
Automating administrative tasks

Automating administrative tasks
Grado en Informática 2023/2024

Departamento de Ciencias de la Computación
y Tecnologás de la Información

Facultad de Informática
Universidad de Coruña

Antonio Yáñez Izquierdo

Automating administrative tasks

Contenidos I

1 Automating administrative tasks

2 Shell scripting
introduction
basic scripting
operations
conditional execution
loops
text manipulation
sed

3 Schedulling execution of tasks: the cron and at commands
crontab files
the crontab command
the at command

4 Monitoring system: logs

Automating administrative tasks

Contenidos II

introduction: logs, logfiles and syslogd
log configuration
rotating of logs

solaris logadm
BSD newsyslog
linux logrotate

5 Starting and stopping system services. boot scripts
system V init scripts
linux

devuan
fedora linux
debian
ubuntu

solaris
openbsd

Automating administrative tasks

Contenidos III

freebsd
netbsd

Automating administrative tasks

Automating administrative tasks

Automating administrative tasks

Automating administrative tasks

Automating administrative tasks

Automating

Many of the tasks of the system administrator must be carried
out more than once

backups
checking logs for errors
checking free space in partitions
. . .

Fortunately most of them can be automated. There are two
sides to this automation

writing scripts to perform the tasks
arranging for the scripts execution to be automated
checking the execution of tasks using the logs

Automating administrative tasks

Shell scripting

Shell scripting

introduction
basic scripting
operations
conditional execution
loops
text manipulation
sed

Automating administrative tasks

Shell scripting

introduction

Scripts and shells

By script we usually refer to a plain text file with commands
understandable by some interpreter: perl, python . . .

Unix shells (bash, csh, ksh, sh, tcsh . . .) are, in fact,
interpreters

A shell script consists of some shell commands written in a
text file to perform repetitive tasks that we usually could do
directly from a terminal.

They can also be used to process text files

Automating administrative tasks

Shell scripting

introduction

Scripts and shells

They are widely used in Unix systems: initialization scripts,
installation scripts . . .

We can classify shells in two groups, according to scripting
syntax

sh-like shells: sh, ksh, bash, ash, dash

csh-like shells: csh, tcsh

As it is more commonly used, we’ll deal here with sh-like
scripting

Automating administrative tasks

Shell scripting

basic scripting

Structure of a shell script

Here we have a sample shell script

#!/bin/sh

command1

command2

command3 ; command4

....

this is a comment

The first line, after the symbols ’#!’, indicates which program
is interpreting the script

Automating administrative tasks

Shell scripting

basic scripting

Structure of a shell script

We use one line for each command

we can also put more than one command in one line, separated
by ’;’

Comments start with ’#’, an go to the end of the line

The script must have execution permission

Automating administrative tasks

Shell scripting

basic scripting

Shell scripts: output and input

We can use the command echo to produce output:

echo [-n] text

The -n option does not write and end of line

We can use ’read’ to get input from the keyboard. Example

echo -n "Enter directory name: "

read DIR

Automating administrative tasks

Shell scripting

basic scripting

Shell scripts: variables

Variables:

They need not be declared and are typeless
A variable is identified by its name (Example: foo), but we
must use the symbol ’$’. to access its value (Example: $foo).
Uppercase and lowercase letters are significant in variable
names
Some variables are predefined (environment variables). For
example $HOME, which provides the user’s home directory
To assign a value to a variable we use the symbol ’=’ without
spaces before or after it. Example

DIRECTORY=/usr/local/bin

Automating administrative tasks

Shell scripting

basic scripting

Quotation marks

Text can be surrounded by three different quotation marks,
with very different meanings:

simple quotes: ’Text’ Text is interpreted literally. No
variables are substituted and no characters are interpreted.
double quotes:”Text” Variables are substituted and
characters are interpreted.
inverted quotes: ‘Text‘ Variables are substituted and
characters are interpreted, Text is interpreted as a command
and executed. The value of ‘Text‘ is the output of that
command

FILE=/home/user/data

PRU=’wc -l $FILE’#wc -l $FILE

PRU="wc -l $FILE" #wc -l /home/user/data’

PRU=‘wc -l $FILE‘#457

Automating administrative tasks

Shell scripting

basic scripting

Command line arguments and special variables

Command line arguments: they can be accessed inside a shell
script as variables $1...$9.

If there are more than 9 command line arguments we can use
shift

’$# has the number of command line arguments the shell
script has received

’$$’ pid of the shell executing the script

’$?’ return value of last command executed

’$IFS’ List of Internal Field Separator characters

Automating administrative tasks

Shell scripting

basic scripting

Redirecting input, output and error

Standard input and output can be redirected to a file

> redirects standard output to a file.
< redirects standard input to a file.
>>redirects standard output to a file, appending the standard
output to the existing contents of the file.

Automating administrative tasks

Shell scripting

basic scripting

Redirecting input, output and error

> & or 2 > Redirects the standard error to a file (depends on
the shell)

The standard output of one process can be redirected to the
standard input of another process, thus communicating
processes with the symbol ’|’. Examples

$ ls -l | more

$ cat *.c | wc -l

Automating administrative tasks

Shell scripting

operations

Operating with expr

To perform operations we can use the command expr.

expr EXPRESSION prints to the standard output the result
of EXPRESSION; EXPRESSION can be

arg1 | arg2 arg1 if arg 1 not null or zero, otherwise arg2.
arg1 & arg2 arg1 if arg1 is null or 0, otherwise arg2.
arg1 < arg2 1 if arg1 < arg2, otherwise 0. Relational
operators (<,<=,>,>=,=,!=) operate both on integers and on
strings.
arg1 + arg2. Aritmethic sum. (Other arithmetic
operators:-,*,/,%).

Example:

#!/bin/sh

x=‘expr 4 + 5‘

echo $x

Automating administrative tasks

Shell scripting

operations

Operating with let

In some shells (for example bash) we can use ’let’ to calculate
the result of operations
Available operations are

Basic arithmetic: +, -, *, /, %
Increment: id++, –id
Decrement: id–, –id
Exponential: **
Displacements: <<, >>
Comparison: <, >, <=, >=
Equal/not equal: ==, !=
Logic operators: &&, ||
Bit operators: &, ˆ , |

Example:

#!/bin/sh

let x=4+5*3

echo $x

Automating administrative tasks

Shell scripting

conditional execution

Conditional execution: if

if
Allows conditional execution depending on one condition. The
syntax is

if condition; then command1; command2; ...

else command4; command5

fi

if condition1 then;

elif condition2 then ;

else fi

Automating administrative tasks

Shell scripting

conditional execution

Conditional execution: case

case
Allows for executing different parts of code depending on the
value of a variable

case word in

pattern1) commands ;;

pattern2) commands ;;

....

esac

case compares the word with the patterns and executes the
code corresponding to the FIRST pattern that matches.
Pattern order is thus significant

Automating administrative tasks

Shell scripting

conditional execution

Conditional execution: case

Example of the use of case

case $# in

0) ;; #no arguments

1) ;; #one argument

*) ;; #otherwise...

esac

case $1

start) ;;

stop) ;;

*)

echo use {start|stop}

exit 0

;;

esac

Automating administrative tasks

Shell scripting

conditional execution

Shell scripting: test

test or [..]: It is used to test if certain conditions are met.
The syntax is test EXPRESSION or [EXPRESION] (there
are spaces between EXPRESSION and the square brackets)

EXPRESSION can be

’(EXP)’ EXP is true
’ ! EXP’ EXP es false
’EXP1 -a EXP2’ both EXP1 and EXP2 are true
’EXP1 -o EXP2’ either EXP1 or EXP2 is true

EXP can involve numbers, strings or files

Automating administrative tasks

Shell scripting

conditional execution

Shell scripting: test

Some of the conditions test can perform on integers:

A -eq B : equal
A -ne B : not equal
A -gt B : greater than
A -lt B : less than
A -ge B : greater or equal than
A -lt B : less or equal than

Automating administrative tasks

Shell scripting

conditional execution

Shell scripting:test

Some of the conditions test can perform on strings:

S = T : equal
S != T : not equal
-n S : checks if S exists and is not null
-z S : checks if length of S is 0

Automating administrative tasks

Shell scripting

conditional execution

Shell scripting:test

Some of the conditions test can perform on files

f1 -ef f2 : f1 and f2 have the same device and inode
f1 -nt f2 : f1 is newer than f2 (-ot for older)
-s file : file is of size greater than 0
-e file : file exists
-f file : file is a regular file
-d file : file is a directory
-b file : file is a block device
-c file : file is a character device
-h file : file is a symbolic link
-r file : file is readable.
-w file : file is writable
-x file : file is executable (has execution permission)
-u file : file is a setuid file
-g file : file is a setgid file

Automating administrative tasks

Shell scripting

loops

Shell scripting: for and while

loops can be done in shell scripts with for and while
for allows repeating a task a determined number of times

for var in list; do command1;

command2;.. done

If we want to use a integer list of values, it can be generated
with the seq command. Example

for i in ‘seq 1 100‘; do echo $i; done

while allows repeating a task until a condition is met

while condition do command1;

commando2; done

Automating administrative tasks

Shell scripting

text manipulation

Shell scripting: text manipulation

Any external program can be called from a shell script. The
most common ones called for text processing are cut, tr,
sed, grep, paste, cat, echo They operate on the
standard input and write to the standard output

cut allows to get certain parts o a text file by getting certain
parts of each line.

cut -f field -d delimiter. Example: cut -f1,4 -d:

tr substitutes or eliminates characters

tr [CAR1] [CAR2].

Example: tr a-z A-Z < file changes lowercase to
uppercase in file
Example: tr -s " " deletes repeated occurrences of the
space character

Automating administrative tasks

Shell scripting

text manipulation

Shell scripting: grep

grep allows to get certain parts o a text file by getting certain
lines

grep selects the lines on the file matching a pattern (regular
expression)

grep operates on its standard input (or in a file supplied as
command line argument) and writes to its standard output

cat file.txt | grep "[0-9]\+\.[0-9]*"

Automating administrative tasks

Shell scripting

sed

Shell Scripting: sed

sed is a non-interactive line editor

It reads from the standard input or from a file supplied as
command line argument
Performs a series of operations on some of the lines of the file
writes to the standard output

It determines on which lines it must operate by the range or
pattern it is supplied. If no range or pattern is upplied, it
operates on all the lines.

sed prints the lines as it is processing them. If we want sed to
not print the line it is processing, we must use sed -n

Automating administrative tasks

Shell scripting

sed

Shell scripting: sed

We will only comment a few of sed operations

print lines: [range]/p (to print only the selected lines sed -n)
delete lines: [range]/d
substitute strings: s/pattern1/pattern2/
substitute characters: y/characters1/characters2/

substitution commands only change the first occurrence, if we
want to make them global we must use ’g’. Example sed
s/one/two/g < testfile substitutes one for two in file testfile

Automating administrative tasks

Shell scripting

sed

Shell scripting: sed

Line selection in sed
/regexp/: lines that match regular expresion regexp
\cregexpc:clines that match regular expresion regexp ĺıneas que
contienen la expresión regular regexp preceeded and followd by
character ’c’
n,˜M: every M lines counting from line n
li,+M: line li and the following M lines. li can be a line
number or a regular expression
li,˜M: line li and the following lines up to an M multiple

Automating administrative tasks

Shell scripting

sed

Shell scripting:sed examples

print lines [range]p

$sed -n 3,+4p <file

#prints lines 3,4,5,6,7

$sed -n /que/p

#prints lines containing ’que’

$sed -n /hello/,~3p < file

from the first line containing ’hello’

to the first 3 multiple

Automating administrative tasks

Shell scripting

sed

Shell scripting:sed examples

delete lines [range]d

$sed 3,+4d <file

#deletes lines 3,4,5,6,7

$sed /que/d

#deletes lines containing ’que’

$sed /hello/,~3d < file

from the first line containing ’hello’

to the first 3 multiple

Automating administrative tasks

Shell scripting

sed

Shell scripting:sed examples

substitute strings s/pattern1/pattern2/

$sed s/hello/HOLA/ < file

substitute characters y/caracteres1/caracteres2/

$sed y/afk/JKL/ < file

Automating administrative tasks

Shell scripting

sed

other utilities

there are also many other programs that operate on text files.
Some of them

head selects the first part of a file (lines, chars. . .)

$ head -15 < fil # the first 15 lines of file fil

tail selects the last part of a file (lines, chars. . .)

$ tail -20 < fil # the last 20 lines of file fil

wc counts lines, words, characters of a file

Automating administrative tasks

Shell scripting

sed

Shell scripting: functions

Modern shells allow their scripts to have functions. The
syntax to define a function is

function_name (){

executable sentences

...

}

a function can receive arguments. Inside a function,
arguments are referred by the variables $1, $2 . . .

to invoke a function with arguments we call it as we would
call a program with arguments from the command line

to return a value a function can echo the value so it can be
assigned to a variable with inverted quoting marks ‘ or the
$() construct

Automating administrative tasks

Shell scripting

sed

Shell scripting: functions example

#!/bin/bash

suma (){

let result=$1+$2

echo $result

}

VAR1=‘suma 2 2‘

VAR2=$(suma 2 3)

echo VAR1=$VAR1’ ’ VAR2=$VAR2

Automating administrative tasks

Schedulling execution of tasks: the cron and at commands

Schedulling execution of tasks: the cron and at commands

crontab files
the crontab command
the at command

Automating administrative tasks

Schedulling execution of tasks: the cron and at commands

the cron service

after we’ve made some fabulous scripts to perform our tasks
we would like them to run autonomously

we need not be logged in the machine to invoke the scripts
we won’t forget to run the scripts

the cron service takes care of this allowing us to

arrange for scripts (or programs) to be run periodically
arrange for scripts (or programs) to be run once at a certain
time

Automating administrative tasks

Schedulling execution of tasks: the cron and at commands

crontab files

crontab file

each user in the system has a crontab file that specifies the
tasks he/she wants to be executed periodically

the location of this files varies from system to system

some systems have a global system crontab file (typically
/etc/crontab)

the cron service reads the files when it starts so the users
must not edit these files directly.

they must be edited with the command crontab -e which also
notifies cron that the files have changed

Automating administrative tasks

Schedulling execution of tasks: the cron and at commands

crontab files

format of the crontab file

a crontab file consists of a series of lines; one line for each task

the format of one line is

minute hour day_of_month month weekday command arguments

in a global crontab file, each line has the format

minute hour day_of_month month weekday user command arguments

lines starting with # are treated as comments

some versions allow for environment variables to be set in the
crontab file

Automating administrative tasks

Schedulling execution of tasks: the cron and at commands

crontab files

format of the crontab file

each of the time fields can have the following characters

an integer (0 to 59 for minutes, 0 to 23 for hours, 1 to 31 for
day of month, 1 to 12 for month, 0 to 7 for weekday)
an *, matching any value
several integers separated by ’,’, thus specifying a discrete set
of values
two integers separated by ’-’ to specify a range
some systems allow to specify a step with the character ’/’

Automating administrative tasks

Schedulling execution of tasks: the cron and at commands

crontab files

format of the crontab file: example

the following line executes /sbin/backup.sh at 6:30 on days
1, 10, 20 each month, provided they are not a Saturday or
Sunday

30 6 1,10,20 * 1-5 /sbin/backup.sh

on some systems, the following line executes
/usr/bin/check-for-updates every two hours on Sundays and
Wednesdays

0 */2 * * 0,3 /usr/bin/check-for-updates

on some systems, the following line executes
/home/trump/do-and-say-something-stupid for user trump
every minute from 9 to 21 every day

* 9-21 * * * trump /home/trump/do-and-say-something-stupid

Automating administrative tasks

Schedulling execution of tasks: the cron and at commands

crontab files

location of the crontab files

if there exists a global crontab file it is located in
/etc/crontab

the crontab file for a user is named after his/her login and its
location can be usually found in the online manual page for
the crontab command

this location is

linux /var/spool/cron/crontabs, /var/spool/cron
solaris /var/spool/cron/crontabs

openBSD /var/cron/tabs

freeBSD /var/cron/tabs

netBSD /var/cron/tabs

Automating administrative tasks

Schedulling execution of tasks: the cron and at commands

the crontab command

the crontab command

the crontab command allows users to modify their crontab.
users must not edit these files directly

crontab -e invokes a text editor to edit the user’s crontab file.
This editor can be specified with the EDITOR environment
variable
crontab -l lists a user crontab
crontab -r removes a user crontab

Automating administrative tasks

Schedulling execution of tasks: the cron and at commands

the crontab command

cron.allow and cron.deny files

access of users to the cron facility can be controlled with the
cron.allow and cron.deny files

each of this files has logins of users, one login per line

the cron.allow file takes precedence over the cron.deny file

if it exists, users listed in this file are allowed to use the
crontab command, the rest of the users are not

the cron.deny is checked if the file cron.allow doesn’t exist

if it exists, users listed in this file are not allowed to use the
crontab command, the rest of the users are

In most of the systems, if neither file exists, all users are
allowed to use the crontab command

Automating administrative tasks

Schedulling execution of tasks: the cron and at commands

the crontab command

location of the cron.allow and cron.deny files

as usual, the location of these files can be usually found in the
online manual page for the crontab command

linux /etc/cron.allow and /etc/cron.deny

solaris /etc/cron.d/cron.allow and /etc/cron.d/cron.deny

openBSD /var/cron/cron.allow and /var/cron/cron.deny

freeBSD /var/cron/cron.allow and /var/cron/cron.deny

netBSD /var/cron/cron.allow and /var/cron/cron.deny

Automating administrative tasks

Schedulling execution of tasks: the cron and at commands

the crontab command

other considerations

on some systems, programs to be run via the crontab
command must have their output redirected in order to
prevent it from being lost.

however, on other systems, cron would mail the user the
output of the program

some systems provide the /etc/cron.d directory for software
packages to install their crontab files there

Automating administrative tasks

Schedulling execution of tasks: the cron and at commands

the crontab command

other considerations

linux provides the /etc/cron.hourly, /etc/cron.dayly,

/etc/cron.weekly and /etc/cron.monthly directories so
that scripts can be placed there to be executed periodically

on solaris, if neither file cron.allow nor cron.deny exists,
the solaris.jobs.user authoritation is checked

on solaris, cron manages its log directly. On linux and BSD it
relies on syslog for that task

freeBSD has the periodic utility used to run scrips at
directories periodically. With this utility, the scripts at
/etc/periodic/daily, /etc/periodic/weekly ... are
treated similar to the /etc/cron.dayly,
/etc/cron.weekly directories in linux

Automating administrative tasks

Schedulling execution of tasks: the cron and at commands

the at command

the at command

the at (or batch) command allows a user to submit a job for
execution at a later time

the jobs are scheduled for execution once

cron uses the files at.allow and at.deny to handle the
authoritation to submit jobs, in a similar way as it does with
the /etc/cron.allow and /etc/cron.deny files for the
crontab command

Automating administrative tasks

Monitoring system: logs

Monitoring system: logs

introduction: logs, logfiles and syslogd
log configuration
rotating of logs

Automating administrative tasks

Monitoring system: logs

introduction: logs, logfiles and syslogd

logs

a log is a description of an event that happened to a process
in the system

although some programs can use and maintain their partigular
log files it is usual the log daemon in the system (typically
named syslogd) takes cares of the logs in a centralized way.
(linux usually replaces syslog with another ”more advanced”
utility like syslog-ng or rsyslog)

usually a log is a single line of text containing

time and date of the event
the machine and service where it has originated,
the type and severity of event

Automating administrative tasks

Monitoring system: logs

introduction: logs, logfiles and syslogd

logfiles

a logfile is a file where the system stores the logs

typically is a plain text file containing one line per event

there can exist different files for different services

instead of logging to files, logs can also be sent to some
device (for example a terminal), to users on the system or
even to other systems on the network

Automating administrative tasks

Monitoring system: logs

introduction: logs, logfiles and syslogd

location of logs files

the location of the log files varies from system to system.
Nearly every system has them under the /var directory

the location of the files can also be defined by the system
administrator. The following lines list the most often used
default locations on different systems

linux: they are stored in /var/log/*

solaris: two generic locations: /var/adm/log/* /var/log/*.
And plenty of particular locations /var/cron/log,
/var/saf/*, /var/lp/logs/*, /var/svc/log

BSD: most of them are stored under /var/log/

Automating administrative tasks

Monitoring system: logs

introduction: logs, logfiles and syslogd

syslogd

syslogd is the daemon that takes care of the logs on the
system

applications submit messages to syslogd

syslogd reads its configuration file when it starts and decides
what to do with the messages it receives

there are alternatives to syslogd, most of them used on linux
systems: rsyslog, dsyslog, syslog-ng . . .

Automating administrative tasks

Monitoring system: logs

log configuration

log configuration

for syslogd (or any of its alternatives) to know what to do with
the messages, it must be specified in its configuration file.

this file is typically /etc/syslog.conf (/etc/rsyslog.conf if
rsyslog is being used . . .)

a log message is classified according to

its facility: which service has generated the log. One of a
predefined list on the system.
its severity: how important the log is. One of a predefined list
on the system.

Automating administrative tasks

Monitoring system: logs

log configuration

syslog facilities

this are the more usual facilities on syslog

auth security/authorization messages
authpriv security/authorization messages (private)

cron cron and at
daemon system daemons without separate facility value

ftp ftp daemon
kernel kernel messages

lpr line printer subsystem
mail mail subsystem
news USENET news subsystem
syslog messages generated internally by syslogd(8)
user generic user-level messages
uucp uucp subsystem (obsolete)

Automating administrative tasks

Monitoring system: logs

log configuration

syslog severities

this are the more usual severities on syslog

emerg system is unusable
alert action must be taken immediately
crit critical conditions
err error conditions

warning warning conditions
notice normal, but significant, condition
info informational message

debug debug-level message

Automating administrative tasks

Monitoring system: logs

log configuration

syslog file format

each line of the file specifies what to do with some logs. Lines
starting with # are treated as comments

the format of one lines is

selector <tab> action

selector selects logs based on the facility and severity. It has
the form facility.severity.

some systems accept the * as a wildcard for facility and/or
severity
some systems also accept the format
facility1,facility2.severity or
facility1.severity1; facility2.severity2

Automating administrative tasks

Monitoring system: logs

log configuration

syslog file format

action represents what must be done with the log selected by
’ selector’. It can be one of the following

write the log to a file. This is represented by the name of the
file (starting with /). A log can also get sent to a device (for
example a terminal) using the device name as the logfile
notify users. In this case, action is a comma separated list of
users that would get the log provided they are logged in the
system. Usually the symbol * stands for all users

Automating administrative tasks

Monitoring system: logs

log configuration

syslog file format

send the log to another machine running syslogd. If action
starts with @ the log is sent to the machine specified after the
character @ (name or ip). logs coming from other machine do
not get resent to another
syslog uses port 514 over UDP, some syslog replacements allow
the sending of logs using TCP. On those systems we typically
would put in the configuration file @@name-or-ip of the
machine receiving the log

cron.emrg;cron.alert @192.168.1.5

cron.alert root,cronmaster

cron.err /var/log/cron-errors.log

cron.* /var/log/cron.log

##log over TCP, not available in every system

cron.* @@192.168.1.22

Automating administrative tasks

Monitoring system: logs

log configuration

extensions

there are a number of functionalities that, although not
standard, can be found on many systems, (specially on linux
systems, where a great number of syslogd alternatives are
available)

the existence a directory (typically /etc/syslog.d) where
different software packages can place their particular log
configuration
the possibility of, instead writing the logs to a file (or sending
them to another machine), start a program and pass the log to
its standard input
use of conditional sentences as actions. For example
ifdef(‘LOGHOST’, /var/log/syslog, @loghost)

Automating administrative tasks

Monitoring system: logs

rotating of logs

rotating of logs

the problem with log files is that they keep growing in time.
Large files use up a lot of disk space and are difficult to
manage

the solution is to rotate the logs: create a new file once the
log file has a certain size or a certain age.

there are several log rotating programs

solaris logadm is the log rotating program supplied with solaris
although logrotate can also be installed

bsd newsyslog is the default rotating program that comes with
openBSD, netBSD and freeBSD

linux logrotate is the standard log rotating program

Automating administrative tasks

Monitoring system: logs

rotating of logs

solaris logadm

logadm is the program for rotating the logs in solaris

a it can be invoked without arguments, in which case it reads its
configuration file, /etc/logadm.conf

b it can be invoked with a log file as argument, in which case it
rotates that log file (adding suffixes 0, 1 . . .)

the most common use is a), where it is started through
crontab (typically once a day) and rotates the files specified in
its configuration file

when invoked from the command line to rotate a single file,
its syntax is

logadm options logfile

Automating administrative tasks

Monitoring system: logs

rotating of logs

solaris logadm

the most common options when invoked with arguments are

-a command execute command after rotating the log file
-b command execute command before rotating the log file
-A age delete versions of the file that have not been modified
for the amount of time represented by age
-c instead of renaming the log file to rotate, copy it and
truncate the original to zero length
-C count keep count files
-g grp use grp as the new logfile group
-m mod use mod as the new logfile mode
-o owner use owner as the new logfile uid
-p period rotate the file after period
-s sz rotate the file if its size is greater than sz

Automating administrative tasks

Monitoring system: logs

rotating of logs

solaris logadm configuration file

logadm si typically invoked without arguments through
crontab

in this case it reads its configuration file, /etc/logadm.conf
unless it is invoked with the -f config file option

the format of logadm config file is

lines starting with # are treated as comments
lines are in the format

logfile options

the options are expressed as they would be if logadm was
invoked from the command line

Automating administrative tasks

Monitoring system: logs

rotating of logs

sample solaris logadm configuration file

The format of lines in this file is:

<logname> <options>

For each logname listed here, the default options to logadm

are given. Options given on the logadm command line override

the defaults contained in this file.

#

logadm typically runs early every morning via an entry in

root’s crontab (see crontab(1)).

#

/var/log/syslog -C 8 -a ’kill -HUP ‘cat /var/run/syslog.pid‘’

/var/adm/messages -C 4 -a ’kill -HUP ‘cat /var/run/syslog.pid‘’

/var/cron/log -c -s 512k -t /var/cron/olog

/var/lp/logs/lpsched -C 2 -N -t ’$file.$N’

/var/fm/fmd/errlog -N -s 2m -M ’/usr/sbin/fmadm -q rotate errlog && mv /var/fm/fmd/errlog.0- $nfile’

/var/fm/fmd/fltlog -N -A 6m -s 10m -M ’/usr/sbin/fmadm -q rotate fltlog && mv /var/fm/fmd/fltlog.0- $nfile’

smf_logs /var/svc/log/*.log -C 8 -s 1m -c

#

The entry below is used by turnacct(1M)

#

/var/adm/pacct -C 0 -N -a ’/usr/lib/acct/accton pacct’ -g adm -m 664 -o adm -p never

#

The entry below manages the Dynamic Resource Pools daemon (poold(1M)) logfile.

#

/var/log/pool/poold -N -s 512k -a ’pkill -HUP poold; true’

Automating administrative tasks

Monitoring system: logs

rotating of logs

BSD newsyslog

newsyslog is used in openBSD and freeBSD to rotate the
logfiles when they reach a certain size or age

rotated files are renamed .0, .1 . . .

it is usually run by cron although it can be also be run
manually

unless it is invoked with the -f config file its
configuration file is /etc/newsyslog.conf

the granularity of the rotating time is determined on how
often newsyslog is run

Automating administrative tasks

Monitoring system: logs

rotating of logs

BSD newsyslog configuration file

newsyslog configuration file is /etc/newsyslog.conf. It
consists of lines, each line referring to a file to be rotated

blank lines are ignored, lines starting with # are treated as
comments

each line has the following format

logfile owner:group mode count size when flags

Automating administrative tasks

Monitoring system: logs

rotating of logs

openBSD newsyslog configuration file

logfile the log file being rotated

owner:group (optional) the owner and group of the rotated
file

mode permissions of the rotated file

count how many rotated files to keep

size rotate when this size is reached (* or 0 to rotate only on
time)

when rotate when this age, or date is reached (* to rotate
only on size)

flags Z and J for compressing files, C to create the file if it
does not exists, M for monitoring (a username or email
address should be included as the next field to be notified the
file has been rotated), . . .

Automating administrative tasks

Monitoring system: logs

rotating of logs

sample openBSD newsyslog configuration file

$OpenBSD: newsyslog.conf,v 1.29 2011/04/14 20:32:34 sthen Exp $

#

configuration file for newsyslog

#

logfile_name owner:group mode count size when flags

/var/cron/log root:wheel 600 3 10 * Z

/var/log/aculog uucp:dialer 660 7 * 24 Z

/var/log/authlog root:wheel 640 7 * 168 Z

/var/log/daemon 640 5 30 * Z

/var/log/lpd-errs 640 7 10 * Z

/var/log/maillog 600 7 * 24 Z

/var/log/messages 644 5 30 * Z

/var/log/secure 600 7 * 168 Z

/var/log/wtmp 644 7 * $W6D4 B

/var/log/xferlog 640 7 250 * Z

/var/log/ppp.log 640 7 250 * Z

/var/log/pflog 600 3 250 * ZB "pkill -HUP -u root -U root -t - -x pflogd"

Automating administrative tasks

Monitoring system: logs

rotating of logs

linux logrotate

logrotate takes care of rotating, compressing, removing,. . . of
log files in linux systems

it is usually run daily through cron

logrotate has its configuration file /etc/logrotate.conf

it has some global options which can be overriden by per-file
options
specific options for some logfile can be specified in the format

logfile {

options

}

additional specific file configurations can be put in the
logrotate configuration directory, specified in logrotate
configuration file (typically /etc/logrotate.d)

Automating administrative tasks

Monitoring system: logs

rotating of logs

sample linux logrotate configuration file

see "man logrotate" for details

rotate log files weekly

weekly

keep 4 weeks worth of backlogs

rotate 4

create new (empty) log files after rotating old ones

create

uncomment this if you want your log files compressed

#compress

packages drop log rotation information into this directory

include /etc/logrotate.d

no packages own wtmp, or btmp -- we’ll rotate them here

/var/log/wtmp {

missingok

monthly

create 0664 root utmp

rotate 1

}

/var/log/btmp {

missingok

monthly

create 0660 root utmp

rotate 1

}

system-specific logs may be configured here

Automating administrative tasks

Monitoring system: logs

rotating of logs

sample /etc/logrotate.d/apache

/var/log/apache2/*.log {

weekly

missingok

rotate 52

compress

delaycompress

notifempty

create 640 root adm

sharedscripts

postrotate

/etc/init.d/apache2 reload > /dev/null

endscript

prerotate

if [-d /etc/logrotate.d/httpd-prerotate]; then \

run-parts /etc/logrotate.d/httpd-prerotate; \

fi; \

endscript

}

Automating administrative tasks

Starting and stopping system services. boot scripts

Starting and stopping system services. boot scripts

system V init scripts
linux
solaris
openbsd
freebsd
netbsd

Automating administrative tasks

Starting and stopping system services. boot scripts

system V init scripts

boot process

We’ve seen before the general boot procedure for a O.S.

The kernel, after been loaded and having performed its
initialization routines, starts the first user program in the
system: init

init checks the file /etc/inittab for the runlevel the
system must be brought to, and after running the scripts in
/etc/rcS.d it invokes the ones in/etc/rcN.d (where N is
the runlevel) which will be starting the available services in
that installation.

Automating administrative tasks

Starting and stopping system services. boot scripts

system V init scripts

boot process

A similar process is performed when the system is brought
down to stop all the services in an ordenated way

The system has more than one predetermined configuration

each of them with its particular set of running services

Automating administrative tasks

Starting and stopping system services. boot scripts

system V init scripts

Init system: Runlevels

Runlevels are configurations of services running in the system.
When entering a runlevel, some services are started and some
are stopped.

We have 7 runlevels predefined, although that may be
different on different systems. These runlevels typically are

0: system halted.
1: single-user mode
2: multi-user mode
3: multi-user mode graphic environment
4: Available.
5: Available
6: Reboot

To change the runlevel we use telinit

To get the current runlevel, we use runlevel

Automating administrative tasks

Starting and stopping system services. boot scripts

system V init scripts

Init system: Runlevels

There is a directory where all the scripts necessary to start
and stop services reside. It is usually /etc/init.d

These scripts accept several parameters, (typically start,

stop, restart ...), to indicate which action we want to
perform. This also allows us to start or stop a service at
anytime

For each runlevel there’s a directory rcN.d (rc0.d, rc1.d,

rc2.d...) in /etc/, o in /etc/rc.d. This directory
contains links to the actual scripts in /etc/init.d. This
links are in the form

S00exim

K20ssh

Automating administrative tasks

Starting and stopping system services. boot scripts

system V init scripts

Init system: Runlevels

The first letter (S or K) indicates whether the service is to be
started (S) or stopped (K) in that runlevel.

The number defines the order in which services are started (or
stopped).

If we want to perform actions at system startup or shutdown
we only need to place an adequate script in the corresponding
runlevel. (more correctly, we put the script in /etc/init.d

and create the adequate links in /etc/rcN.d

runlevel newlevel changes the runlevel to newlevel. For
example, to switch to single-user mode, we’d use

telinit 1

Automating administrative tasks

Starting and stopping system services. boot scripts

system V init scripts

System V init system

System V init system was the init system of choice in previous
solaris and linux systems

From version 10, solaris has adopted the smf (Services
Management Facilities) implementation, that we’ll see later on

Many linux distros have (unfortunately) adopted systemd,
although there still some that use System V init system, even
with some enhancements

Automating administrative tasks

Starting and stopping system services. boot scripts

linux

devuan insserv

devuan insserv is an extension to the system V style
initialization files
Provides a more sophisticated control of the dependencies
among the initialization scripts
Allows for parallel execution of the scripts
Introduced in debian squeeze
insserv takes care of arranging for the scripts to be run at
boot (or shutdown) time when appropriate
The links to the scripts in /etc/init.d from the
corresponding /etc/rcN.d directory are also automatically
generated
For example, to run anacron in the default runlevels

insserv -d anacron

To get anacron not executed at system startup (also the links
will be removed)

insserv -r anacron

Automating administrative tasks

Starting and stopping system services. boot scripts

linux

devuan insserv

In order to use insserv the initialization scripts must have a
specific format

boot facilities descriptions can be seen in
/etc/insserv.conf or in the files at
/etc/insserv.conf.d/
A sample script header. To specify dependencies we can also
use $all o $null
BEGIN INIT INFO

Provides: boot_facility_1 [boot_facility_2 ...]

Required-Start: boot_facility_1 [boot_facility_2 ...]

Required-Stop: boot_facility_1 [boot_facility_2 ...]

Should-Start: boot_facility_1 [boot_facility_2 ...]

Should-Stop: boot_facility_1 [boot_facility_2 ...]

X-Start-Before: boot_facility_1 [boot_facility_2 ...]

X-Stop-After: boot_facility_1 [boot_facility_2 ...]

Default-Start: run_level_1 [run_level_2 ...]

Default-Stop: run_level_1 [run_level_2 ...]

X-Interactive: true

Short-Description: single_line_description

Description: multiline_description

END INIT INFO

Automating administrative tasks

Starting and stopping system services. boot scripts

linux

devuan insserv

Example of a simple script header for a system that gets
started in runlevels 2,3,4,5 y S and stopped at runlevels 0, y 6
BEGIN INIT INFO

Provides: cortafuegos

Required-Start: $network

Required-Stop:

Default-Start: 2 3 4 5 S

Default-Stop: 0 6

Short-Description: Inicia o para el cortafuegos

Description: Rechaza conexiones de fuera del departamento

que venga a un puerto distinto de 80

END INIT INFO

The easiest way to get a script executed at system startup is
to have it included in /etc/rc.local

Automating administrative tasks

Starting and stopping system services. boot scripts

linux

devuan insserv

alternatively we can use the command update-rc.d to
enable or disable services

we can force the system into using the legacy mode (manual
ordering of the scripts) by creating a file named
.legacy-bootordering in the /etc/init.d directory

touch /etc/init.d/.legacy-bootordering

Automating administrative tasks

Starting and stopping system services. boot scripts

linux

fedora systemctl

fedora linux (together with its sister distro, red hat) were
among the first distros to adopt systemd as its initialization
system

system services in fedora are controlled by systemd via the
command systemctl

the command systemctl allows us to start, stop, restart,
. . . what it calls units

a unit can be of type service (daemon or process), socket
(connection), device, mount (mount point) . . .

examples.

To start telnet

systemctl start telnet.socket

To stop telnet

systemctl stop telnet.socket

Automating administrative tasks

Starting and stopping system services. boot scripts

linux

fedora systemctl examples

examples.

To enable telnet at system startup

systemctl enable telnet.socket

to disable telnet at system startup

systemctl disable telnet.socket

to start the sshd service

systemctl start sshd.service

to disable sshd at system startup

systemctl disable sshd.service

to list what units we have available

systemctl list-units

Automating administrative tasks

Starting and stopping system services. boot scripts

linux

fedora startup services

fedora still supports a legacy system V style services, although
its /etc/init.d directory is not fully populated.

it is only for a few system services or for the user to add their
own

we can add our own scripts to the /etc/init.d directory to
have them started or stopped at boot time

our scripts must understand the parameters start, stop,

status, restart ...

the services can then be managed with ntsysv, chkconfig
or system-config-services and started or stopped with
the service command

however for the services to be managed this way, either hints
to chkconfig must be provided or a LSB style stanza has to be
included

Automating administrative tasks

Starting and stopping system services. boot scripts

linux

fedora startup services

example of chkconfig hints stating that the script can affect
runlevels 2,3,4, and 5, and the links will be S20 or K80

chkconfig: 2345 20 80

description: This lines will appear as the description \

of the service this script provides.

LSB style stanza

BEGIN INIT INFO

Provides: foo

Required-Start: bar

Defalt-Start: 2 3 4 5

Default-Stop: 0 1 6

Description: Foo init script

END INIT INFO

Automating administrative tasks

Starting and stopping system services. boot scripts

linux

debian and systemd

As of version 8 (Jessie) debian has adopted (as other linux
distros) systemd as its default procedure for system
initialization

We still can use the scripts in /etc/init.d to start and stop
services (which they do via the command systemctl)

the command systemctl allous us to start, stop, enable and
disable services

The configuration of systemd is represented by links in the
/etc/systemd directory

The switch to systemd has not been well received by many, if
fact a fork of the debain project (without systemd) has been
made; devuan (www.devuan.org)

Automating administrative tasks

Starting and stopping system services. boot scripts

linux

ununtu and systemd

with debian’s move to systemd, ubuntu has also adopted
systemd as its init system

ubuntu still retains system V style initialization scripts: a fully
populated /etc/init.d

services can be started and stopped the usual system V way
/etc/init.d/service-name start;

/etc/init.d/service-name stop

services cal also be started and stopped with the service
command (service service-name start; service

service-name stop

both ways /etc/init.d ... and service ... are in turn
calls to systemctl that has systemd actually start and/or stop
the services.

Automating administrative tasks

Starting and stopping system services. boot scripts

solaris

solaris smf

prior to solaris 10, services were started with the standard
System V initialization (inittab + /etc/init.d scripts)

as this scripts run sequentially

the boot process can take long
service dependencies must be known to run the scripts in the
appropiate order

this has been addressed with the new smf (Service
Management Facilities)

services can also be configured the old way. These are
referred as legacy services

Automating administrative tasks

Starting and stopping system services. boot scripts

solaris

solaris boot process

After control of the system is passed to the kernel, the system
begins the last stage of the boot process: the init stage

init reads the file /etc/default/init to set variables that
will get passed to its descendant processes, and reads the file
/etc/inittab which tells which programs to start

it starts the svc.startd daemon which is responsible for
starting and stopping other system services such as mounting
file systems, configuring network devices svc.startd
will also execute legacy run control (rc) scripts

Automating administrative tasks

Starting and stopping system services. boot scripts

solaris

solaris runlevels

starting with version 10, solaris doesn’t use runelvels as such

the runlevel can still be got with the who -r command
the run level can still be changed with /sbin/init. for
example

/sbin/init 1

brings the machine to single user mode
it introduces the concept of milestones. A milestone is a
special type of service that represents a group of services

Automating administrative tasks

Starting and stopping system services. boot scripts

solaris

solaris milestones

there are 3 milestone predefined

svc:/milestone/single-user (more or less) equivalent to
init S

svc:/milestone/multi-user (more or less) equivalent to
init 2

svc:/milestone/multi-user-server (more or less)
equivalent to init 3

there are also defined the milestones ’none’ (maintenance
mode, none services being run), and ’all’, all services being
run (default system run). For example:

svcadm milestone none

enters system maintenance mode, and

svcadm milestone all

restores normal system functioning

Automating administrative tasks

Starting and stopping system services. boot scripts

solaris

managing services

the basic commands to manage services are

svcs list all the services and their status. It also lists the legacy
services
svcs -l service name gets details on service name
svcadm enable service name starts service name.
service name will also get started the next reboot
svcadm disable service name stops service name.
service name will not get started the next reboot
svcadm restart service name restarts service name
svcadm disable -t service name stops service name.
service name will get started the next reboot if it was
supposed to do so
svcprop service name displays service name properties

Automating administrative tasks

Starting and stopping system services. boot scripts

solaris

managing services

services are defined by XML files in the directory
/var/svc/manifest

the XML file of a service contains references to scripts that
start and stop the service

these scripts are in /lib/svc/method

Automating administrative tasks

Starting and stopping system services. boot scripts

openbsd

openBSD boot

when the system starts up, after the kernel has performed its
initialization routines, the init process is created. It runs the
script /etc/rc

/etc/rc

checks filesystems
reads configuration variables from /etc/rc.conf and then
from /etc/rc.conf.local

configures the network with /etc/netstart

runs /etc/rc.local
runs local and package scripts in /etc/rc.d

when the system goes down it executes the script
/etc/rc.shutdown

Automating administrative tasks

Starting and stopping system services. boot scripts

openbsd

starting services in openBSD

to start a service provided in openBSD we set the appropiate
variable in /etc/rc.conf.local (/etc/rc.conf should be
left untouched and used as a guide). for example the
following line in /etc/rc.conf.local

sshd_flags=""

gets sshd started at system startup whereas

sshd_flags=NO

does not

Automating administrative tasks

Starting and stopping system services. boot scripts

openbsd

starting services in openBSD

to start services not provided with openbsd we can

a) start them directly form /etc/rc.local
b) place a script in /etc/rc.d and specify the name of the script

in the variable pkg scripts in /etc/rc.conf.local

the standard scripts accept the parameters start, stop, restart,
reload, check
most of these scripts just call to /etc/rc.d/rc.subr that
takes care of processing the parameters. Sample sshd script in
openbsd

#!/bin/sh

#

$OpenBSD: sshd,v 1.1 2011/07/06 18:55:36 robert Exp $

daemon="/usr/sbin/sshd"

. /etc/rc.d/rc.subr

rc_cmd $1

Automating administrative tasks

Starting and stopping system services. boot scripts

openbsd

openBSD securelevels

bsd systems do not have runlevels

they have what it is called securelevels

when the system boots it is in securelevel=0, also called
insecure mode, In this mode

all devices can be accesed as dictated by their permissions
system file flags may be changed with chflags
kernel modules may be loaded or unloaded

Automating administrative tasks

Starting and stopping system services. boot scripts

openbsd

openBSD securelevels

the file /etc/rc.securelevel dictates which securelevel must
be reached when the system boot has completed

the usual multiuser environment is securelevel=1. At this level

securelevel may not be lowered
raw devices of mounted file systems are read-only, independent
of their permissions
kernel modules may not be loaded or unloaded
certain system variables may not be changed
/dev/mem and /dev/kmem are not writable

Automating administrative tasks

Starting and stopping system services. boot scripts

openbsd

openBSD securelevels

the system also has another securelevel, securelevel=2 o
highly secure mode

This level is like securelevel=1 and also

pf and nat rules can no be changed
all raw disk devices are read-only
time can not be changed backwards or close to overflow

Automating administrative tasks

Starting and stopping system services. boot scripts

openbsd

openBSD securelevels

there’s also securelevel=-1 which is exactly as securelevel=0,
execpt that init will not try to raise the securelevel

to raise the securelevel the kern.securelevel variable must be
set with sysctl

only init may lower the securelevel

to enter securelevel=0, from a securelevel, SIGTERM must be
sent to init

Automating administrative tasks

Starting and stopping system services. boot scripts

freebsd

freeBSD services

in freeBSD the scripts to start and stop services are located in
the directory /etc/rc.d (/usr/local/etc/rc.d for services
provided by packages)

system services are controlled through variables defined in
/etc/rc.conf. We can get the name of the variable
controlling the execution of the service with the rcvar option
of the service command

service sshd rcvar

sshd

sshd_enable="YES"

(default="")

we can get the system to start sshd at boot with
sshd enable="YES" in /etc/rc.conf

Automating administrative tasks

Starting and stopping system services. boot scripts

freebsd

freeBSD services

if the service is enabled we can start (or stop) it with

service sshd start

if the service is not enabled we can start it with

service sshd onestart

to determine if it is running we use the status parameter to
the service command

service sshd status

Automating administrative tasks

Starting and stopping system services. boot scripts

freebsd

freeBSD services

should we want some task be performed at boot or shutdown
time we can simply include it in the

/etc/rc.local to get it run at boot time
/etc/rc.shutdown to get it run at shutdown time

we can also write a script and have it handled with rc.subr

through the variables in /etc/rc.conf

the script should be placed in /etc/rc.d or in
/usr/local/etc/rc.d
an outline of creating rc scripts can be found in
http://www.freebsd.org/doc/en_US.ISO8859-1/articles/rc-scripting/

Automating administrative tasks

Starting and stopping system services. boot scripts

freebsd

freeBSD securelevels I

like openBSD freeBSD defines several securelevels. freeBSD
defines 5

-1 Permanently insecure mode. This is the default initial value
0 Insecure mode: Immutable and append-only flags may be

turned off. All devices may be read or written subject to their
permissions

1 Secure mode: The system immutable and system append-only
flags may not be turned off; disks for mounted file systems,
/dev/mem and /dev/kmem may not be opened for writing.
Kernel modules may not be loaded or unloaded.

2 Highly secure mode: Same as secure mode, plus disks may not
be opened for writing, except by the mount command whether
mounted or not. Kernel time changes are restricted to less
than, or equal to, one second.

Automating administrative tasks

Starting and stopping system services. boot scripts

freebsd

freeBSD securelevels II

3 Network secure mode: same as highly secure mode, plus IP
packet filter rules cannot be changed and pf configuration
cannot be adjusted.

the securelevel can be raised by root but it can not be lowered

it can be modified by changing the kern.securelevel variable

this can be done with the sysctl command or by specifying
kern.securelevel=value in the /etc/rc.conf file

Automating administrative tasks

Starting and stopping system services. boot scripts

netbsd

netBSD services

in netBSD the scripts to start and stop services are located in
the directory /etc/rc.d.

Scripts provided by packages (for example, slim) are provided
typically in /usr/pkg/share/examples/rc.d and should be
copied to /etc/rc.d

system services are controlled through variables defined in
/etc/rc.conf. We can get the name of the variable
controlling the execution of the service with the rcvar option
of the service command or pass rcvar to the appropiate
/etc/rc.d script
aso22-3 # service inetd rcvar

inetd

$inetd="YES"

aso22-3 # /etc/rc.d/inetd rcvar

inetd

$inetd="YES"

we can get the system to start inetd at boot with inetd=YES

in /etc/rc.conf

Automating administrative tasks

Starting and stopping system services. boot scripts

netbsd

netBSD services

if the service is enabled we can start (or stop) it with

service inetd start

/etc/rc.d/inetd start

if the service is not enabled we can start it with

service inetd onestart

/etc/rc.d/inetd onestart

to determine if it is running we use the status parameter to
the service command

service sshd status

/etc/rc.d/inetd status

Automating administrative tasks

Starting and stopping system services. boot scripts

netbsd

netBSD services

should we want some task be performed at boot or shutdown
time we can simply include it in the

/etc/rc.local to get it run at boot time
/etc/rc.shutdown to get it run at shutdown time

we can also write a script and have it handled with rc.subr

through the variables in /etc/rc.conf

the script should be placed in /etc/rc.d

Automating administrative tasks

Starting and stopping system services. boot scripts

netbsd

netBSD securelevels I

like openBSD and freeBSD netBSD defines several
securelevels. freeBSD defines 4

-1 Permanently insecure mode: This is the default initial value
0 Insecure mode: The init process (PID 1) may not be traced

or accessed by ptrace(2), systrace(4), or procfs. Immutable
and append-only flags may be turned off. All devices may be
read or written subject to their permissions

1 Secure mode: All effects of securelevel 0. /dev/mem and
/dev/kmem may not be written to. Raw disk devices of
mounted file systems are read-only. Immutable and
append-only file flags may not be removed. Kernel modules
may not be loaded or unloaded. The net.inet.ip.sourceroute
sysctl(8) variable may not be changed. Adding or removing
sysctl(9) nodes is denied. The RTC offset may not be changed.
Set-id coredump settings may not be altered. Attaching the
IP-based kernel debugger, ipkdb(4), is not allowed. Device

Automating administrative tasks

Starting and stopping system services. boot scripts

netbsd

netBSD securelevels II

’pass-thru’ requests that may be used to perform raw disk
and/or memory access are denied. iopl and ioperm calls are
denied. Access to unmanaged memory is denied

2 Highly secure mode: All effects of securelevel 1. Raw disk
devices are always read-only whether mounted or not. New
disks may not be mounted, and existing mounts may only be
downgraded from read-write to read-only. The system clock
may not be set backwards or close to overflow. Per-process
coredump name may not be changed. Packet filtering and
NAT rules may not be altered

Automating administrative tasks

Starting and stopping system services. boot scripts

netbsd

netBSD securelevels I

the securelevel can be raised by root but it can not be lowered

it can be modified by changing the kern.securelevel variable

this can be done with the sysctl command or by specifying
kern.securelevel=value in the /etc/rc.conf file

	Automating administrative tasks
	Shell scripting
	introduction
	basic scripting
	operations
	conditional execution
	loops
	text manipulation
	sed

	Schedulling execution of tasks: the cron and at commands
	crontab files
	the crontab command
	the at command

	Monitoring system: logs
	introduction: logs, logfiles and syslogd
	log configuration
	rotating of logs

	Starting and stopping system services. boot scripts
	system V init scripts
	linux
	solaris
	openbsd
	freebsd
	netbsd

