
Managing users and groups

Managing users and groups
Grado en Informática 2023/2024
Departamento de Computación

Facultad de Informática
Universidad de Coruña

Antonio Yáñez Izquierdo

Managing users and groups

Contents I

1 Users and groups

2 Managing user acounts
User database files

/etc/passwd file
/etc/shadow file
/etc/master.passwd file

Creating a user
Changing shells

3 Administrative tools for managing users
Tools for managing users
useradd

Other utilities

4 Managing groups
/etc/group and /etc/shadow file format
the nerwgrp command

Managing users and groups

Contents II

other group utilities

5 BSD login classes

6 User autentification with PAM
Introduction to PAM
Configuration of PAM

/etc/pam.conf

/etc/pam.d directory

PAM modules

7 Solaris’ roles
Introduction
RBAC concepts
Role implementation
Examples

8 sudo and sudoers

Managing users and groups

Users and groups

Users and groups

Managing users and groups

Users and groups

users

A user is an entity in the system that can

Own files (and/or directories, devices . . .)
Create processes and execute programs

A user is identified in the system by a number (uid)

File permissions specify what a user can do to a spcific file

There’s a special user in the system (uid=0) that can access
to all files, signal all processes and execute all system calls

Every file in the system is owned by ONE user

Process credentials indicate which user is behind the
execution of that process

Managing users and groups

Users and groups

groups

A group is a collection of users brought together for whatever
reason

A user can belong to any number of groups (at least one)
A group can have any number of users

A group is identified in the system by a number (gid)

File permissions specify what users belonging to a group can
do to a spcific file

Every file in the system belongs only to ONE group, although
the user owning it can be a member of several groups

Of all the groups a user is member of, one is said to be
his/her primary group

Managing users and groups

Managing user acounts

Managing user acounts

User database files
Creating a user
Changing shells

Managing users and groups

Managing user acounts

User database files

user database files

as seen before, the system stores the information of users in
plain text files

these files are located in the /etc directory

the format of these files is mostly standard across different
unixes, although some of them are specific

users can be added, deleted and have their accounts changed,
by editing these files

Managing users and groups

Managing user acounts

User database files

list of user database files

the files are:

passwd this file defines the user acounts in the system. One line per
user

shadow pasword definition file, one line per user
group group definition file, one line per group

gshadow only on linux: the group password definition file
master.passwd only on BSD systems. user definition file which includes

passwords as well, protected from non root access

Managing users and groups

Managing user acounts

User database files

/etc/passwd file format I

this is a plain text file where each line represents a user in the
system

the line is formed by fields separated by the ’:’ character
username:x:UID:GID:user information:home-directory:login-shell

username: this is the name of the user on the system

x: on older systems the crypted form of the password (result
of crypting a base block text with the password as key) was
stored in this field

UID: the number that represents the user in the system. this
number mus be UNIQUE for each user. 0 always representes
the system administrator, root. Multiple user accounts with
the same UID are the same account from the system’s point
of view

Managing users and groups

Managing user acounts

User database files

/etc/passwd file format II

GID: user’s login group number, also known as primary group

user information: these field, sometimes refered to as gecos,
contains information about the user, such as its real name,
department, phone . . .

home-directory: the user’s home directory. The user’s shell
is placed in that directory upon succesful login

login-shell: the program started for the user when he/she
logs in. Typically a command line interpreter or shell, like
/bin/sh (Bourne shell), /bin/csh (C shell), /bin/ksh
(Korn shell) /bin/bash (Bourne-Again shell) tcsh . . .

Managing users and groups

Managing user acounts

User database files

/etc/shadow file format I

this file stores the password information

it has one line per user in the system

it is only readable by the system administrator

the format of the line is
username:password:lastchg:min:max:warn:inactive:expire:reserved

username: The user’s login name

password: The crypted form of the password, a special string
(*,!,LK. . . depending on the system) indicates that the user
can not login using the password. If left empty the user can
log in without password

lastchg: The date of the last password change, expressed as
the number of days since Jan 1, 1970

Managing users and groups

Managing user acounts

User database files

/etc/shadow file format II

min: The minimum number of days required between
password changes. This field must be set to 0 or above to
enable password aging

max The maximum number of days the password is valid.

warn The number of days before password expires that the
user is warned

inactive The number of days after a password has expired
during which the password should still be accepted

expire Date of expiration of the account, expressed as the
number of days since Jan 1, 1970

reserved This field is reserved for future use. On Solaris the
four low order bits contain the failed login count

Managing users and groups

Managing user acounts

User database files

/etc/master.passwd file

on BSD systems, the user information is stored in the
/etc/master.passwd file

it is protected from non root access

for compatibility reasons, the passwd file is generated from it,
using the pwd mkdb command.

the /etc/passwd file gets all the information from
/etc/master.passwd except the crypted form of the
password (replaced by ’∗’) and the pasword aging information
as in other systems, the passwd file is readable for every user
on the system

Managing users and groups

Managing user acounts

User database files

/etc/master.passwd file format I

it has one line per user in the system, in the following format
username:pass:uid:gid:class:change:expire:gecos:home-dir:shell

username: this is the name of the user on the system

pass: the crypted form of the password, a special string
(*,!,LK. . . depending on the system) indicates that the user
can not login using the password. If left empty the user can
log in without password

uid: the number that represents the user in the system.

gid: user’s login group number, also known as primary group

Managing users and groups

Managing user acounts

User database files

/etc/master.passwd file format I

class: type of user, of several defined in the system

change: password expiration time. Seconds since Jan 1, 1970

expire: account expiration time. Seconds since Jan 1, 1970

home-dir: the users home directory. the user is placed in that
directory upon succesful login

shell: the program started for the user when he/she logs in.
Tipically a command line interpreter or shell

Managing users and groups

Managing user acounts

Creating a user

Creating a user

to create a user the following tasks should be performed

a assign the user name, uid, password and primary group
(creating it if necessary),

b create the corresponding entries in the user database files
applying the system policies on password aging

c create the home directory of the user
d populate the user home directory with initialization files

(typically found in /etc/skel) and create other necessary files
(mail folder. . .)

e use chown and chmod to give the user ownership of its home
directory and initialization files and give them the adecuate
permissions

Managing users and groups

Managing user acounts

Creating a user

Creating a user

tasks c), d) and e) can be easily achieved with simple
straight-forward commands

task a) usually involves careful thinking to decide on
usernames, uids and, most important, passwords. System
policies on password aging are supposed to be already decided
when adding a user

task b) must be done very carefully, as corrupting the user file
databases could render the system unusable

some systems include the vipw command that invoques an
editor to edit the passwd file, acting on a temporary copy and
checking the file syntax before saving it

Managing users and groups

Managing user acounts

Changing shells

Changing shells

to change the shell of a user the file /etc/passwd has to be
changed

only the System Administrator, root, can modify this file

user can change their shell with the command chsh (linux and
BSD) or passwd -e (Solaris)

for a user to be able to change his/her shell, the shell must be
defined in /etc/shells

Managing users and groups

Managing user acounts

Changing shells

lmited accounts

we can limit what we allow one user to do in the system

if the user just uses the system to execute one program we
can put that program in the /etc/password file as shell

for example, if a user just logs into a machine to read the mail,
we can put the corresponding mail user agent in the
/etc/passwd file as the shell for that user

some shells also provide a restricted version (rksh,
rbash...) with restricted funcionality that helps limiting the
things a user can do in the system

it is not a very good policy to put restricted shells in
/etc/shells

Managing users and groups

Administrative tools for managing users

Administrative tools for managing users

Tools for managing users
useradd

Other utilities

Managing users and groups

Administrative tools for managing users

Tools for managing users

Tools for managing users

there’s several graphic tools to perform user administration
tasks

all of them are very complete and can perform almost any task

unfortunately no one of the has become a de-facto standard
and the tool we’ll find will depend greatly on the O.S./graphic
environment combination that we have

on the other hand, text tools are much standarized with
useradd being the most common

Managing users and groups

Administrative tools for managing users

useradd

useradd

it is the most standarized tool for adding users in one system

available in almost any unix system (Solaris, BSD, linux. . .)

can perform all the necesaary steps to create a new user

two modes of operation

when invoked as useradd -D it stablishes the default options
to be used when adding users to that system
invoked without the -D it adds a user to the system.
Parameters supplied define the characteristics of the user
account created

Some recent BSD systems have substituted this comand for
the useradd subcomand in the more general user
administration command pw

Managing users and groups

Administrative tools for managing users

Other utilities

other utilities

usermod modifies a user’s login information on the system

userdel deletes a user account and, possibly, related files

adduser (linux and BSD) more user-friendly utility to create
users. Typically it’s just a front end to useradd

rmuser (BSD only) more user-friendly utility to delete users

pw (some BSD systems only) mega command from which to
invoke useradd, usermod, . . .

Managing users and groups

Administrative tools for managing users

Other utilities

other considerations

in addition to the usermod command, there are other utilities
to control the password aging depending on the system

in Solaris we can control with the passwd command
linux has some options in the passwd command plus a specific
chage command

openBSD defines different classes of users, with, for example,
different requirements as to password length or crypting
algorhythm

there are utilities to check for password strength, which can
also be done through the use of PAM modules

Managing users and groups

Managing groups

Managing groups

/etc/group and /etc/shadow file format
the nerwgrp command
other group utilities

Managing users and groups

Managing groups

users and grups

users are said to belong to one or more groups

the group which GID appears in the line defining a user is
called the user’s primary group

the user can also belong to other groups via the /etc/group
file

the command groups shows the groups a user belongs to

Managing users and groups

Managing groups

/etc/group and /etc/shadow file format

/etc/group file format

this file is a plain text file with each line defining a group. The
format of the line is

groupname:password:gid:user-list

groupname is the name of the group

password: is the password of the group. This field is usually
not used and has the character ’*’. (linux has a separate
/etc/gshadow file)

gid: is the number identifying the group in the system

user-list: comma separated list of the usernames of users
belonging to that group (excluding the ones that have the
group as their primary group)

Managing users and groups

Managing groups

/etc/group and /etc/shadow file format

/etc/gshadow file format

this file is a plain text file defining the passwords of the group.
It is specific to the linux operating system

one line for each group. The format of the line is

group_name:password:admin:user-list

password is the crypted form of the password
admin is a comma separated list of the usernames of the
group administrators (users that can change the group
password or members list)
user-list: comma separated list of the usernames of users
belonging to that group

Managing users and groups

Managing groups

the nerwgrp command

the nerwgrp command

although one user can belong to several groups, the files
he/she creates belong only to one group

when a user logs in, the real and efective gids of the user shell
are taken from /etc/passwd file

all files and directories created get owned by that group

the group ownership of a file can be changed with chgrp to
one of the groups the user belongs to

the command newgrp allows one user to login to another
group, by creating a new shell with real a effective gid to the
ones of that group

if the user is a member of the group he/she wants to log in,
newgrp succeeds
if the group has a password defined, the user can log to that
group provided he/she knows the password

Managing users and groups

Managing groups

the nerwgrp command

the nerwgrp command

to assign a password to a group

a group administrator can do it with the gpasswd command
the root can do it copying and pasting the crypted form of a
password from the /etc/passwd file

BSD systems lack the nerwgrp command as the BSD group
semantics specify that the group on a file is inherited from the
parent directory: files created whithin a directory have the
same group as the directory, regardless the gid of the creating
process (on non BSD systems this behaviour is acomplished
with the setgid bit on the direcory mode).

Managing users and groups

Managing groups

other group utilities

other group utilities

as with the users, there are several graphic tools to perform
group administration tasks. We wont’t refer here to them, just
list some of the standard commands to dealing with groups

groupadd adds a group to the system
groupmod modifies a group definition
groupdel removes a group from the system

pw with the adecuate subcomand can also manage the system’s
groups

Managing users and groups

BSD login classes

BSD login classes

Managing users and groups

BSD login classes

BSD login classes

BSD systems define login classes

login classes are defined in the file /etc/login.conf

A login class is a user profile that imposes certain login
capabilities and resource limitations to the users belonging to
it

The corresponding login class for a user is defined in the
/etc/master.passwd database

At least the default login class must exist. Additional login
classes can be added to /etc/login.conf

Managing users and groups

User autentification with PAM

User autentification with PAM

Introduction to PAM
Configuration of PAM
PAMmodules

Managing users and groups

User autentification with PAM

Introduction to PAM

What is PAM?

PAM stands for Pluggable Authentication Modules

Provides a way of changing the authentication machanisms
without changing the applications

is a generalized API for authentication-related services

allows a system administrator to add new authentication
methods simply by installing new PAM modules
allows a system administrator to modify authentication policies
by editing configuration files

available for Solaris, linux and BSD systems (openBSD uses
BSD Authentication with is a different API)

Managing users and groups

User autentification with PAM

Introduction to PAM

What is PAM?

lets consider the login program

once it reads the password, it compares its crypted form with
the one in the /etc/passwd (or /etc/shadow) file
a change in the way the crypted password is stored or the way
it is crypted would make necessary to recompile the login
program

Solution: PAM

PAM provides a library of functions that an application may
use to request that a user be authenticated
changing anything in the authentication process would mean
to change the PAM library, no the aplications: in fact most of
the changes in the authentication process can be made just
changing PAM configuration

Managing users and groups

User autentification with PAM

Configuration of PAM

Configuration of PAM

There are different implementation of PAM and their
configuration can differ slightly in

the location and format of the configuration file(s)
the location of the PAM library
list of available modules

there is however a thing in common: lack of configuration
means no authentication

Deleting PAM configuration file(s) locks you out of the system

Managing users and groups

User autentification with PAM

Configuration of PAM

PAM facilities

we designate as facilities each of the tasks that PAM can deal
with. These are

authentication management (auth): to determine whether
the user is who he/she claims to be
account management: to handle non-authentication-related
issues of account availability (for example, login at only certain
hours or from certaing machines)
session management: to perform tasks associated with
session set-up and tear-down, such as login accounting,
stablishing resource limits. . .
password management: to change the authentication token
associated with an account

Managing users and groups

User autentification with PAM

Configuration of PAM

PAM modules

A PAM module is a self-contained piece of program code that
implements the primitives in one or more facilities for one
particular mechanism

For a particular facility a module can be considered

sufficient: if this module grants access, access is granted, no
more modules are checked
requisite: if this module denies access, access is denied, no
more modules are checked
required: if this module denies access, access is denied, and
the evalution continues with the following modules
optional: the result of this module will be used only if the
result of no other modules is deterministic
binding: (FreeBSD only) success is sufficient; on failure all
remaining modules are run, but the request will be denied.
[new syntax]: set of pairs of values. Not available in all
implementations

Managing users and groups

User autentification with PAM

Configuration of PAM

PAM modules: new syntax

apart from sufficient, requisite, required and optional, the
control field in a pam configuration file can have the form

[value1=action1 value2=action2 ...valueN=actionN]

where vauleJ can be one of the following: success, open err,
symbol err, service err, system err, buf err, perm denied,
auth err, cred insufficient, authinfo unavail, user unknown,
maxtries, new authtok reqd, acct expired, session err,
cred unavail, cred expired, cred err, no module data, conv err,
authtok err, authtok recover err, authtok lock busy,
authtok disable aging, try again, ignore, abort,
authtok expired, module unknown, bad item, conv again,
incomplete, and default.

default stands for all values non explicitly listed.

Managing users and groups

User autentification with PAM

Configuration of PAM

PAM modules: new syntax (continuation)

where actionJ can be one of the following

ignore when used with a stack of modules, the module’s return status
will not contribute to the return code the application obtains.

bad this action indicates that the return code should be thought of
as indicative of the module failing. If this module is the first in
the stack to fail, its status value will be used for that of the
whole stack.

die equivalent to bad with the side effect of terminating the
module stack and PAM immediately returning to the
application.

Managing users and groups

User autentification with PAM

Configuration of PAM

PAM modules: new syntax (continuation)

ok this tells PAM that the administrator thinks this return code
should contribute directly to the return code of the full stack
of modules. In other words, if the former state of the stack
would lead to a return of PAM SUCCESS, the module’s return
code will override this value. Note, if the former state of the
stack holds some value that is indicative of a modules failure,
this ’ok’ value will not be used to override that value.

done equivalent to ok with the side effect of terminating the module
stack and PAM immediately returning to the application.

reset clear all memory of the state of the module stack and start
again with the next stacked module.

Managing users and groups

User autentification with PAM

Configuration of PAM

PAM modules:new syntax (continuation)

In fact, the control words sufficient, requisite, required and
optional can be expressed in the new syntax, as follows

[required] [success=ok new authtok reqd=ok ignore=ignore
default=bad]
[requisite] [success=ok new authtok reqd=ok ignore=ignore
default=die]
[sufficient] [success=done new authtok reqd=done
default=ignore]
[optional] [success=ok new authtok reqd=ok default=ignore]

Managing users and groups

User autentification with PAM

Configuration of PAM

A little example

Consider the following example related to the su service

auth sufficient pam_rootok.so

auth required pam_wheel.so

auth required pam_unix.so

inferring what the modules do from their name, this
configuration of the su service states that

the access would be granted directly for the root user
other users would have to both belong to the wheel group and
enter the correct password

Managing users and groups

User autentification with PAM

Configuration of PAM

PAM files

the module files usally are located

solaris and BSD systems: /usr/lib/security
linux systems: /lib/security, /lib64/security or
/lib/x86 64-linux-gnu/security

On Solaris the configuration file used to be /etc/pam.conf.
From Solaris 11 on, we have an /etc/pam.d directory

On linux and BSD the configuration files reside in the
/etc/pam.d directory. In absence of /etc/pam.d,
/etc/pam.conf is checked for

Alternatively on BSD systems /usr/local/etc and
/usr/local/etc/pam.d are checked

there is one file per service to be configured
the file is named after the service it configures

Managing users and groups

User autentification with PAM

Configuration of PAM

/etc/pam.conf file format

plain text file.

lines starting with # are comments
each line has the format
service_name facility control_flag module options

Managing users and groups

User autentification with PAM

Configuration of PAM

/etc/pam.conf file format

service name is the name of the service to be configured, for
example sshd, telnetd, su . . .

facility is one of: auth, session, account, password

control flag states how the module affects the facility for
that service, and can be: sufficient, requisite, required,
optional

module is the name of the modules (older versions of PAM
used the complete path to the modules files)

options are the parameters passed to the module in case the
module accepts (or requires) options to be passed to it.

Managing users and groups

User autentification with PAM

Configuration of PAM

/etc/pam.conf example

The previous example would look like this in an
/etc/pam.conf file

su auth sufficient pam_rootok.so

su auth required pam_wheel.so

su auth required pam_unix.so

services not explicitly defined use the modules defined in the
“other“ section

Managing users and groups

User autentification with PAM

Configuration of PAM

/etc/pam.d

should this directory exist, the /etc/pam.conf is not read

there is a plain text file in the directory /etc/pam.d for each
service to be configured

each line in these files

is considered a comment if it starts with #
has the format

facility control_flag module options

the following syntax (no universally uderstood)causes to
include another configuration file in the present service (useful
to have common policies for different services)

@include other_file_in_the_pam.d_directory

Managing users and groups

User autentification with PAM

PAM modules

PAM modules

the list of PAM modules dependes on the PAM
implementation

each pair OS/PAM implementation may have a different set of
modules

info on the modules can be obtained with the man page

there are, however, modules that are common to almost every
implementation

some modules with the same name behave differently on
different implementations

Managing users and groups

User autentification with PAM

PAM modules

some common PAM modules

pam deny locks out PAM modules

pam getenv returns the value for a PAM environment name

pam rhosts pam rhosts auth the rhosts PAM module

pam unix pam unix auth PAM authentication module for
UNIX

pam winbind PAM module for winbind

Managing users and groups

User autentification with PAM

PAM modules

basic linux PAM modules

pam permit always grants access

pam deny locks out PAM modules.

pam access delivers log-daemon-style login access control
using login/domain names depending on pre-defined rules in
/etc/security/access.conf.

pam cracklib checks the passwords against the password
rules.

pam env sets/unsets environment variables from
/etc/security/pam env conf.

pam debug debugs PAM.

Managing users and groups

User autentification with PAM

PAM modules

basic linux PAM modules

pam echo prints messages.

pam exec executes an external command.

pam ftp is the module for anonymous access.

pam localuser requires the user to be listed in
/etc/passwd.

pam unix provides traditional password authentication from
/etc/passwd.

Managing users and groups

User autentification with PAM

PAM modules

list of linux PAM modules I

pam_access (8) - PAM module for logdaemon style login access control

pam_ck_connector (8) - Register session with ConsoleKit

pam_debug (8) - PAM module to debug the PAM stack

pam_deny (8) - The locking-out PAM module

pam_echo (8) - PAM module for printing text messages

pam_env (8) - PAM module to set/unset environment variables

pam_exec (8) - PAM module which calls an external command

pam_filter (8) - PAM filter module

pam_ftp (8) - PAM module for anonymous access module

pam_getenv (8) - get environment variables from /etc/environment

pam_group (8) - PAM module for group access

pam_issue (8) - PAM module to add issue file to user prompt

pam_keyinit (8) - Kernel session keyring initialiser module

ºQ ºQ234Y13 ºpam_lastlog (8) - PAM module to display date of last login

pam_limits (8) - PAM module to limit resources

pam_listfile (8) - deny or allow services based on an arbitrary file

pam_localuser (8) - require users to be listed in /etc/passwd

pam_loginuid (8) - Record user’s login uid to the process attribute

pam_mail (8) - Inform about available mail

Managing users and groups

User autentification with PAM

PAM modules

list of linux PAM modules II

pam_mkhomedir (8) - PAM module to create users home directory

pam_motd (8) - Display the motd file

pam_namespace (8) - PAM module for configuring namespace for a session

pam_nologin (8) - Prevent non-root users from login

pam_permit (8) - The promiscuous module

pam_pwhistory (8) - PAM module to remember last passwords

pam_rhosts (8) - The rhosts PAM module

pam_rootok (8) - Gain only root access

pam_securetty (8) - Limit root login to special devices

pam_selinux (8) - PAM module to set the default security context

pam_sepermit (8) - PAM module to allow/deny login depending on SELinux en...

pam_shells (8) - PAM module to check for valid login shell

pam_tally (8) - The login counter (tallying) module

pam_time (8) - PAM module for time control access

pam_timestamp (8) - Authenticate using cached successful authentication at...

pam_umask (8) - PAM module to set the file mode creation mask

pam_unix (8) - Module for traditional password authentication

pam_userdb (8) - PAM module to authenticate against a db database

pam_warn (8) - PAM module which logs all PAM items if called

pam_wheel (8) - Only permit root access to members of group wheel

Managing users and groups

User autentification with PAM

PAM modules

list of linux PAM modules III

pam_winbind (8) - PAM module for Winbind

pam_xauth (8) - PAM module to forward xauth keys between users

Managing users and groups

User autentification with PAM

PAM modules

list of Solaris PAM modules I

pam_authtok_check (5) - authentication and password management module

pam_authtok_get pam_authtok_get (5) - authentication and password management module

pam_authtok_store (5) - password management module

pam_deny (5) - PAM authentication, account, session and password management PAM module to deny operations

pam_allow (5) - PAM module to allow operations

pam_dhkeys (5) - authentication Diffie-Hellman keys management module

pam_dial_auth (5) - authentication management PAM module for dialups

pam_krb5 (5) - authentication, account, session, and password management PAM modules for Kerberos V5

pam_krb5_migrate (5) - authentication PAM module for the KerberosV5 auto-migration of users feature

pam_ldap (5) - authentication and account management PAM module for LDAP

pam_list (5) - PAM account management module for UNIX

pam_passwd_auth pam_passwd_auth (5) - authentication module for password

pam_projects (5) - account management PAM module for projects

pam_rhosts_auth pam_rhosts_auth (5) - authentication management PAM module using ruserok()

pam_roles (5) - Solaris Roles account management module

pam_smartcard (5) - PAM authentication module for Smart Card

pam_tsol_account (5) - PAM account management module for Trusted Extensions

pam_unix_account (5) - PAM account management module for UNIX

Managing users and groups

User autentification with PAM

PAM modules

list of Solaris PAM modules II

pam_unix_auth (5) - PAM authentication module for UNIX

pam_unix_cred (5) - PAM user credential authentication module for UNIX

pam_unix_session (5) - session management PAM module for UNIX

pam_winbind (1m) - PAM module for Winbind

Managing users and groups

User autentification with PAM

PAM modules

list of FreeBSD PAM modules I

pam_chroot(8) - Chroot PAM module

pam_deny(8) - Deny PAM module

pam_echo(8) - Echo PAM module

pam_exec(8) - Exec PAM module

pam_ftpusers(8) - ftpusers PAM module

pam_group(8) - Group PAM module

pam_guest(8) - Guest PAM module

pam_krb5(8) - Kerberos 5 PAM module

pam_ksu(8) - Kerberos 5 SU PAM module

pam_lastlog(8) - login accounting PAM module

pam_login_access(8) - login.access PAM module

pam_nologin(8) - NoLogin PAM module

pam_opie(8) - OPIE PAM module

pam_opieaccess(8) - OPIEAccess PAM module

pam_passwdqc(8) - Password quality-control PAM module

pam_permit(8) - Promiscuous PAM module

pam_radius(8) - RADIUS authentication PAM module

pam_rhosts(8) - Rhosts PAM module

pam_rootok(8) - RootOK PAM module

Managing users and groups

User autentification with PAM

PAM modules

list of FreeBSD PAM modules II

pam_securetty(8) - SecureTTY PAM module

pam_self(8) - Self PAM module

pam_ssh(8) - authentication and session management with SSH private keys

pam_tacplus(8) - TACACS+ authentication PAM module

pam_unix(8) - UNIX PAM module

Managing users and groups

User autentification with PAM

PAM modules

list of NetBSD PAM modules I

pam_radius (8) RADIUS PAM module

pam_exec (8) Exec PAM module

pam_echo (8) Echo PAM module

pam_guest (8) Guest PAM module

pam_permit (8) Promiscuous PAM module

pam_ftpusers (8) ftpusers PAM module

pam_rootok (8) RootOK PAM module

pam_rhosts (8) rhosts PAM module

pam_self (8) Self PAM module

pam_securetty (8) SecureTTY PAM module

pam_deny (8) Deny PAM module

pam_nologin (8) NoLogin PAM module

pam_group (8) Group PAM module

pam_chroot (8) Chroot PAM module

pam_unix (8) UNIX PAM module

pam_afslog (8) AFS credentials PAM module

pam_skey (8) S/Key PAM module

pam_lastlog (8) login accounting PAM module

pam_krb5 (8) Kerberos 5 PAM module

Managing users and groups

User autentification with PAM

PAM modules

list of NetBSD PAM modules II

pam_ksu (8) Kerberos 5 SU PAM module

pam_login_access (8) login.access PAM module

Managing users and groups

Solaris’ roles

Solaris’ roles

Introduction
RBAC concepts
Role implementation
Examples

Managing users and groups

Solaris’ roles

Introduction

Conventional UNIX systems

In traditional UNIX systems, the privileged user root has all
the rights

Access to all files
Execute all system calls
Signal all procesess
. . .

A process running as root has complete power on the system

A user that gets access to the system as root has complete
power on the system

Managing users and groups

Solaris’ roles

Introduction

Least privileges principle

”least privileges“ is a concept in security. Give someone only
the privileges needed to only do the task they are assigned

For example: someone who has to create a user account does
not need the privileges necessary to shut the system down, or
to change the network configuration or . . .

Having to be root to create a user account does not meet the
principle of least privileges

The Solaris O.S. addresses this problem with the
implementation of roles

Role Based Access Control is designed around the principle of
least privileges

Managing users and groups

Solaris’ roles

RBAC concepts

Role concepts

Solaris Role Based Access Control defines the following
concepts: privileges, authorizations, rights profiles and roles

privilege A discrete right that can be granted to a command, a user or a
role

authorization A permission that enables a user or role to perform a class of
actions that require additional rights

rights profile A collection of security attributes that can be assigned to a
role or to a user. A rights profile can include authorizations,
directly assigned privileges, commands with security attributes,
and other rights profiles. Profiles that are within another
profile are called supplementary rights profiles

role A special identity for running privileged applications. The
special identity can be assumed by assigned users only

Managing users and groups

Solaris’ roles

RBAC concepts

Example of RBAC Element Relationships

Figure: http://docs.oracle.com/cd/E23824 01/html/821-1456/figures/rbac-ex.png

Managing users and groups

Solaris’ roles

RBAC concepts

Role concepts

Solaris has some (few) predefined roles. We assign roles to
users so they can assume the role temporarily to perform
certain tasks

We can also create new roles from the rights profiles
predefined in the system (these roles will be typically named
the same as the rights profiles they derive from) and assign
them to users

We can create new rights profiles from existing rights profiles
or privileges, then create new roles from them, which will be
assigned to users

Managing users and groups

Solaris’ roles

Role implementation

Role implementation

Roles are implemented like users (although they use pf*sh
shells and they cannot login in the system directly)

Users can asume a role via de su (substitute user) command

The command profiles creates, modifies or examines right
profiles

The commands roleadd, roledel, and rolemod add,
delete and modify roles in the system

Managing users and groups

Solaris’ roles

Role implementation

Role implementation

The command roles lists the roles assigned to users

Users can be assigned roles using the usermod command

Implementation resides in the following files in the
/etc/security directory
auth attr authorization description database
prof attr profile description database
exec attr execition profiles database

Managing users and groups

Solaris’ roles

Role implementation

Roles and root user

In Solaris 11, if a user is created during installation root

becomes a role

root being a role implies that

root cannot login directly
For any user knowing the root password to become root,
he/she has to have the root role asigned to him/her (via the
roleadd command)

The user created during the O.S. installation has the root
role assigned to him/her

Managing users and groups

Solaris’ roles

Examples

Example 1:Creating a role from existing rights profiles

We want users manuel and jose to be able to manage users
and software packages in our system

The command profiles -a lists all the profiles and we find
that there is a predefined rights profile ’User Management’ for
managing users and a profile ’Software Installation’ for
managing software packages
We create the role upadmin with the pfbash shell and those
rights profiles
#roleadd -c "Administrador usuarios y software" -s /usr/bin/pfbash -m \

-K profiles="Software Installation,User Management" upadmin

Managing users and groups

Solaris’ roles

Examples

Example 1:Creating a role from existing rights profiles

We define a password for the role

#passwd upadmin

We communicate the password to users manuel and jose and
assign the role to them

#usermod -R +upadmin manuel

#usermod -R +upadmin jose

users manuel and jose can perform user and software
management tasks by assuming de upadmin role

manuel@maquina:~$ su upadmin

Managing users and groups

Solaris’ roles

Examples

Example 2:Creating a role from non existing rights profiles

Lets assume whe want an unplivileged user (antonio) to be
able to shutdown the system

First we create the profile to shutdown the system. We add
the following line to the /etc/security/prof attr file

Shutdown:::Perfil para apagar:help=shutdown.html

Note that we didn’t add any specific authorisation in the profile

Next we add the capability to execute the shutdown command
as root to this profile. We do this by adding the following line
to the /etc/security/exec attr

Shutdown:solaris:cmd:::/usr/sbin/shutdown:uid=0

Managing users and groups

Solaris’ roles

Examples

Example 2:Creating a role from non existing rights profiles

We now create de role apagar

#roleadd -c "Apagador del sistema" -m apagar

Assign the role the profile Shutdown and the password to the
role apagar

rolemod -P Shutdown apagar

passwd apagar

Finaly we assign the role apagar to user antonio

usermod -R +apagar antonio

Managing users and groups

sudo and sudoers

sudo and sudoers

Managing users and groups

sudo and sudoers

sudo and sudoers

one problem with the su command ist that it gives you access
to the root account in an all or nothing fashion

if you become root, you have ALL the privileges of the root
account.

maybe we’d like to just allow some users to perform certain
administration task. The sudo command allows a user, after
authenticating as his/herself, execute some command with
administrator privileges, provided the sudores file allows him
to. Example

user@somemachine $ sudo shutdown -h now

Managing users and groups

sudo and sudoers

sudo

sudo (and the sudores file) are avilable in linux distros and
the solaris 11 O.S.

the general syntax of the sudo command is

sudo targetuser command

so, provided that the user issuing the command is authorized
to run command as targetuser in the sudoers file

user will be prompted for HIS/HER password (not targetuser’s)
command will be executed with targetuser’s credentials

Managing users and groups

sudo and sudoers

sudoers file

usually located at /etc/sudoers. Configuration can be
appended at /etc/sudoers.d
should not be edited directly but with the command visudo

visudo checks the syntax is correct before saving the file. In
case there’s an error in the syntax the sudo command will be
disabled, so visudo prevents us from accidentally disabling sudo

this file is formed by a series of lines in the form

user-spec host-spec = (runasuser-spec) command-spec

this sample line allows user antonio to run the command
shutdown as root in host abyecto

antonio abyecto=(root) shutdown

as the sudoers file is checked locally, the host-spec only makes
sense when we have a common sudoers file for several
machines

Managing users and groups

sudo and sudoers

sudoers file

the user-spec can be an username, an #userid, a
%groupname or a %#groupid, an alias or a list of those
elements separated by comma (,)

the host-spec can be a hostname, a qualified hostname, a
host address, a network address, an alias or a list of those
elements separated by comma (,)

the runasuser-spec can be an username, an #userid, a
%groupname or a %#groupid, an alias or a list of those
elements separated by comma (,)

the command-spec can be a command name, an alias or a list
of those elements separated by comma (,)

any of those *-spec can be ’ALL’, specifying any user, host,
or command

Managing users and groups

sudo and sudoers

sudoers file

aliases can be defined with
TypeOfAlias ALIASNAME = list of members in that
alias
where TypeOfAlias can be User Alias, Runas Alias, Host Alias
and Cmnd Alias

The following example shows how to allow users pepe, pepa
and user2 to execute any of the commands that can power
down the machine rutercillo

User_Alias DOWNDOERS = pepe, pepa, user2

Cmnd_Alias POWERDOWN = /sbin/shutdown, /sbin/halt, /sbin/reboot, /sbin/restart

DOWNDOERS rutercillo=(root) POWERDOWN

	Users and groups
	Managing user acounts
	User database files
	Creating a user
	Changing shells

	Administrative tools for managing users
	Tools for managing users
	useradd
	Other utilities

	Managing groups
	/etc/group and /etc/shadow file format
	the nerwgrp command
	other group utilities

	BSD login classes
	User autentification with PAM
	Introduction to PAM
	Configuration of PAM
	PAM modules

	Solaris' roles
	Introduction
	RBAC concepts
	Role implementation
	Examples

	sudo and sudoers

