking

Basic network configuration

the /etc/hosts file

this file contains the locally defined ip addresses of hosts

its format is

ip_address host_name aliases

example of /etc/hosts

127.0.0.1 localhost

192.168.1.99 abyecto.dc.fi.udc.es abyecto

Basic TCP/IP networking

Basic network configuration

the /etc/nsswitch.conf file
usually called the name service switch file

this file is used to determine the sources from where to obtain
name-service information of several categories: hosts, users,
mail aliases . . .

it also specifies the order in which this sources of information
should be queried

in the following example, the hosts ips are first searched for in
the local files, then the dns is queried

passwd: compat

group: compat

shadow: compat

hosts: files dns

networks: files

Basic TCP/IP networking

Basic network configuration

solaris 11

Basic network configuration
→solaris 11

Basic TCP/IP networking

Basic network configuration

solaris 11

network configuration in Solaris 11

Up to version 11.3 Solaris 11 used profile based network
configuration. By default there were two NCP (Network
Configuration Profiles): the DefaultFixed NCP and the
Automatic NCP.

Additional profiles can be created by the system administrator

we could switch between the profiles with the netadm
command

netadm enable -p ncp DefaultFixed

//to activate the DefaultFixed profile

netadm enable -p ncp Automatic

//to activate the Automatic profile

Basic TCP/IP networking

Basic network configuration

solaris 11

network configuration in Solaris 11

in the DefaultFixed profile we could use the commands dladm
and ipadm to configure the network

in the Automatic profile we used the commands netcfg and
and netadm to create and manage network configuration.

netadm list used to show the active NCP on the system. In
present versions it shows the avaiable ENMs

changes made through these commands are persistent across
reboots, so there’s no need to deal with configuration files.

Basic TCP/IP networking

Basic network configuration

solaris 11

network configuration in Solaris 11

In present version of Solaris 11, we have ENMs (External
Network Modifiers)

An ENM manages applications that are responsible for
creating network configuration that is external to the system’s
primary network configuration

ENMs can be created and/or destroyed with netcfg.

Basic TCP/IP networking

Basic network configuration

solaris 11

network configuration in Solaris 11

netcfg can also be used to set the activation mode for the
ENMs

manual: the ENM is activated or deactivated by the system
administrator (or a role) wuth the netadm enable or netadm
disable command
conditional: the ENM is activated by the system based on
changes in the conditions of the ENM (such as: plugging or
unplugging an ethernet cable, obtaining or losing a DHCP
lease, detecting a new wireless network,. . .)

For the default network configuration (the DefaultFixed profile
in previous versions od Solaris 11) we’ll use mostly the ipadm
command

Basic TCP/IP networking

Basic network configuration

solaris 11

network configuration in Solaris 11

network interfaces are created with the ipadm command.

ipadm create-ip net0

network interfaces can be destroyed with:

ipadm delete-ip net0

once created we can assign them an static ipv4 address
ipadm create-addr -T static -a 192.168.1.7/24 net0/addr

or have them configured through dhcp

ipadm create-addr -T dhcp net0/addr

Basic TCP/IP networking

Basic network configuration

solaris 11

network configuration in Solaris 11

to disable one interface.

ipadm disable-if net0

to see the addresses asigned to the interfaces

ipadm show-addr

to see the status of the interfaces

ipadm show-if

to see the physical properties of each datalink

dladm show-phys

Basic TCP/IP networking

Basic network configuration

solaris 11

network configuration in Solaris 11

to stablish the default route

route -p add default 192.168.2.1

the dns is configured thorugh the services facilities (service
network/dns/client)

svccfg -s network/dns/client setprop \

config/nameserver = net_address: 193.144.51.10

as is the nswitch (service name-service/switch)

svccfg -s name-service/switch setprop \

config/host = astring: ’("files dns")’

Basic TCP/IP networking

Basic network configuration

solaris 11

network configuration in Solaris 11

the hostname is implemented as a property of the
system/identity service

to change the hostname

svccfg -s system/identity:node setprop\

config/nodename=nuevonombre

svccfg -s system/identity:node refresh

svcadm restart system/identity:node

Basic TCP/IP networking

Basic network configuration

solaris 11

network configuration in Solaris 11

tambien es posible importar el el servicio correspondiente la
configuración desde los ficheros habituales

service network/dns/client (suponiendo que
/etc/resolv.conf existe y tienen una configuración válida)

/usr/sbin/nscfg import -f dns/client

svcadm enable dns/client

service name-service/switch (suponiendo que
/etc/nsswitch.conf existe y tienen una configuración
válida)

/usr/sbin/nscfg import -f name-service/switch

svcadm refresh name-service/switch

svcadm refresh name-service/cache

Basic TCP/IP networking

Basic network configuration

openbsd

Basic network configuration
→openbsd

Basic TCP/IP networking

Basic network configuration

openbsd

NIC configuration in openBSD

the interfaces are named after the driver in the kernel that
manages them.

example: the kernel uses the em driver for Intel(R) PRO/1000
NICS. Cards of this type will get the names em0, em1 . . .

dhclient interface name configures the card interface name
using dhcp.

Basic TCP/IP networking

Basic network configuration

openbsd

NIC configuration in openBSD

ifconfig interface name inet address netmask broadcast
configures the card interface name with address address,
netmask netmask and broadcast address broadcast.I
#ifconfig em0 inet 192.168.1.100 255.255.255.0 192.168.1.255

ifconfig interface name up brings the interface up

Basic TCP/IP networking

Basic network configuration

openbsd

NIC configuration in openBSD at boot time

if we want to get the interfaces automatically configured at
boot time (via /etc/netstart) we’ll use the following files

interfaces using dhcp

/etc/hostname.interface name file containing the word
dhcp (see hostname.if man page)
from version 7.0 /etc/hostname.interface name file
containing the word autoconf (see hostname.if man page)

Basic TCP/IP networking

Basic network configuration

openbsd

NIC configuration in openBSD at boot time

interfaces configured manually

/etc/hostname.interface name file containing the necessary
parameters passed to ifconfig to configure the interface. If
we’d want to configure an ’inet6’ interface we would use inet6
instead of inet in the /etc/hostname.interface name file

cat /etc/hostname.em0

inet 192.168.1.100 255.255.255.0 192.168.1.255

#

Basic TCP/IP networking

Basic network configuration

openbsd

NIC configuration in openBSD at boot time

/etc/myname Contains the complete name of the system

/etc/mygate Contains the ip address of the default router.

Basic TCP/IP networking

Basic network configuration

FreeBSD

Basic network configuration
→FreeBSD

Basic TCP/IP networking

Basic network configuration

FreeBSD

NIC configuration in FreeBSD

the interfaces are named after the driver in the kernel that
manages them.

example: the kernel uses the le driver for PCNet PCI-II NICS.
Cards of this type will get the names le0, le1 . . .

dhclient interface name configures the card interface name
using dhcp.

Basic TCP/IP networking

Basic network configuration

FreeBSD

NIC configuration in freeBSD

ifconfig interface name inet/inet6 address netmask
broadcast configures the card interface name with address
address, netmask netmask and broadcast address broadcast.I
#ifconfig le0 inet 192.168.1.100 255.255.255.0 192.168.1.255

ifconfig interface name up brings the interface up

Basic TCP/IP networking

Basic network configuration

FreeBSD

NIC configuration in freeBSD at boot time

if we want to get the interfaces automatically configured at
boot time we do so adding a line for each interface in the file
/etc/rc.conf

we use one line for each interface to be configured.

The line assigns to a shell variable named
ifconfig interface name the parameters that would be
passed to ifconfig

Basic TCP/IP networking

Basic network configuration

FreeBSD

NIC configuration in freeBSD at boot time

The following lines in /etc/rc.conf get the interfaces em0,
le0 and le1 configured at boot time

ifconfig_em0="DHCP"

ifconfig_le0="inet 192.168.1.3 netmask 255.255.255.0"

ifconfig_le1="inet 10.0.0.1 netmask 255.255.0.0"

Basic TCP/IP networking

Basic network configuration

FreeBSD

network configuration in freeBSD at boot time

We can also configure both the hostname ad the default route
through variables in /etc/rc.conf

Example

hostname="machine.ningunsitio.org"

defaultrouter="192.168.2.1"

Basic TCP/IP networking

Basic network configuration

NetBSD

Basic network configuration
→NetBSD

Basic TCP/IP networking

Basic network configuration

NetBSD

NIC configuration in NetBSD

ifconfig interface name inet address netmask broadcast
configures the card interface name with address address,
netmask netmask and broadcast address broadcast.I
#ifconfig wm0 inet 192.168.1.100 255.255.255.0 192.168.1.255

ifconfig interface name up brings the interface up

the name of the dhcp client is dhcpcd and is usually started
as a daemon

Basic TCP/IP networking

Basic network configuration

NetBSD

NIC configuration in NetBSD at boot time

if we want to get the interfaces automatically configured at
boot time

interfaces using dhcp

the /etc/ifconfig.interface name file contains the
parameters we want to pass to ifconfig
We enable the client daemon dhcpcd with dhcpcd=‘‘YES’’ in
the file /etc/rc.conf

We pass the interface to configure in the variable
dhcpcd flags in the file /etc/rc.conf

Basic TCP/IP networking

Basic network configuration

NetBSD

NIC configuration in openBSD at boot time

interfaces configured manually

/etc/ifconfig.interface name file containing the necessary
parameters passed to ifconfig to configure the interface. If
we’d want to configure an ’inet6’ interface we would use inet6
instead of inet in the /etc/ifconfig.interface name file

cat /etc/ifconfig.wm0

inet 192.168.1.100 255.255.255.0

#

We can also configure the interfaces with the appropiate
variable ifconfig ifacename in /etc/rc.conf

cat /etc/rc.conf

......

ifconfig_wm0=‘‘inet 192.168.1.100 255.255.255.0’’

....

Basic TCP/IP networking

Basic network configuration

NetBSD

NIC configuration in NetBSD at boot time

/etc/myname Contains the complete name of the system in
case the variable hostname in /etc/rc.conf is not set

/etc/mygate Contains the ip address of the default router in
case the variable defaultroute in /etc/rc.conf is not set

Basic TCP/IP networking

Basic network configuration

linux

Basic network configuration
→linux

Basic TCP/IP networking

Basic network configuration

linux

Naming Network Interfaces in linux

linux distros have followed several namimg strategies for namimg
NICS

1 linux used to name their NICs eth0, eth1 . . . and the order was
defined by which one got detected first

this makes order dependent on module loading, and changing
one NIC for other could change all the names

2 the names eth0, eth1, eth2 . . . are asigned to the interfaces
THE FIRST TIME the kernel recognices them. This is
stored in the file
/etc/udev/rules.d/70-persistent-net.rules, where it
can be changed if necessary.

Basic TCP/IP networking

Basic network configuration

linux

Naming Network Interfaces in linux

3 they get the names like emN, empNpM, ensN, pNpM. This
new name scheme does not make names dependent on the
type of card, its mac or when it is detected; the names are
generated depending on how (where) they are connected to
the system which makes it easier to substitute interfaces

Basic TCP/IP networking

Basic network configuration

linux

Naming Network Interfaces in linux

as of today’s present versions

devuan uses criteria labeled 3 although interfaces are named
eth0, eth1 . . .
ubuntu and debian use criteria labeled 3
fedora uses criteria labeled 3

Basic TCP/IP networking

Basic network configuration

linux

NIC configuration in devuan linux

abyecto:/home/antonio# cat /etc/udev/rules.d/70-persistent-net.rules

This file was automatically generated by the /lib/udev/write_net_rules

program, run by the persistent-net-generator.rules rules file.

#

You can modify it, as long as you keep each rule on a single

line, and change only the value of the NAME= key.

PCI device 0x11ab:0x4363 (sky2)

SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{address}=="00:24:be:40:5c:4b", ATTR{dev_id}=="0x0",

ATTR{type}=="1", KERNEL=="eth*", NAME="eth0"

PCI device 0x8086:0x4232 (iwlagn)

SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{address}=="00:24:d6:0e:ae:a0", ATTR{dev_id}=="0x0",

ATTR{type}=="1", KERNEL=="wlan*", NAME="wlan0"

abyecto:/home/antonio#

Basic TCP/IP networking

Basic network configuration

linux

NIC configuration in devuan linux

dhclient interface name configures the card interface name
using dhcp.

ifconfig interface name inet address addr netmask netmk
broadcast bcast configures the card interface name with
address addr, netmask netmk and broadcast address bcast

the ifconfig command in linux is being superseded with the ip
command so although still available in devuan it may not be
available in other distros, unless explicitly installed

#ifconfig eth0 inet 192.168.1.100 netmask 255.255.255.0 broadcast 192.168.1.255

ifconfig interface name up brings the interface up (same as
ifup)

Basic TCP/IP networking

Basic network configuration

linux

NIC configuration in devuan linux at boot time

if we want to get the interfaces automatically configured at
boot time (via /etc/init.d/networking)

debian systems and derivatives will look for the file
/etc/network/interfaces (see interfaces man page)

/etc/hostname Contains the name of the system (either the
fully qualified domain name or just the nodename)

Basic TCP/IP networking

Basic network configuration

linux

NIC configuration in devuan linux at boot time

Sample /etc/network/interfaces with just one NIC
manually configured

The loopback network interface

auto lo

iface lo inet loopback

The primary network interface

#allow-hotplug eth0

auto eth0

iface eth0 inet static

address 192.168.1.99

netmask 255.255.255.0

network 192.168.1.0

broadcast 192.168.1.255

gateway 192.168.1.1

Basic TCP/IP networking

Basic network configuration

linux

NIC configuration in devuan linux at boot time

Sample /etc/network/interfaces with just two NICs

root@abyecto:~# cat /etc/network/interfaces

This file describes the network interfaces available on your system

and how to activate them. For more information, see interfaces(5).

The loopback network interface

auto lo eth0 eth1

iface lo inet loopback

The primary network interface

allow-hotplug eth0

iface eth0 inet dhcp

internal network

allow-hotplug eth1

iface eth1 inet static

address 192.168.1.100

netmask 255.255.255.0

network 192.168.1.0

breadcast 192.168.1.255

Basic TCP/IP networking

Basic network configuration

linux

NIC configuration ubuntu server

ubuntu is, as is devuan linux, a derivative of the debian linux
distribution

the configuration of network interfaces is also done using the
/etc/network/interfaces file

the naming of the interfaces is of type empNsM as is in fedora
linux

the /etc/resolv.file is a symbolic link to
/var/run/resolvconf/resolv.conf

Basic TCP/IP networking

Basic network configuration

ubuntu and devuan linux

Basic network configuration
→ubuntu and devuan linux

Basic TCP/IP networking

Basic network configuration

ubuntu and devuan linux

debian derivatives

ubuntu and devuan are distibutions based on debian. Their
configuration files resemble that of the debian distibution

ubuntu now names interfaces the fedora way but the
configuration files for basic networking are the same as in
debian

As of version 8 (code name jessie) debian has switched to a
systemd based distrubution. devuan is a fork of debian
without the need to install systemd. As far as basic network
configuration is concerned, they are the same.

Basic TCP/IP networking

Basic network configuration

fedora linux

Basic network configuration
→fedora linux

Basic TCP/IP networking

Basic network configuration

fedora linux

NIC configuration in fedora linux

fedora changed de naming of the interfaces in a linux system
using the biosdevname program.

They are no longer named eth0, eth1,. . . ; they get the names
emN, empNpM, ensN, pNpM

This new name scheme does not make names dependent on
the type of card or its mac, the names are generated
depending on how (where) they are connected to the system
which makes easier to substitute interfaces

Basic TCP/IP networking

Basic network configuration

fedora linux

NIC configuration in fedora linux

We can use the same commands as in debian linux to
configure the interfaces

dhclient interface name configures the card interface name
using dhcp.
ifconfig interface name inet address addr netmask netmk
broadcast bcast configures the card interface name with
address addr, netmask netmk and broadcast address bcast

Basic TCP/IP networking

Basic network configuration

fedora linux

NIC configuration in fedora linux

fedora linux reommends to use the command ip addr or ip
link to configure the interface instead of ifconfig

Examples

ip addr show shows the configuration of the interfaces
ip link set p2p1 down brings the interface p2p1 down
ip link set p2p1 up brings the interface p2p1 up
ip addr add 192.168.2.100 dev p2p1 adds address
192.168.2.100 to interface p2p1
ip addr del 192.168.2.100 dev p2p1 removes address
192.168.2.100 to interface p2p1

with this command we can easily assign more than one
address to one interface

Basic TCP/IP networking

Basic network configuration

fedora linux

NIC configuration at boot time

if we want to get the interfaces automatically configured at
boot time we should take into account the following files

/etc/sysconfig/network. A file defining the following
variables.

NETWORKING=yes.or.no

HOSTNAME=fully.qualified.name

GATEWAY=ipaddr.of.the.gateway

GATEWAYDEV=interface

Basic TCP/IP networking

Basic network configuration

fedora linux

NIC configuration at boot time

/etc/sysconfig/network-scripts/ifcfg-interface name.A
file for each interface to be configured in the system. It
defines, among others, the following variables

DEVICE=name

BOOTPROTO=protocol (can be none, bootp or dhcp)

IPADDR=address

NETMASK=mask

BROADCAST=address

Las opciones de los archivos de configuración están descritas
en (man ifup proporciona la información)

/usr/share/doc/initscripts/sysconfig.txt

Basic TCP/IP networking

Basic network configuration

linux: Interacting with Network Manager

Basic network configuration
→linux: Interacting with Network Manager

Basic TCP/IP networking

Basic network configuration

linux: Interacting with Network Manager

Interacción con Network Manager

Network Manager is a package that gets installed in desktop
environments.

It consists of a daemon execiting as root and a font-end
dependant on the desktop environment

Network Manager It tries to manage all of the NICs not
already managed

To find out which interfaces are managed by Network Manager

#nmcli dev status

Network Manager’s configuration resides in
/etc/NetworkManager/NetworkManager.conf

Basic TCP/IP networking

Basic network configuration

linux: Interacting with Network Manager

Interfaces NOT managed by Network Manager

If we want to have a NIC not managed by Network Manager we
must do the following

debian (and derivatives): Configure the NIC via
/etc/network/interfaces and have
/etc/NetworkManager/NetworkManager.conf contain the
following

[main]

plugins=ifupdown

[ifupdown]

managed=false

Basic TCP/IP networking

Basic network configuration

linux: Interacting with Network Manager

Interfaces NOT managed by Network Manager

fedora Add to the file ifcfg-iface the lines NM CONTROLLED=no

and HWADDR=??:??:??:??:??:?? and add the following to
/etc/NetworkManager/NetworkManager.conf

[main]

plugins=ifcfg-rh

Basic TCP/IP networking

Basic network configuration

linux: Interacting with Network Manager

Interfaces managed Network Manager

If we want to temporarily stop Network Manager we can do it
with the following commands (depending on the distro)

service NetworkManager stop

/etc/init.d/network-mmanager stop

systemctl stop NetworkManager.service

Should we want to disable it (it does not start when the O.S.
boots),

chkconfig NetworkManager off

update-rc.d network-manager remove

insserv -r network-manager

systemctl disable NetworkManager.service

Basic TCP/IP networking

Basic network configuration

linux’s nmcli

Basic network configuration
→linux’s nmcli

Basic TCP/IP networking

Basic network configuration

linux’s nmcli

Network Manager

As a matter of fact, network configuration in fedora (as in
many other linux distros) is done via Network Manager.

Network Manager consists of

a daemon service, that can be started or stopped using
systemctl (or the appropiate init script)
an applet to be used by the graphical environment
a command line interface, nmcli, to configure network
manager

Basic TCP/IP networking

Basic network configuration

linux’s nmcli

Network Manager

So if we are on a system that uses Network Manager to
manage the network connections we can choose to

configure the network via the interfaces, ifcfg-ifname

... files, provided we have configured network manager to use
(or accept) those files
use the applet for Network Manager provided in our graphical
environment
use Network Manager Command Line Interface, nmcli, to
configure our interfaces via a script or using the command line

Basic TCP/IP networking

Basic network configuration

linux’s nmcli

Uso de nmcli

The following steps we will show the use of nmcli to
configure an ethernet connection with three static ips. Neither
route nor dns will be configured for that connection

nmcli’s general syntax is

nmcli [OPTIONS...] OBJECT [COMMAND] [ARGS...]

OBJECT can be any of “help, general, networking, radio,
connection, device, agent, monitor”, and can be written in
abbreviated form

COMMAND, the command to execute, can also be written in
abbreviated form

Basic TCP/IP networking

Basic network configuration

linux’s nmcli

Uso de nmcli

for example, to show the current connections we can use
either of these

nmcli connection show

nmcli con show

nmcli c s

Basic TCP/IP networking

Basic network configuration

linux’s nmcli

Creating a connection with nmcli

First whe look what devices we have in the system to create
the connection

nmcli device

DEVICE TYPE STATE CONNECTION

enp0s3 ethernet connected Wired connection 1

enp0s8 ethernet connected TARJETA1

enp0s9 ethernet disconnected --

lo loopback unmanaged --

#

we see that device enp0s9 is not connected

Basic TCP/IP networking

Basic network configuration

linux’s nmcli

Creating a connection with nmcli

we create a connection named NUEVACONEXION

nmcli con add type ethernet ifname enp0s3 con-name NUEVACONEXION

Connection ’NUEVACONEXION’ (df460578-b37d-4228-8b2c-e937864c23b0) successfully added.

#

Basic TCP/IP networking

Basic network configuration

linux’s nmcli

Creating a connection with nmcli

We configure its static addresses adn activate the conection

nmcli con modify NUEVACONEXION ipv4.addresses 192.168.2.103/24,

192.168.20.103/24,192.168.200.103/24

nmcli con modify NUEVACONEXION ipv4.method static

nmcli con up NUEVACONEXION

Connection successfully activated (D-Bus active path: /org/freedesktop/NetworkManager/ActiveConnection/4)

#

Basic TCP/IP networking

Basic network configuration

linux’s nmcli

Creating a connection with nmcli

it shows in nmcli device

nmcli dev

DEVICE TYPE STATE CONNECTION

enp0s3 ethernet connected Wired connection 1

enp0s8 ethernet connected TARJETA1

enp0s9 ethernet connected NUEVACONEXION

lo loopback unmanaged --

#

Basic TCP/IP networking

Basic network configuration

linux’s nmcli

Creating a connection with nmcli

it shows in connection show

nmcli connection show

NAME UUID TYPE DEVICE

Wired connection 1 3c27a730-7940-3cbc-a9be-5f648781ce0b ethernet enp0s3

NUEVACONEXION 19426329-47c2-4fb5-a4bc-c48720d556cf ethernet enp0s9

TARJETA1 7f5394f0-1d49-40d4-a92a-3e9c279752f0 ethernet enp0s8

#

this connection configuration is incorporated into Network
Manager so it’s presistent accross system reboots

Basic TCP/IP networking

Basic network configuration

linux’s netplan

Basic network configuration
→linux’s netplan

Basic TCP/IP networking

Basic network configuration

linux’s netplan

netplan

some (new) linux distros use netplan

netplan uses its own configuration YAML files (in
/etc/netplan directory) to generate the configuration files
for the network renderers which are the ones actually
configuring the network

currently two renderers are supported

NetworkManager
Systemd-networkd

Basic TCP/IP networking

Basic network configuration

linux’s netplan

netplan

after modifying its configuration files we can issue the
command ’netplan apply’ that

generates the addecuate configuration for one of the network
renderers
makes the network renderers reload their configuration

the commands ’netplan try’ ’netplan generate’ allow
us to check the configuration before applying

Basic TCP/IP networking

Basic network configuration

linux’s netplan

netplan

files in /etc/netplan directory are processed in order, so they
usually are named with names starting with ’10 ’, ’20 ’, . . .
the format of this file, for ipv4 is
network:

version: 2

renderer: networkd/NetworkManager

ethernets:

DEVICE_NAME:

dhcp4: yes/no

address: [IP/NETMASK]

address: [IP/NETMASK]

....

gateway4: GATEWAY

nameservers:

addresses: [NAMESERVER, NAMESERVER]

Basic TCP/IP networking

Basic network configuration

linux’s netplan

sample netplan file

the following file allows NetworkManager to configure all
interfaces using dhcp

network:

version: 2

renderer: NetworkManager

Basic TCP/IP networking

Basic network configuration

linux’s netplan

sample netplan file

the following file configures several interfaces with
systemd-networkd, one of them with dhcp and the others with
several aliases

network:

version: 2

renderer: networkd

ethernets:

enp0s3:

dhcp4: true

enp0s9:

addresses:

- 192.168.1.200/24

- 192.168.2.200/24

- 192.168.5.200/24

enp0s8:

addresses:

- 192.168.11.200/24

- 192.168.12.200/24

- 192.168.15.200/24

Basic TCP/IP networking

Routes

Routes

Basic TCP/IP networking

Routes

route configuration at boot time

we’ll deal only with the most simple case of routing: A single
default route. If we’re using dhcp this is configured
automatically. If not

solaris through the /etc/defaultrouter file
solaris 11 through the route -p command
openBSD through the /etc/mygate file
freeBSD in the file /etc/rc.conf
netBSD in the file /etc/rc.conf or through the /etc/mygate file

linux in the /etc/network/interfaces file with the word gateway

(debian). In the file /etc/sysconfig/network (fedora). In
the netplan configuration file with gateway4 option

Basic TCP/IP networking

Routes

manipulating the route

the commands to manipulate the routing table are

solaris route and routeadm
BSD route
linux route or ip route

to show the routing table we use netstat -r. In linux we can
also use route or ip route show without arguments

Basic TCP/IP networking

Network interface aliasing

Network interface aliasing

Basic TCP/IP networking

Network interface aliasing

interface aliasing

By interface aliasing we refer to the act of giving a Network
Interface Card more than one IP address.

In previous solaris and linux versions (solaris used to call them
logical interfaces), we would create ’new’ interface with the
same name:number for each new IP to assign to the interface
and configure them just like the other interfaces

(linux) for eth0 we would use eth0:0, eth0:1,eth0:2 . . . for the
different addresses of eth0
(solaris) for e1000g0 we would use e1000g0:1, e1000g0:2
e1000g0:3 . . . for the different addresses of e1000g0
(e1000g0:0 would be the interface itself)

in BSD systems we still use the the option alias in ifconfig

Basic TCP/IP networking

Network interface aliasing

interface aliasing in debian and derivatives

debian (and derivatives) We have two options

a We simply add internet addresses to the interface with the ip
command

ip addr add 192.168.2.100 dev eth0

ip addr add 192.168.29.18 dev eth0

b we use the old name:N with ifconfig

ifconfig eth0:1 inet 192.168.2.100

ifconfig eth0:1 inet 192.168.29.18

Note that address defined with method a), are not seen by
ifconfig

Basic TCP/IP networking

Network interface aliasing

interface aliasing in debian and derivatives

debian (and derivatives) At boot time, we can use the name:N (f.e.
eth0:1) approach in /etc/network/interfaces or we can
assign directly several ip addresses to the interface

iface eth0 inet dhcp

auto eth1

iface eth1 inet static

address 192.168.1.101

netmask 255.255.255.0

iface eth1 inet static

address 192.168.10.101

netmask 255.255.255.0

iface eth1 inet static

address 192.168.100.101

netmask 255.255.255.0

Basic TCP/IP networking

Network interface aliasing

interface aliasing

fedora We configure these alias as we would do with a non-aliased
interface but using the ip addr command.

We simply add internet addresses to the interface

ip addr add 192.168.2.100 dev p2p1

ip addr add 192.168.29.18 dev p2p1

if we want to get the alias configured at boot time we add
IPADDR2, IPADDR3, . . . to the
/etc/sysconfig/network-scripts/ifcgf-device file

IPADDR2=192.168.2.150

IPADDR3=192.168.15.22

It would also be possible to create ifcfg-device:N files in the
etc/ifconfig/network-scripts for the aliased interfaces

Basic TCP/IP networking

Network interface aliasing

interface aliasing

openBSD We use the option alias of ifconfig

ifconfig em0 alias 10.1.2.4 255.0.0.0

In the /etc/hostname.interface name file we add one line
for each alias of the NIC

cat /etc/hostname.em0

inet 192.168.1.100 255.255.255.0 192.168.1.255

inet alias 10.1.2.4 255.0.0.0

Basic TCP/IP networking

Network interface aliasing

interface aliasing

freeBSD We use the option alias of ifconfig

ifconfig le0 10.1.2.4 255.0.0.0 alias

We add a line to /etc/rc.conf to get the alias configured at
boot time

cat /etc/rc.conf

ifconfig_le0="inet 192.168.1.3 netmask 255.255.255.0"

ifconfig_le0_alias0="inet 192.168.30.11 netmask 255.255.255.255"

Basic TCP/IP networking

Network interface aliasing

interface aliasing

NetBSD We use the option alias of ifconfig

ifconfig wm0 alias 10.1.2.4 255.0.0.0

To get it done at boot time we can
the ifconfig xxN variables in /etc/rc.conf. A semicolon (;)
represents several lines

cat /etc/rc.conf

ifconfig_wm1="inet 192.168.1.3 255.255.255.0;alias 192.168.30.11 255.255.255.255"

add alias lines to the file /etc/ifconfig.ifacename

use the file /etc/aliases or the ifaliases xxN variables in
/etc/rc.conf

Basic TCP/IP networking

Network interface aliasing

interface aliasing

solaris 11 We just use the command ipadm create-addr to add one
address to an existing interface

ipadm create-addr -T static -a 192.168.5.44 net1/alias0

it will appear in the configuration
root@aso:~# ipadm show-addr

ADDROBJ TYPE STATE ADDR

lo0/v4 static ok 127.0.0.1/8

net0/ipv4 dhcp ok 10.0.2.15/24

net1/ipv4 static ok 192.168.1.155/24

net1/alias0 static ok 192.168.4.44/24

lo0/v6 static ok ::1/128

Basic TCP/IP networking

Access control

Access control

Basic TCP/IP networking

Access control

Access control

By access control we refer to the ability to discard (or reject)
not wanted connections

A machine providing a service is prone to receive attacks to
that service.

We might want to restrict access to that service. We can
accomplish this

disabling the service
at the packet level
at the application level (tcpwrappers)

Basic TCP/IP networking

Access control

stopping and disabling services

Access control
→stopping and disabling services

Basic TCP/IP networking

Access control

stopping and disabling services

Stoping and disabling services

We can stop any service at any time

BSD systems: /etc/rc.d/name stop

System V systems: /etc/init.d/name stop

Linux systemd: systemctl stop name.service
Solaris svcadm disable name

Basic TCP/IP networking

Access control

stopping and disabling services

Stoping and disabling services

We can also “disable” a service: That is not having it started
when we boot the machine

BSD systems: Through the appropiante variables in
/etc/rc.conf (or /etc/default/rc.conf)
System V system: Through the links from /etc/rcN.d to
/etc/init.d/ (N being the runlevel)
Linux systemd systemctl disable name.service
Solaris svcadm disable name

Basic TCP/IP networking

Access control

Access control at the packet level

Access control
→Access control at the packet level

Basic TCP/IP networking

Access control

Access control at the packet level

Access control at the packet level

Every modern operating system has a packet filtering
framework that has rules that allow us to select packets
depending on

protocol family, protocol, port . . .
type of packet
source or destination address
incoming or outgoing interface
. . .

Basic TCP/IP networking

Access control

Access control at the packet level

Access control at the packet level

Those rules also allow us to do things with the packets:

accept
reject
drop
change its source address
change its destination address or port
. . .

Basic TCP/IP networking

Access control

Access control at the packet level

Access control at the packet level

Unfortunately, different unixes have different packet filtering
systems, with diferent rules selection packets and differen
rules syntax.

PF in open OpenBSD
IPFW, PF or IPFILTER in FreeBSD
NPF in NetBSD
PF in Solaris
nftables (previously iptables in Linux) (ipchains completely
deprecated)

Basic TCP/IP networking

Access control

Access control at the packet level

Access control at the packet level

When packets for a connection are accepted, the connection is
stablished

Rejected packets produce a message of type “connection
refused”

Dropped packets produce no response from the machine, and
the machine trying to stablish connection finally will report a
time out type of message

Basic TCP/IP networking

Access control

Access control at the application level

Access control
→Access control at the application level

Basic TCP/IP networking

Access control

Access control at the application level

Access control at the application level

If we cannot (or we don’t want to) control access at the
packet level, we can, if we wish to, do that the application
level.

In this case, is the application itself the one that controls the
access but after the connection has been stablished

This is usually done by what we call the tcpwrappers or tcpd

Basic TCP/IP networking

Access control

Access control at the application level

application level: tcpwrappers

the configuration for the tcpwrappers resides in the files
/etc/hosts.allow and /etc/hosts.deny

the manual page hosts access documents the use of these
files

the basic syntax is lines in the form daemon:client list.
For example

sshd: 193.144.51. 192.168.2.

ftpd: ALL

Access will be granted when a (daemon,client) pair matches an
entry in the /etc/hosts.allow file.
Otherwise, access will be denied when a (daemon,client) pair
matches an entry in the /etc/hosts.deny file.
Otherwise, access will be granted.

Basic TCP/IP networking

Access control

Access control at the application level

application level: tcpwrappers

Some implemetations allow for a more complex working. For
example

solaris the format of a line is daemon:client list [:shell command] (the
shell command being optional)
the client list allows for operators such as EXCEPT

FreeBSD only the hosts.allow file is used
the format of a line is daemon:client list: option: option
option can be allow, deny, spawn (create a new process), twist
(replace the process code) . . .
the client list allows for operators such as EXCEPT

Basic TCP/IP networking

Access control

Access control at the application level

Access control at the application level

For applications to use this kind control they have to be
compiled and linked with the tcpwrap o tcpd library. That can
be checked ldd: it will usually appear as libtcpd... or
libwrap...

If the application has not been compiled and linked with
tcpwrap o tcpd we can have it called from inetd provided
that inetd has.

If nor inetd neither the application have been compiled and
linked with tcpwrap o tcpd we can have inetd call tcpd and
the tcpd call the application (classical approach for legacy
applications)

Basic TCP/IP networking

Access control

Access control without inetd

Access control
→Access control without inetd

Basic TCP/IP networking

Access control

Access control without inetd

Access control without inetd

Today it is customary for servers to listen ports directly
without having to rely on inetd to call them

Access control is through files /etc/hosts.allow and
/etc/hosts.deny (or /etc/hosts.allow only)

Servers need to have been linked with tcpwrappers support
(which is the usual thing to have)

Basic TCP/IP networking

Access control

Access control without inetd

Access control without inetd

We can check if that is the case with ldd and look for
something like libtcpd or libwrap in the output
$ ldd /usr/sbin/sshd

/usr/sbin/sshd:

libpam.so.6 => /usr/lib/libpam.so.6 (0x80028e000)

libprivatessh.so.5 => /usr/lib/libprivatessh.so.5 (0x80029e000)

libutil.so.9 => /lib/libutil.so.9 (0x800346000)

libbsm.so.3 => /usr/lib/libbsm.so.3 (0x80035e000)

libblacklist.so.0 => /usr/lib/libblacklist.so.0 (0x80037c000)

libgssapi_krb5.so.10 => /usr/lib/libgssapi_krb5.so.10 (0x800382000)

libgssapi.so.10 => /usr/lib/libgssapi.so.10 (0x8003a4000)

libkrb5.so.11 => /usr/lib/libkrb5.so.11 (0x8003b1000)

libwrap.so.6 => /usr/lib/libwrap.so.6 (0x800433000)

libcrypto.so.111 => /lib/libcrypto.so.111 (0x80043f000)

libc.so.7 => /lib/libc.so.7 (0x800734000)

.........

Basic TCP/IP networking

inetd

inetd

Basic TCP/IP networking

inetd

inetd configuration

inetd is called the internet superserver

Some internet services listen directly to their corresponding
port, others are started by inetd

When a conexion request arrives on a designated port, inetd
starts the appropiated server program

This allows for server programs to run only when needed, thus
saving resources on the system

Two files control the working of inetd
/etc/services

/etc/inetd.conf

Basic TCP/IP networking

inetd

inetd configuration

inetd
→inetd configuration

Basic TCP/IP networking

inetd

inetd configuration

/etc/services

/etc/inet/services on some systems

this file has a mapping between the port numbers and
protocol to the services names. Info can be found in the
services man page. A fragment from an acual
/etc/services is shown

ftp 21/tcp

fsp 21/udp fspd

ssh 22/tcp # SSH Remote Login Protocol

ssh 22/udp

telnet 23/tcp

smtp 25/tcp mail

time 37/tcp timserver

time 37/udp timserver

rlp 39/udp resource # resource location

nameserver 42/tcp name # IEN 116

whois 43/tcp nicname

Basic TCP/IP networking

inetd

inetd configuration

/etc/inetd.conf

This file associates the service name to the program actually
providing the service

The format for one line of this file is

service_name socket_type protocol wait/nowait user.group program args

Basic TCP/IP networking

inetd

inetd configuration

/etc/inetd.conf

As lines started with the # are treated as comments, we can
disable one service, by simply comenting out the
corresponding line

Example of the telnetd service disabled

#telnet stream tcp nowait root /usr/sbin/in.telnetd in.telnetd

Basic TCP/IP networking

inetd

inetd configuration

/etc/inetd.conf

debian linux does not include inetd, it can be installed as
package openbsd-inetd (usually as a dependence of other
network packages)

BSD systems inetd does not start by default (variables inetd
and inetd flags of rc.conf). Some provide a sample
configuration file at /etc/examples/inetd.conf

Basic TCP/IP networking

inetd

inetd configuration

inetd in fedora linux

Fedora linux, (as do some distrbutions of linux), does not
include inetd. It includes xinetd, a inetd replacement

However, it is no necesary to use xinetd to use such services
such as telnetd or ftpd

For example, should have we installed pure-ftpd as the ftp
server we can enable that ftp service by doing

systemctl enable pure-ftpd

systemctl start pure-ftpd

Basic TCP/IP networking

inetd and tcpwrappers

inetd and tcpwrappers

Basic TCP/IP networking

inetd and tcpwrappers

tcpwrappers

inetd and tcpwrappers
→tcpwrappers

Basic TCP/IP networking

inetd and tcpwrappers

tcpwrappers

tcpwrappers

An aditional layer can be placed between inetd and the
server program to perform access control based on host name,
network address or ident queries

This layer is usally called tcpwrappers or, by the name of the
program, tcpd.

the program tcpd gets called by inetd and receives the server
to start as a parameter
tcpd checks its configuration files to see if the access must be
granted or denied
in case the access is granted tcpd starts the server program
supplied as parameter

Basic TCP/IP networking

inetd and tcpwrappers

tcpwrappers

tcpwrappers

the corresponding line for this telnetd server using
tcpwrappers and running for user telnet would look like this.
The second line would run the service for user root and
without tcpwrappers

telnet stream tcp nowait telnet /usr/sbin/tcpd /usr/sbin/in.telnetd

telnet stream tcp nowait root /usr/sbin/in.telnetd in.telnetd

Basic TCP/IP networking

inetd and tcpwrappers

tcpwrappers

tcpwrappers

As seen before the configuration for the tcpwrappers resides
in the files /etc/hosts.allow and /etc/hosts.deny

the manual page hosts access documents the use of these
files

Access will be granted when a (daemon,client) pair matches an
entry in the /etc/hosts.allow file.
Otherwise, access will be denied when a (daemon,client) pair
matches an entry in the /etc/hosts.deny file.
Otherwise, access will be granted.

Basic TCP/IP networking

inetd and tcpwrappers

tcpwrappers

tcpwrappers

xinetd can also implement this access control as can the
servers that use libtcpwrappers (libtcpd) directly

It is important to remember that implementations differ
among different unixes, and that we must always check the
hosts access (or hosts.allow) man page

Basic TCP/IP networking

inetd and tcpwrappers

inetd and tcpwrappers in Solaris

inetd and tcpwrappers
→inetd and tcpwrappers in Solaris

Basic TCP/IP networking

inetd and tcpwrappers

inetd and tcpwrappers in Solaris

inetd and tcpwrappers in Solaris

Starting with Solaris 10, the inetd services have been
integrated in the smf (Sevices Managemnent Facility)
mainframe

The file /etc/inetd.conf exists on the system but any
changes made to it do not change the system behaviour

If we add a service to /etc/inetd.conf, we can convert into
a smf manifest to me managed by smf using the command
inetconv

Basic TCP/IP networking

inetd and tcpwrappers

inetd and tcpwrappers in Solaris

inetd and tcpwrappers in Solaris

After that, the service can be managed using the commands
svcadm and inetadm

tcpwrappers can also be activated for all or some of the inetd
services as a property of inetd

Basic TCP/IP networking

inetd and tcpwrappers

inetd and tcpwrappers in Solaris

inetd and tcpwrappers in Solaris

to see inetd properties

svcprop inetd

inetadm -p

to list the services managed through inetd

inetadm

to list an inetd service

inetadm -l servce_name

to enable or disable an inetd service

inetadm -e|-d service_name

services can also be disabled with svcadm

Basic TCP/IP networking

inetd and tcpwrappers

inetd and tcpwrappers in Solaris

inetd and tcpwrappers in Solaris

tcp wrapers is treated as a property of inetd so, to enable it
we must modify that property of inetd

inetadm -M tcp_wrappers=TRUE

tcp wrapers can be enabled on a per service basis modifying
just the property of that service. For example to enable the
host access control ONLY for the telnet service we’d do

inetadm -M tcp_wrappers=FALSE

to disable tcp wrappers. And then to enable tcp wrappers for
the telnet service

inetadm -m telnet tcp_wrappers=FALSE

	Basic network configuration
	solaris 11
	openbsd
	FreeBSD
	NetBSD
	linux
	ubuntu and devuan linux
	fedora linux
	linux: Interacting with Network Manager
	linux's nmcli
	linux's netplan

	Routes
	Network interface aliasing
	Access control
	stopping and disabling services
	Access control at the packet level
	Access control at the application level
	Access control without inetd

	inetd
	inetd configuration

	inetd and tcpwrappers
	tcpwrappers
	inetd and tcpwrappers in Solaris

