
Booting and Installing the Operating System. Boot Loaders

Booting and Installing the Operating System.
Boot Loaders

Grado en Informática 2023/2024
Departamento de Computación

Facultad de Informática
Universidad de Coruña

Antonio Yáñez Izquierdo

Booting and Installing the Operating System. Boot Loaders

Contents I

1 Installing an O.S.
O.S. Installation
Installation media
Preparing the media

2 The boot process
Booting
Booting steps
Booting with BIOS type firmware
Booting with UEFI type firmware

3 Basic disk partitioning
disks and partitions
MBR partition table
BSD disklabel
GPT: GUID Partition Table

Booting and Installing the Operating System. Boot Loaders

Contents II

sharing disks among O.S.s

4 Boot loaders
boot loader installation
boot loader execution

5 the Grub boot loader
Grub legacy
GRUB 2: Grand Unified Boot Loader

6 other boot loaders
lilo and elilo bootloaders
syslinux
rEFInd
BSD bootloaders
using removable media

Booting and Installing the Operating System. Boot Loaders

Installing an O.S.

Installing an O.S.

Booting and Installing the Operating System. Boot Loaders

Installing an O.S.

O.S. Installation

Installing an O.S.
→O.S. Installation

Booting and Installing the Operating System. Boot Loaders

Installing an O.S.

O.S. Installation

Installing an O.S.

the most common use of O.S.s is having them “installed”
onto computers, and being run from the computer’s storage
devices

there are also some “live” O.S.s that don’t require installation
but usually have limitations concerning what users can do and
what software can be added

installing is the process by which we put the O.S. files in one
(or more) of the storage units of the system, thus allowing the
system to execute the OS directly

Booting and Installing the Operating System. Boot Loaders

Installing an O.S.

O.S. Installation

Installing an O.S.

the process of installing an O.S. usually includes the following
steps

a booting the new O.S. system from some installation media
b writing the O.S. files to some storage media
c doing some configuration to allow the O.S. to be booted from
the storage media: Installing the Boot Loader

d rebooting the system

Booting and Installing the Operating System. Boot Loaders

Installing an O.S.

O.S. Installation

Installing an O.S.

a to boot the system from some installation media we,
obviously, need the installation media

we can get the media already prepared
we have to prepare them ourselves

b writing the O.S. files to some storage media usually requires
partitioning the drive

c allowing the O.S. to be booted from the storage media
requires installing a boot loader

Booting and Installing the Operating System. Boot Loaders

Installing an O.S.

Installation media

Installing an O.S.
→Installation media

Booting and Installing the Operating System. Boot Loaders

Installing an O.S.

Installation media

Installation media

the installation media we use depends on the devices the
system is capable of booting from

nowadays floppy disks and tapes are seldom used, apart from
disks, the most common devices used for booting are

CD/DVD devices
usb devices
Network Interface Cards

Booting and Installing the Operating System. Boot Loaders

Installing an O.S.

Installation media

Booting from the network

modern systems are capable of booting from the network
(usually via the Netboot or PXE protocol)

booting from the network requires the existence and
configuration of a boot server, that provides both the network
configuration and the data necessary to boot

one of the most usual ways of installing O.S.s is what it’s
called a network installation, which consists of

booting from a CD/DVD or usb device
doing some basic network configuration
retrieve the O.S. files from the network, usually through the
http or ftp protocols

Booting and Installing the Operating System. Boot Loaders

Installing an O.S.

Preparing the media

Installing an O.S.
→Preparing the media

Booting and Installing the Operating System. Boot Loaders

Installing an O.S.

Preparing the media

Preparing the media

commercial operating systems usally provide the installation
media

non commercial operating systmes usually provide installation
images to be downloaded from the network

full sized images: this images may contain all the files
necessary to perform the complete installation
smaller images to perform a network installation

Booting and Installing the Operating System. Boot Loaders

Installing an O.S.

Preparing the media

Installation images

the most common images nowadays are

ISO images (to be burnt directly on CD/DVD)
special images to be copied to an usb stick

if we are using some virtualization software we can install
directly from the ISO image

some virtualization software allow booting from usb. Should
that not be the case (as in Virtualbox current release), we can
create a VirtualHardDisk that is in fact one of the system real
usb drives. For example, we can create virtual hard disk in
Virtualbox, named DisguisedUSB.vmdk which is in fact the
/dev/sdc drive in the host machine, withe the line

VBoxManage internalcommands createrawvmdk -filename "DisgusedUSB.vmdk" -rawdisk /dev/sdc

Booting and Installing the Operating System. Boot Loaders

Installing an O.S.

Preparing the media

ISO images

ISO images are to be burn directly to the CD/DVD media

they contain an image of the filesystem, they are not a file
to be copied onto a CD/DVD file system
most CD/DVD burning software has an option burn image or
something similar

booting CD/DVD media can be created with any burning
software (cdrecord, k3b, nero ...)

the images contain the booting code in them (the boot loader
program)

Booting and Installing the Operating System. Boot Loaders

Installing an O.S.

Preparing the media

usb images

becoming increasinly common, usb images are supplied

in order to provide the usb with the adecuate boot code: usb
images must be copied directly to the usb device

using the dd command
using the cat or cp command directly to the device file

sometimes we are given a boot block to be copied to the usb
device using dd and a file (or set of files) to be copied to the
usb file system

Booting and Installing the Operating System. Boot Loaders

Installing an O.S.

Preparing the media

usb images from iso files

in the case we are given only the iso images but we need to
boot from an usb device

a some iso files con be copied directly to the usb device
b install a boot loader onto the usb and copy the iso image to it
c use one of the utilities that does b) in an automated way, for
example unetbootin

Booting and Installing the Operating System. Boot Loaders

The boot process

The boot process

Booting and Installing the Operating System. Boot Loaders

The boot process

Booting

The boot process
→Booting

Booting and Installing the Operating System. Boot Loaders

The boot process

Booting

Booting

booting is the process by which the O.S. is loaded and the
system is ready to be used by users

as the O.S. provides the services necessary for the system to
be usable

those services would be necessary to load the O.S.
the O.S. must be loaded without those services in what we call
the bootstrapping process
usually a loader of the O.S. is loaded and executed and it is
this loader that loads the O.S.

Booting and Installing the Operating System. Boot Loaders

The boot process

Booting

automatic booting

the booting process is very hardware dependent

we can distinguish between two ways of booting

automatic
manual

automatic booting is the way the system boots most of the
times.

it does not requiere human intervention
the system boots by it’s own and a multiuser environment is
available after booting

Booting and Installing the Operating System. Boot Loaders

The boot process

Booting

manual booting

in manual booting the system boots to single user mode: only
the root can login

single user mode is also called maintenance mode
usually the system boots to single user mode when it
encounters some problem during boot, although it can also be
told to boot this way
System V distinguish several multi-user modes (called
runlevels), BSD only has single user mode and one multi-user
mode. systemd linux systems also distinguish several
multi-user modes (called targets)

Booting and Installing the Operating System. Boot Loaders

The boot process

Booting steps

The boot process
→Booting steps

Booting and Installing the Operating System. Boot Loaders

The boot process

Booting steps

booting steps

although it is very dependent on the hardware, the booting
process can be thought of consisting of the following steps

1 loading and executing the motherboard firmware boot program
2 loading and executing the boot loader (how this is done

depends on the type of motherboard firmware: BIOS, UEFI,
openboot . . .). It can consist of several stages

3 loading and executing the unix kernel
4 running the initialization scripts and starting the system

services

Booting and Installing the Operating System. Boot Loaders

The boot process

Booting steps

first booting step: motherboard firmware

the motherboard firmware contains some code to start the
booting of the machine

how this code works depends on the type of firmware. It is a
very simple code and it usually involves one of these two
alternatives

a) the first stage of the boot loader is at a predefined block
(usually the first) of some device

b) the first stage of the boot loader resides in some specific file
located at some specific directory

Booting and Installing the Operating System. Boot Loaders

The boot process

Booting steps

first booting step: motherboard firmware

Moderboard firmware con be configured to decide which
device or which file use to boot from (depending on the type
of firmware)

the Moderboard firmware is dependent on the architecture
(sparc, amd64, ia32, arm . . .) and thus the booting code in
it. So bootloaders behaviour and installation procedures vary
greatly from one architecture to the next

For the intel/amd x86 platform the two more widespread
moderboard firmware standards are the BIOS standard (which
boots using alternative a) and the UEFI standard (which
boots using alternative b)

Booting and Installing the Operating System. Boot Loaders

The boot process

Booting steps

second booting step: the boot loader

the boot loader is (should be) a simple program which only
has to load the kernel

its configuration file has only two essential items to define

which kernel to load (and where to find it). bootloaders
capable of loading different O.S.s must also be told what os
the kernel is
which device to use as root file system when that kernel is
loaded, so it can pass that information to the kernel
in the case of some modular kernels, it might be also needed
some form of access to the kernel modules. (For example in
linux its usual to have a memory disk image containing
modules, called initrd or initramdisk)

Booting and Installing the Operating System. Boot Loaders

The boot process

Booting steps

second booting step: the boot loader

UNFORTUNATELY most of the present bootloaders include
some non essential options such as splash images, menus . . .
which makes them bigger, slower and more tedious to install
and configure.

some boot loaders understand filesystems, so the kernel
location can be specified directly in the boot loader
configuration file

some boot loaders DO NOT UNDERSTAND filesystems, so
some additional steps need to be taken in adition to specifying
the kernel in the boot loader configuration file

the boot loader can be unistalled, reinstalled ot have its
configuration changed from the O.S.

Booting and Installing the Operating System. Boot Loaders

The boot process

Booting steps

third booting step: loading and executing the unix kernel

the kernel is loaded in memory and trasfered control

in linux the kernel resides in the file /boot/vmlinuz....
in solaris 10 the kernel resides in the file
/platform/i86pc/multiboot

in solaris 11 the kernel resides in the file
/platform/i86pc/kernel/amd64/unix

in openBSD the kernel resides in the file /bsd
in FreeBSD the kernel resides in the file
/boot/kernel/kernel

in NetBSD the kernel resides in the file /netbsd

Booting and Installing the Operating System. Boot Loaders

The boot process

Booting steps

third booting step: loading and executing the unix kernel

it creates its data structures, probes for devices and performs
initialization routines

creates some special system processes (sched, paged....) and
init (systemd in some linux distributions), the first “user
process“ in the system which will initiate the various services

Booting and Installing the Operating System. Boot Loaders

The boot process

Booting steps

fourth booting step: initialization scripts. starting the
system services

init reads its configuration file (/etc/inittab) where it gets
the runlevel to boot to

systemd has a default target to boot to, that can be changed
with systemctl set-default.

if there is some kind of error or the system is configured to
boot into single user mode, a root shell is created with only
the root filesystem mounted

otherwise the scripts initiating the system services are started
(/etc/rc* on BSD systems or the scripts in directories
/etc/rc?.d on System V systems)

Booting and Installing the Operating System. Boot Loaders

The boot process

Booting with BIOS type firmware

The boot process
→Booting with BIOS type firmware

Booting and Installing the Operating System. Boot Loaders

The boot process

Booting with BIOS type firmware

booting with BIOS type firmware

by construction, when the system is powered on (or when a
reset is done) the motherboard executes the code at certain
memory addresses, there resides the firmware

this code contains some initialization routines and sometimes
access to a system configuration menu

a device is defined as the first boot device (CD/DVD, disk,
tape, usb, floppy . . .). An attempt is made to boot from that
device, if unsuccessful, the defined as second boot device is
tried and so on

Booting and Installing the Operating System. Boot Loaders

The boot process

Booting with BIOS type firmware

booting with BIOS type firmware

this firmware DOES NOT UNDERSTAND filesystems so:
for this type of firmware booting from a device means loading
the first block and executing the code in it

there’s no interface to access this firmware from the O.S.

changes like which device to boot from can only be made from
the firmware configuration program (before booting any O.S.)

Booting and Installing the Operating System. Boot Loaders

The boot process

Booting with BIOS type firmware

booting with BIOS type firmware

in this type of firmware booting from a device means
LOADING THE CODE AT THE FIRST BLOCK OF
THAT DEVICE AND EXECUTING IT

when the device is a disk the first block of the disk contains
some boot code and the partition table.

the code at this disk block (usually called MBR, Master Boot
Record) is loaded and executed

Booting and Installing the Operating System. Boot Loaders

The boot process

Booting with BIOS type firmware

booting with BIOS type firmware

the usual code to have in this first block of disk is to have
very simple program, that reads the partition table, looks
which partition has the active flag on and then loads that
partition’s first block and executes it: the boot loader code
(at least its first stage) can be copied to that disk block

there’s also the possibility that the boot loader code (at least
its first stage) is copied to this block (MBR). Should that be
the case, that boot loader gets loaded regardles of what the
active partition is. We say that the boot loader has been
installed onto the MBR

Booting and Installing the Operating System. Boot Loaders

The boot process

Booting with BIOS type firmware

booting with BIOS type firmware

the partitions scheme for this type of firmware is called MBR
partitions

to install a boot loader in one of this system we can

install it at the Master Boot Record (first block on disk): that
bootloader will execute upon switching the machine on
regardeless of the active partition
install it at the first block of the partition: that bootloader will
execute when the partition is marked active and there’s no
other bootloader at the MBR
for media without partitions we install it at the first block of
the media

Booting and Installing the Operating System. Boot Loaders

The boot process

Booting with UEFI type firmware

The boot process
→Booting with UEFI type firmware

Booting and Installing the Operating System. Boot Loaders

The boot process

Booting with UEFI type firmware

booting with UEFI type firmware

by construction, when the system is powered on (or when a
reset is done) the motherboard executes the code at certain
memory addresses, there resides the firmware

this code contains some initialization routines and sometimes
access to a system configuration menu

there’s an interface to access the firmware booting
configuration from the O.S. Variables of the firmware (efi
variables) can be read and changed from the O.S.

Booting and Installing the Operating System. Boot Loaders

The boot process

Booting with UEFI type firmware

booting with UEFI type firmware

this firmware UNDERSTANDS THE FAT FILESYSTEM
so a boot loader is just a program in a FAT filesystem

this firmware is capable of running executables in its own
format (.efi). This is used to run the bootloaders

the boot loader is actually a file in a FAT filesystem that gets
executed by the firmware

Booting and Installing the Operating System. Boot Loaders

The boot process

Booting with UEFI type firmware

booting with UEFI type firmware

disks must be partitioned using a GPT partition table

there must exist, at least, an EFI System Partition (ESP)

this partition must be formatted using either the FAT16 or
FAT32 filesystems
this partition holds, among other things, the EFI drivers and
the EFI bootloaders
Operating Systems typically place their bootloaders in a
subdirectory of the EFI directory in the ESP
booting different operating systems can be done at the
firmware level

unless otherwise specified, the firmware will run the
program \EFI\BOOT\BOOTX64.EFI

Booting and Installing the Operating System. Boot Loaders

The boot process

Booting with UEFI type firmware

booting with UEFI type firmware

installing a boot loader in a machine with UEFI firmware
means

1) copying the executable file (.efi format) to the EFI System
Partition

2) if we want that boot loader to be run at boot time we must
tell the firmware to: we can do so in the firmware setup
program or from the O.S.

should this executables be required to be signed, the booting
procedure would be known as secure boot

the EFI variables define which of these .efi files must be
loaded when booting. If nothing specific gets defined, the file
\EFI\BOOT\BOOTX64.EFI on the (first) ESP will get loaded
upon booting

Booting and Installing the Operating System. Boot Loaders

Basic disk partitioning

Basic disk partitioning

Booting and Installing the Operating System. Boot Loaders

Basic disk partitioning

disks and partitions

Basic disk partitioning
→disks and partitions

Booting and Installing the Operating System. Boot Loaders

Basic disk partitioning

disks and partitions

disks

disks still are the method of choice to run the Operating
System from

nowadays all disks use Logical Block Addressing instead the
old CHS interface although they still report a (fake) CHS
geometry

the disks also report a sector size of 512 bytes although
internally a 4096 byte sector might be used

Booting and Installing the Operating System. Boot Loaders

Basic disk partitioning

disks and partitions

disks

disks are used to create filesystems on them

several filesystems can exist on a disk device in what we
usually call partitions

several partitions can be combined into one filesystem via
Logical Volume Management software

Booting and Installing the Operating System. Boot Loaders

Basic disk partitioning

disks and partitions

partitions

a disk is usually divided into several units called partitions

BSD systems sometimes refer to partitions as slices

filesystems are created in partitions, usually one filesystem in
each partition although several partitions can be combined
into one filesystem via Logical Volume Management Software

we even can install different O.S.s in different partitions

Booting and Installing the Operating System. Boot Loaders

Basic disk partitioning

disks and partitions

partition tables

each disk has a table, usually located at the begining of the
disk (can be one or more blocks), that defines the partitions
on that disk

there are many standard formats to that table

MBR partitions
BSD disklabel
Solaris VTOC label
GUID Partition Table (GPT)
others. . . (Amiga Rigid Disk Block, RDB), (Apple Partition
Map, APM)

Booting and Installing the Operating System. Boot Loaders

Basic disk partitioning

MBR partition table

Basic disk partitioning
→MBR partition table

Booting and Installing the Operating System. Boot Loaders

Basic disk partitioning

MBR partition table

MBR partitions

the partition is located in the first sector of the disk

widespread in PC architecture

used mainly in Windows a linux systems

up to 4 partitions, called primary partitions, can be defined in
a disk

Booting and Installing the Operating System. Boot Loaders

Basic disk partitioning

MBR partition table

MBR table format

offset size Description

0x000 446 reserved

0x1be 16 partition entry 1

0x1ce 16 partition entry 2

0x1de 16 partition entry 3

0x1ee 16 partition entry 4

0x1fe 2 0xaa55 (little endian)

Booting and Installing the Operating System. Boot Loaders

Basic disk partitioning

MBR partition table

MBR partitions

one of the partitions can be defined as extended partition

this partition can be subdivided into what is called logical
partitions

the first sector of that partition, called EBR (Extended Boot
Record), has the same format as the MBR table except for

only the first two entries are used
if more partitions are needed, one of these two is defined as
extended partition, thus allowing for and ”infinite” number of
partitions

Booting and Installing the Operating System. Boot Loaders

Basic disk partitioning

MBR partition table

EBR format

offset size Description

0x000 446 reserved

0x1be 16 partition entry 1

0x1ce 16 partition entry 2

0x1de 16 zeroes

0x1ee 16 zeroes

0x1fe 2 0xaa55 (little endian)

Booting and Installing the Operating System. Boot Loaders

Basic disk partitioning

MBR partition table

format of a partion entry

offset size Description

0x00 1 byte 80h for active partition, otherwise 00h

0x01 1 head of partition start

0x02 2 cylinder/sector (10/6bits) of partition start

0x04 1 code of partition type

0x05 3 CHS of partition end

0x08 4 LBA partition start

0x0C 4 partition size

Booting and Installing the Operating System. Boot Loaders

Basic disk partitioning

MBR partition table

creating MBR partitions

partitions on disks using the MBR partition scheme are limited
to 2 Terabytes

MBR partitions can be created, and manipulated with

fdisk utility on BSD systems
fdisk or cfdisk utility on linux systems
fdisk or format on solaris/intel systems

Booting and Installing the Operating System. Boot Loaders

Basic disk partitioning

BSD disklabel

Basic disk partitioning
→BSD disklabel

Booting and Installing the Operating System. Boot Loaders

Basic disk partitioning

BSD disklabel

BSD disklabel

BSD systems and derivatives use disklabels to partition the
disk

a disklabel can contain up to 8 partitions, designed with
letters (a through h)

openBSD disklabel can hold up to 16 partitions, designed with
letters (a through p)

partition a is the root filesystem (also contains the boot code)

partition b is the swap space

partition c (or d) represents the whole disk

Booting and Installing the Operating System. Boot Loaders

Basic disk partitioning

BSD disklabel

BSD disklabel

when installing a BSD O.S. on a system which has MBR
partitions

One of the MBR partitions is labeled with code a6
(openBSD), a5 (FreeBSD), a9 (netBSD) . . .
a disklabel is created in the first sector of that MBR partition
the MBR partitions are often refered as slices
partition c (or d, depending on the BSD flavour) of the
disklabel represents the whole disk, not just the *BSD MBR
partition

Booting and Installing the Operating System. Boot Loaders

Basic disk partitioning

BSD disklabel

BSD disklabel

Some systems require for a partition to be mounted has to be
defined in the disklabel, even if it is a MBR partition

disklabel partitions are restricted to 2 Terabytes (in Solaris to
1 Terabyte)

openBSD disklabels do not have the 2 Tb limitation

Solaris system uses a variation of the BSD disklabel called
VTOC (Volume Table Of Contents).

Booting and Installing the Operating System. Boot Loaders

Basic disk partitioning

BSD disklabel

BSD disklabel

to access the disklabel, the following commands can be used

disklabel on openBSD and netBSD
bsdlabel on freeBSD
format on Solaris

Booting and Installing the Operating System. Boot Loaders

Basic disk partitioning

GPT: GUID Partition Table

Basic disk partitioning
→GPT: GUID Partition Table

Booting and Installing the Operating System. Boot Loaders

Basic disk partitioning

GPT: GUID Partition Table

GUID Partition Table

defined as part of the EFI (Extensible Firmware Interface)
standard

sometimes refered to as the EFI label, or EFI partition table

the MBR uses 32 bits for Logical Block Adressing, hence its
limitations in size

GPT uses 64 bits for LBA, this limits the maximun partition
size to 264 − 1 sectors

most modern O.S. support GPT although some still have
some restrictions to boot from such partitions

Booting and Installing the Operating System. Boot Loaders

Basic disk partitioning

GPT: GUID Partition Table

GUID Partition Table

two copies of the GPT exist, the primary GPT at the
beginning of the disk, and the secondary GPT at the end

GBT uses logical block addessing

the first sector of the disk has a MBR partition table called
protective MBR that allows the disk to be booted from a
system with traditional BIOS

following sector is the header of the primary GPT

the GPT partition table consists of 128 bytes entries. The
minimun size of the table is 16Kbytes

Booting and Installing the Operating System. Boot Loaders

Basic disk partitioning

GPT: GUID Partition Table

format of a GPT partion entry

offset size Description

0x00 16 bytes GUID partition type

0x10 16 bytes Partition GUID

0x20 8 bytes Partition start LBA

0x28 8 bytes Partition end LBA

0x30 8 bytes Attribute flags

0x38 72 bytes Partition name

Booting and Installing the Operating System. Boot Loaders

Basic disk partitioning

GPT: GUID Partition Table

Comparision of MBR and GPT

Figure: https://i-technet.sec.s-msft.com/dynimg/IC197579.gif

Booting and Installing the Operating System. Boot Loaders

Basic disk partitioning

GPT: GUID Partition Table

GPT Partition Table

to access the GPT the following commands can be used

parted and gdisk on linux (some times fdisk will do)
gpart on freeBSD
gpt on netBSD
format -e on Solaris

Booting and Installing the Operating System. Boot Loaders

Basic disk partitioning

sharing disks among O.S.s

Basic disk partitioning
→sharing disks among O.S.s

Booting and Installing the Operating System. Boot Loaders

Basic disk partitioning

sharing disks among O.S.s

sharing disks between O.S.s

with the term sharing disks between O.S.s we can refer to two
diferrent things

a) have several O.S.s installed on the same disk
b) have some disk space that can be accesed from different O.S.s

We’ll deal now with a), as item b) usually implies recognizing
the partition table format, having support for the filesystem in
question and mounting it

Booting and Installing the Operating System. Boot Loaders

Basic disk partitioning

sharing disks among O.S.s

sharing disks between O.S.s

two issues must be considered when having several O.S. on
the same disk

allocating space to each one of them
being able to boot any of them

allocating space to different O.S.s on the same disk is done
through partitions

Booting and Installing the Operating System. Boot Loaders

Basic disk partitioning

sharing disks among O.S.s

sharing disks between O.S.s

linux and windows system can share disks via the MBR or
GPT partitions

On BIOS systems: BSD systems require a disklabel. In order
to share disk with other systems (BSD or not BSD), a
disklabel must be created into one of the MBR partitions for
each BSD-type systems

In UEFI systems: BSD systems can also share disk with other
system using GPT. FreeBSD and NetBSD use GPT partitions,
OpenBSD will create a disklabel inside one of the GPT
partitions

Booting and Installing the Operating System. Boot Loaders

Basic disk partitioning

sharing disks among O.S.s

sharing disks between O.S.s

On a BIOS system, Solaris will create its VTOC on a MBR
partition when sharing disk with other O.S.

Solaris 11 will use GPT partitioning when in a UEFI system

An EFI BIOS is needed to boot from GPT partitions (as a
matter of fact, BIOS systems can actually boot from a GPT
partioned disk by creating BIOS BOOT partition on the disk.
Consider this some form of a hack)

Booting and Installing the Operating System. Boot Loaders

Basic disk partitioning

sharing disks among O.S.s

booting different O.S.s on the same disk

as seen in a previous section, an O.S. needs a boot loader to
be booted

installing the boot loader is part of the installation process of
the O.S.

some boot loaders are only capable of booting one O.S.

other boot loaders are capable of booting different O.S.s

Booting and Installing the Operating System. Boot Loaders

Basic disk partitioning

sharing disks among O.S.s

booting different O.S.s on the same disk

we have several solutions to booting different O.S.

BIOS firmware: install boot loaders for each O.S. and change
the active partition to boot one of them (BIOS firmware)
UEFI firmware: install boot loaders for each O.S. and
configure the firmware to boot one of them
install a boot loader capable of booting all of the O.S. and get
that boot loader loaded when the system starts
install boot loaders for each O.S. and have one of them,
capable of loading the other O.S. or chainload their boot
loaders, loaded at boot time

Booting and Installing the Operating System. Boot Loaders

Boot loaders

Boot loaders

Booting and Installing the Operating System. Boot Loaders

Boot loaders

boot loaders

BSD systems have their own specific boot loaders,

freeBSD can change the Master Boot Record for a very simple
program (boot0cfg that gives the option to chainload to other
(primary) partitions

linux has, among others, lilo, silo (for Sparc), and grub

which is becoming the standard today

Solaris had its own boot loader, but since version 10, it uses a
modified version of grub to boot

Booting and Installing the Operating System. Boot Loaders

Boot loaders

boot loaders that can load several O.S.s

the silo bootloader, which is specific for the Sparc
architecture, can load Solaris and linux (it’s specific to sparc
firmware)

lilo in linux can chainload to other boot loaders (it’s specific
to BIOS firmware).

grub can chainload to other loaders, and load directly linux,
FreeBSD, netBSD, openBSD, Solaris. Grub2 also supports
UEFI booting

to load Solaris a specially modified version of grub is used

Booting and Installing the Operating System. Boot Loaders

Boot loaders

boot loader installation

Boot loaders
→boot loader installation

Booting and Installing the Operating System. Boot Loaders

Boot loaders

boot loader installation

boot loader installation

Boot loader installation depends on the boot loader being
installed

The device where the boot loader is to be installed must be
supplied

sometimes as a parameter to the bootloader installation
program (for example grub’s grub-install or OpenBSD’s
installboot)
sometimes in the bootloader configuration file (for example
linux’s lilo)

in UEFI systems it’s usually enough to copy the bootloader
executable file to the ESP (Efi System Partition) and arrange
for the firmware to boot it

Booting and Installing the Operating System. Boot Loaders

Boot loaders

boot loader execution

Boot loaders
→boot loader execution

Booting and Installing the Operating System. Boot Loaders

Boot loaders

boot loader execution

boot loader execution

There exist bootloaders that can boot several operating
systems or that can chainload to other bootloaders

We can have several boot loaders installed on the same
system

several operating systems with their own bootloaders
several bootloaders to boot the same operating system
several O.S. with several bootloaders to boot

When we have several bootloaders installed on the same
system. How do we decide which one of them gets executed?

Booting and Installing the Operating System. Boot Loaders

Boot loaders

boot loader execution

boot loader execution in BIOS firmware

In BIOS type firmware the first block of the booting device
gets loaded and executed upon powering on

We can use the firmware configuration program (usually
interrupting by pressing some key after powering on) to
change the booting device (to DVD, usb, second disk . . .)

Some boot loaders allow us to configure menus to choose
which O.S. to load or which other boot loader to chainload.
We usually put one of them as the boot loader that gets
exxecuted to so thet we can choose choose which O.S. will
boot

That’s about all what we can do.

Booting and Installing the Operating System. Boot Loaders

Boot loaders

boot loader execution

boot loader execution in UEFI firmware

In this type of firmware, the default is to load the bootloader
at \EFI\BOOT\BOOTX64.EFI (note that FAT filesystems are
not case sensitive

As with the previous case:

We can have several boot loaders installed.
We can use the firmware configuration program (usually
interrupting by pressing some key after powering on) to change
which bootloader gets executed
Some boot loaders allow us to configure menus to choose
which O.S. to load or which other boot loader to chainload.
We usually put one of them as the boot loader that gets
executed to so thet we can choose choose which O.S. will boot

Booting and Installing the Operating System. Boot Loaders

Boot loaders

boot loader execution

boot loader execution in UEFI firmware

In adition using the firmware configuration program, we can
change the bootloader to run by default (instead of
\EFI\BOOT\BOOTX64.EFI , from the Operating System

The program efibootmgr is becoming the standard to do
that

This program also allows us to change the bootloader for the
next boot only, to add new entries to the firmware booting . . .

Booting and Installing the Operating System. Boot Loaders

the Grub boot loader

the Grub boot loader

Booting and Installing the Operating System. Boot Loaders

the Grub boot loader

The Grub boot loader

Grand Unified Boot Loader is the boot loader of choice in
linux since several years ago

It can boot directly linux and other O.S.: freeBSD, OpenBSD,
Solaris . . . or chainload to other bootloaders

Highly configurable, can display splash images, a menu . . .

It understands different file systems (ext2fs, ext4fs, ntfs, fat,
ufs . . .) and different partition types (MBR, gpt . . .) through
loadable modules

The boot menu can be edited at boot time and it has a rescue
mode command line interepreter capable o accesing
filesystems

Booting and Installing the Operating System. Boot Loaders

the Grub boot loader

The Grub boot loader. Versions

There are two versions

Grub version 1, also refered to as Grub legacy

Configuration file editable by hand, tipycally
/boot/grub/menu.lst

Can only boot systems with BIOS type firmware

Grub version 2, the one that is being installed at present by
mostly every linux distro

Script generated configuration file (non editable by hand).
Typically /boot/grub/grub.cfg

Can boot both BIOS type and UEFI type firmware

Both versions provide a boottime-editable boot menu and a
rescue mode command line interepreter capable o accesing
filesystems

Booting and Installing the Operating System. Boot Loaders

the Grub boot loader

The Grub boot loader. Basic usage

to install the grub with BIOS type firmware:
grub-install device. Example to install it in partition 2

grub-install /dev/sda2

should we want it installed onto the MBR

grub-install /dev/sda

to install the grub with UEFI type : grub-install
--efi-directory dir with ESP : Example

grub-install --efi-directory=/boot/efi

Booting and Installing the Operating System. Boot Loaders

the Grub boot loader

Grub legacy

the Grub boot loader
→Grub legacy

Booting and Installing the Operating System. Boot Loaders

the Grub boot loader

Grub legacy

The Grub Legacy boot loader. Basic usage

Only capable of booting in BIOS firmare platforms

To change de grub legacy configuration

edit the file /boot/grub/menu.lst

grub reads it’s configuration file when it loads and understands
several filesystem structures so it can load kernels directly

For BIOS firmware it can be installed either in the MBR or in
the superblock of the partition.

To install it we can use the grub-install or install-grub
commands, depending on the system where we are

To unistall it we overwrite it with another bottloader (or with
a standard MBR code, if its installed onto the MBR)

Can chainload to other bootloaders

Booting and Installing the Operating System. Boot Loaders

the Grub boot loader

Grub legacy

grub legacy examples

The/boot/grub/menu.lst

an example of configuration file booting linux and freeBSD

title linux with kwenel 2.4.7-10

root (hd0,4)

kernel /boot/vmlinuz-2.4.7-10 ro root=/dev/hda5

initrd /boot/initrd-2.4.7-10.img

title FreeBSD

root (hd0,2,a)

kernel /boot/loader

Booting and Installing the Operating System. Boot Loaders

the Grub boot loader

Grub legacy

grub legacy examples

an example of configuration file booting opensolaris and
chainloading linux and openBSD

title Opensolaris-snv130

findroot (pool_rpool,0,a)

bootfs rpool/ROOT/Opensolaris-snv130

splashimage /boot/solaris.xpm

foreground d25f00

background 115d93

kernel$ /platform/i86pc/kernel/$ISADIR/unix -B $ZFS-BOOTFS,console=graphics

module$ /platform/i86pc/$ISADIR/boot_archive

#============ End of LIBBE entry =============

title OpenBSD

rootnoverify (hd0,2)

chainloader +1

title linux 64 bits

rootnoverify (hd0,5)

chainloader +1

Booting and Installing the Operating System. Boot Loaders

the Grub boot loader

GRUB 2: Grand Unified Boot Loader

the Grub boot loader
→GRUB 2: Grand Unified Boot Loader

Booting and Installing the Operating System. Boot Loaders

the Grub boot loader

GRUB 2: Grand Unified Boot Loader

grub version2

Capable of booting both BIOS and UEFI systems

It’s the bootloader of choice for most linux distros

A slightly modified version is supplied with de Solaris 11 O.S.

Can boot linux, solaris, most BSD’s and chainload to other
bootloaders

Booting and Installing the Operating System. Boot Loaders

the Grub boot loader

GRUB 2: Grand Unified Boot Loader

grub version2: Installation

in linux or BSD platforms we can install with the commands
grub-install or grub2-install

we supply the device where we want it installed or, in the case
of uefi systems, the directory where we have mounted the
ESP partition

In solaris 11 we install it with the command bootadm

install-bootloader

For EFI firmware, it is typically installed in one subdirectory of
the EFI directory in the ESP as grubx64.efi

Booting and Installing the Operating System. Boot Loaders

the Grub boot loader

GRUB 2: Grand Unified Boot Loader

grub version2: Configuration

Its configuration resides in the file grub.cfg (typically in
/boot/grub or /rpool/boot/grub)

In the case of EFI firmware it can also reside in the ESP
(typically mounted under /boot/efi).

For example, in fedora we can find it in
/boot/efi/EFI/fedora/grub.cfg

Booting and Installing the Operating System. Boot Loaders

the Grub boot loader

GRUB 2: Grand Unified Boot Loader

grub version2: Configuration

This file is not intended to be edited directly, instead we must

edit the corresponding file in /etc/grub.d (the contents of
the files 40 custom and 41 custom will get copied into
/boot/grub/grub.cfg by the program update-grub)
update the grub configuration file (/boot/grub/grub.cfg
with the commands update-grub or grub-mkconfig

grub-mkconfig -o /boot/grub/grub.cfg

in solaris 11 we’ll use the command bootadm to change its
configuration
some versions allow for some customization to the
configuration file at boot time using /boot/grub/custom.cfg

Booting and Installing the Operating System. Boot Loaders

the Grub boot loader

GRUB 2: Grand Unified Boot Loader

grub2

examples of the menuentries to load freeBSD and netBSD

menuentry "FreeBSD" {

insmod ufs2

set root=’(/dev/ad4,msdos1)’

search --no-floppy --fs-uuid --set 4c0029f407b3cd1d

kfreebsd /boot/kernel/kernel

kfreebsd_loadenv /boot/device.hints

kfreebsd_module /boot/splash.bmp type=splash_image_data

set kFreeBSD.vfs.root.mountfrom=ufs:ad4s1a

}

menuentry "NetBSD on sda1" {

insmod ufs2

set root=(hd0,msdos1)

knetbsd /netbsd --root=wd0a

}

Booting and Installing the Operating System. Boot Loaders

the Grub boot loader

GRUB 2: Grand Unified Boot Loader

grub2

examples of the 40 custom file to chainload Solaris and
openBSD

#!/bin/sh

exec tail -n +3 $0

This file provides an easy way to add custom menu entries. Simply type the

menu entries you want to add after this comment. Be careful not to change

the ’exec tail’ line above.

menuentry "Solaris grub" {

set root=(hd0,msdos2)

chainloader +1

}

menuentry "openBSD" {

set root=(hd0,msdos3)

chainloader +1

}

Booting and Installing the Operating System. Boot Loaders

the Grub boot loader

GRUB 2: Grand Unified Boot Loader

grub2

example of grub in EFI firmware chainloading to load Solaris’
grub

a) Solaris and fedora use the same ESP

menuentry Solaris {

chainloader /EFI/ORACLE/grubx64.efi

boot

}

b) Solaris and fedora use different ESP

menuentry Solaris {

insmod part_gpt

insmod fat

set root=(hd0,gpt1)

chainloader (${root})/EFI/ORACLE/grubx64.efi

boot

}

Booting and Installing the Operating System. Boot Loaders

other boot loaders

other boot loaders

Booting and Installing the Operating System. Boot Loaders

other boot loaders

lilo and elilo bootloaders

other boot loaders
→lilo and elilo bootloaders

Booting and Installing the Operating System. Boot Loaders

other boot loaders

lilo and elilo bootloaders

lilo

it was the boot loader of choice in linux for BIOS type
firmware

can chainload other O.S. bootloaders

it is configured through the file /etc/lilo.conf

it can’t read any configuration file when booting so after
making any change to its configuration file, /sbin/lilo must
be run to create the executable and put it in the right place

it is now being deprecated

Booting and Installing the Operating System. Boot Loaders

other boot loaders

lilo and elilo bootloaders

example lilo configuration

example of lilo configuration file chainloading another O.S..
The bootloader will be installed to de masterboot (/dev/sda)
and the root linux partition is on /dev/sda3

...

boot=/dev/sda

root=/dev/sda3

image=/boot/vmlinuz-2.6.38-2-amd64

label="linux 2.6.38"

initrd=/boot/initrd.img-2.6.38-2-amd64

read-only

other=/dev/sda4

label="openBSD"

Booting and Installing the Operating System. Boot Loaders

other boot loaders

lilo and elilo bootloaders

elilo

a very simple UEFI boot loader for linux.

Consists of just two files

elilo.efi: the loader itself, can be reanamed to bootx64.efi in
the EFI/BOOT directory (to be loaded by default),
chainloaded from other boot loader, or loaded directly by the
UEFI firmware
elilo.conf: configuration file. Must reside in the same
directory of the ESP where elilo.efi is

Booting and Installing the Operating System. Boot Loaders

other boot loaders

lilo and elilo bootloaders

elilo

Sample of elilo.conf (paths are always in the ESP)

default=linux

prompt

timeout=50

image=/EFI/debian/vmlinuz-4.6.0-1-amd64

label=linux

initrd=/EFI/debian/initrd.img-4.6.0-1-amd64

read-only

root=/dev/disk/by-uuid/2d473ffb-3253-4c32-a68c-3015d4b439c9

append=""

image=/EFI/debian/memtest86.bin

label=test

Booting and Installing the Operating System. Boot Loaders

other boot loaders

syslinux

other boot loaders
→syslinux

Booting and Installing the Operating System. Boot Loaders

other boot loaders

syslinux

syslinux and syslinux-efi

boot loader that loads linux from FAT filesystems in machines
with BIOS firmware

To install it we issue the command syslinux --install

device. This installs the loader and its neccesary files
(ldlinux.c32, ldlinux.sys) on the media

Its behaviour is controlled via the syslinux.cfg file on the
root directory of the filesystem.

Sample syslinux.cfg

DEFAULT linux

SAY arrancando con SYSLINUX..............

LABEL linux

KERNEL vmlinuz-3.16.0-4-amd64

APPEND ro root=/dev/sda5 initrd=initrd.img-3.16.0-4-amd64

Booting and Installing the Operating System. Boot Loaders

other boot loaders

syslinux

syslinux-efi

boot loader that loads linux in machines with UEFI type
firmware (it is the efi version of syslinux)

to install it we copy the efi executable (syslinux.efi), the
modules and its configuration file onto a directory in the ESP

its behaviour is controlled via the syslinux.cfg file in the
same directory as the efi executable file

this loader only understands the FAT filesystem and cannot
chainload to other loaders, so the kernels to load must reside
in the ESP

Booting and Installing the Operating System. Boot Loaders

other boot loaders

syslinux

sample syslinux-efi configuration file

DEFAULT ubuntu

TIMEOUT 10

UI vesamenu.c32

LABEL ubuntu

MENU LABEL ubuntu

LINUX /EFI/KERNELS/kernel-u

INITRD /EFI/KERNELS/init-u

APPEND root=/dev/sda2 ro

LABEL fedora

MENU LABEL fedora

LINUX /EFI/KERNELS/kernel-f

INITRD /EFI/KERNELS/init-f

APPEND root=/dev/sda6 ro

Booting and Installing the Operating System. Boot Loaders

other boot loaders

rEFInd

other boot loaders
→rEFInd

Booting and Installing the Operating System. Boot Loaders

other boot loaders

rEFInd

rEFInd

loader and bootmanager for UEFI type firmware

evolution of the rEFIt boot manager.

although it has a configuration file (refind.conf) in the
same directory as the refind efi executable, it scans most of
the subdirectories of the EFI directory, as well as every
filesystem it can access for files with names that end in .efi or
that begin with vmlinuz, bzImage, or kernel

the scanning con be prevented with the dont scan volumes,

dont scan dirs, ... options in its configuration file.

we can also create specific menuentries (even with submenus)
in its configuraion file

it can load other loaders

Booting and Installing the Operating System. Boot Loaders

other boot loaders

rEFInd

rEFInd configuration file

here we have an example of some parts of an actual
configuration file

...

dont_scan_dirs ESP:/EFI/BOOT,/EFI/ubuntu,/EFI/fedora,/EFI/KERNELS,/EFI/syslinux

...

dont_scan_volumes "a91b2fee-4466-49ce-8b2c-7c6724af5ca4"

...

menuentry ubuntu {

icon EFI/refind/icons/os_ubuntu.png

loader /EFI/ubuntu/grubx64.efi

submenuentry "KernelDirecto" {

loader /EFI/KERNELS/kernel-u

initrd /EFI/KERNELS/init-u

options "ro root=UUID=a304886e-a9b6-4804-9678-a56524475c83"

}

}

....

Booting and Installing the Operating System. Boot Loaders

other boot loaders

BSD bootloaders

other boot loaders
→BSD bootloaders

Booting and Installing the Operating System. Boot Loaders

other boot loaders

BSD bootloaders

BSD bootloaders

In adition to GRUB (which can also boot linux and solaris)
BSD system usually come with their specific bootloader.

It is a simple bootloader that only loads BSD.

In NetBSD and OpenBSD can be installed with the
installboot command

in FreeBSD it can be installed with the gpart utility

The boot code inside the MBR can be replaced with the
fdisk utility. In FreeBSD we can also use gpart or boot0cfg

The bootcodes can be found in /boot/(FreeBSD) or
/usr/mdec/ (NetBSD and OpenBSD)

Booting and Installing the Operating System. Boot Loaders

other boot loaders

BSD bootloaders

BSD bootloaders for UEFI firmware

Again this bootloaders are really simple to install: jus copy the
appropiate file to the ESP, and have the firmware or another
bootloader execute it

Thsi loader can be found

FreeBSD: files boot1.efi and loader.efi in /boot.
(boot1.efi does not load the kernel directly from the BSD
partition but instead anothe loader)

NetBSD: file /usr/mdec/bootx64.efi

OpenBSD: file /usr/mdec/BOOTX64.EFI

Booting and Installing the Operating System. Boot Loaders

other boot loaders

using removable media

other boot loaders
→using removable media

Booting and Installing the Operating System. Boot Loaders

other boot loaders

using removable media

Using removable media

Boot loaders can be installed into removable media, even to
boot an O.S. which is installed in a non-removable media

To boot in machines with BIOS firmware, boot code must
exist in the first block of the device (when creating CDs or
DVDs, we should provide an image of a boot device to the
CD/DVD mastering software)

To boot in machines with UEFI firmware, the removable
media must be FAT formatted and contain a directory named
EFI in its root directory. The firmware will boot the file
\EFI\BOOT\bootx64.efi from the removable media

	Installing an O.S.
	O.S. Installation
	Installation media
	Preparing the media

	The boot process
	Booting
	Booting steps
	Booting with BIOS type firmware
	Booting with UEFI type firmware

	Basic disk partitioning
	disks and partitions
	MBR partition table
	BSD disklabel
	GPT: GUID Partition Table
	sharing disks among O.S.s

	Boot loaders
	boot loader installation
	boot loader execution

	the Grub boot loader
	Grub legacy
	GRUB 2: Grand Unified Boot Loader

	other boot loaders
	lilo and elilo bootloaders
	syslinux
	rEFInd
	BSD bootloaders
	using removable media

