
Hardening Applications

Hardening Applications
Fortificación de S.O.

Master en Seguridad Informática. 2023/24
Universidade da Coruña
Universidade de Vigo

Antonio Yáñez Izquierdo
José Rodŕıguez Pereira

Hardening Applications

Contents I

1 Identifying and eliminating unused applications

2 Limiting applications resources
pam limits
cpulimit and prlimit
cgroups

3 Executing in chroot jails

4 Virtualization environments

5 M.A.C
AppArmor
SELinux

Hardening Applications

Identifying and eliminating unused applications

Identifying and eliminating unused applications

Hardening Applications

Identifying and eliminating unused applications

Not needed applications

every application in the system poses a risks, we can think of
two kinds of applications

the ones with known security holes
the ones whose security holes we haven’t yet heard off

so we should get rid of al those applications we don’t need.

if we don’t know about an application: it clearly is not needed

Hardening Applications

Identifying and eliminating unused applications

Not needed applications

this can be trickier on desktop systems as there are many
dependencies among libraries and applications

in the server world, for example, a mail server does not need
the graphical desktop environment, so we can do with just the
basic system and network utilities, the mail and ssh servers,
and maybe some spam detection software, which makes it
easier to harden (from an application point of view)

the package management in our system can inform us of the
packages installed and the files comprising each package

Hardening Applications

Identifying and eliminating unused applications

Not needed applications

there are utilities that find unused packages based on the time
stamps of the executable files

for example
https://codeload.github.com/epinna/Unusedpkg/zip/master

checks for unused packages in ’deb’ based distributions, and
informs the number of days a package has not been used

note that one of the recommended mount options for SSD
(noatime) makes this type of results unreliable. Fortunately,
wronly deleted packages can be installed again

Hardening Applications

Limiting applications resources

Limiting applications resources

Hardening Applications

Limiting applications resources

pam limits

Limiting applications resources
→pam limits

Hardening Applications

Limiting applications resources

pam limits

/etc/security/limits.conf

we can establish limits in the the file
/etc/security/limits.conf that affect a user session

for that we have to specify pam limits as a session module for
the login (or @common) service

we can impose limits on number of simultaneous logins,
number of processes, or CPU or memory usage

this limits, however, affect to a session, not to the individual
applications

Hardening Applications

Limiting applications resources

cpulimit and prlimit

Limiting applications resources
→cpulimit and prlimit

Hardening Applications

Limiting applications resources

cpulimit and prlimit

setcpulimit

the program cpulimit (available through apt-get install

cpulimit on debian based systems) allows us to limit the
amount od CPU (percentage) a process uses

if does so by the use of SIGSTOP and SIGCONT

the use of this sinals can have side effects, specially with some
job control shells

as always, man cpulimits gives us information on its usage

the program prlimit allows us to impose limits on the
resources allocated to a process

limits can be set on resident set size, stack sice, number of
open files . . .

we can use prlimit to limit the impact of some program on a
running system

Hardening Applications

Limiting applications resources

cgroups

Limiting applications resources
→cgroups

Hardening Applications

Limiting applications resources

cgroups

cgroups

cgroups is a feature of linux kernel tha enables us to to limit
the resource usage for a set of processes.

some of the virtualization tools, for example LXC, are based
on cgroups

from the cgroups manpage: A cgroup is a collection of
processes that are bound to a set of limits or parameters
defined via the cgroup filesystem

we can limit resources allocated to those proceses treating
them as a unique set

Hardening Applications

Limiting applications resources

cgroups

cgroups

cgroups provides1

Resource limiting a group can be configured not to exceed a
specified memory limit or use more than the desired amount of
processors or be limited to specific peripheral devices.
Prioritization one or more groups may be configured to utilize
fewer or more CPUs or disk I/O throughput.
Accounting a group’s resource usage is monitored and
measured.
Control groups of processes can be frozen or stopped and
restarted.

1Petros Koutoupis: Everything You Need to Know about Linux Containers

Hardening Applications

Limiting applications resources

cgroups

cgroups

there are two implementation of cgroups (not compatibles
with earch other: cgroups1 and cgroups2)

there’s several interfaces to cgroups (not all of them available
in every linux distribution)

manual interface through the /sys/fs/cgroup filesystem
through the programs cgcreate, cgclassify ... and the
file cgconfig.conf available through the libcgroups
througfh the client cgm communicating with the
cgmanagerdaemon (package cgmanager)
through systemd

Hardening Applications

Limiting applications resources

cgroups

cgroups: example

example: we are going to show how we can limit the memory
allocated to one process

we create the cgroup ’limitadoMemoria’

root@hardening:/home/antonio# mkdir /sys/fs/cgroup/memory/limitadoMemoria

root@hardening:/home/antonio#

we define the max amount of memory

root@hardening:/home/antonio# echo 50000000> /sys/fs/cgroup/memory/limitadoMemoria/memory.limit_in_bytes

root@hardening:/home/antonio#

the only thing left to do is to add the pid of the process we
want to limit to the file

root@hardening:/home/antonio# echo 3577 >> /sys/fs/cgroup/memory/limitadoMemoria/cgroup.procs

Hardening Applications

Limiting applications resources

cgroups

cgroups: example

The previous example in a debian 12 machine (with cgroups
v2) will look like this

we create the cgroup ’limitadoMemoria’

root@hardening:/home/antonio# mkdir /sys/fs/cgroup/limitadoMemoria

root@hardening:/home/antonio#

we define the max amount of memory

root@hardening:/home/antonio# echo 50000000> /sys/fs/cgroup/limitadoMemoria/memory.high

root@hardening:/home/antonio#

the only thing left to do is to add the pid of the process we
want to limit to the file

root@hardening:/home/antonio# echo 3577 >> /sys/fs/cgroup/limitadoMemoria/cgroup.procs

Hardening Applications

Limiting applications resources

cgroups

cgroups

los cgroups son jerárquicos, puedo crear cgroups dentro de
otros cgroups

Los procesos creados por un proceso dentro de un cgroup
pertenecen a ese cgroup, aunque puedo cambiarlos a otro
cgroup

para detener (o reanudar) los procesos en un cgroup en
cgroups2 basta con escribir un 1 (o un 0) en el fichero
cgroup.freeze dentro del directorio del cgroup

una descripción del significado de los distintos ficheros dentro
del cgroup en cgroups 2 puede verse en

https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#interface-files

Hardening Applications

Limiting applications resources

cgroups

cgroups: summary

we can create a cgroup by just creating a directory in
/sys/fs/cgroups/ depending on which resource we want to
control/monitor

we can add processes to that croup by adding their PIDS to
the file cgroup.procs

we then can impose the limits (or check values) via the files in
/sys/fs/cgroups/name-of-group-created

alternatively (and depending on the linux distro) we can use
the programs available in libcgroup or with the cgmanager
interface

Hardening Applications

Executing in chroot jails

Executing in chroot jails

Hardening Applications

Executing in chroot jails

chroot system call

by design, a process in linux knows only two directories

the current working directory
the root directory

finding a file begins in the root directory (filename starts with
“/”) or in the current directory

the chdir system call changes the current working directory for
a process

the chroot system call changes the root directory for a process

Hardening Applications

Executing in chroot jails

chroot system call

a chrooted program cannot access files outside its chroot as it
does not have way to name them

at startup, programs expect to find configuration files, device
nodes and shared libraries at certain preset locations. For a
chrooted program to successfully start, the chroot directory
must be populated with a minimum set of these files. We
could also have the files opened before and the descriptors
preserved through the chroot system call

we usually use chrooted environmets

to test software, a chrooted environment with just its elements
some servers (ftp and web servers typically)
to rescue system, after booting from instalation media

Hardening Applications

Executing in chroot jails

chroot

in linux, a chrooted environmet to be fully functional would
also need the kernel virtual file systems. So, should we wanted
a working environment chroot to $TARGET, we must

TARGET="/waterver/dir/we/want"

mount -t proc proc $TARGET/proc

mount -t sysfs sysfs $TARGET/sys

mount -t devtmpfs devtmpfs $TARGET/dev

mount -t tmpfs tmpfs $TARGET/dev/shm

mount -t devpts devpts $TARGET/dev/pts

we’d also like to copy the /etc/resolv.conf before
chrooting

note that with access to the devices, a user with access to the
devices can elude the chroot

Hardening Applications

Virtualization environments

Virtualization environments

Hardening Applications

Virtualization environments

virtualization environments

we’ve seen so far that

we can limmit resource usage, for example through cgroups
we can limit what part of the filesystem they see through
chroot

the next step in isolating the O.S. from possible application
’malfunction’ is having it run in a virtualized environment
(VE)

an VE is different from a Virtual Machine (as created by tools
like VirtualBox or VMWare) in that it requires much less
resources and overhead as the VM includes the entire OS and
machine setup, including hard drive, virtual processors and
network interfaces

we usually refer to this as container based virtualization

Hardening Applications

Virtualization environments

virtualization environments

compared to VMs, containers generally offer less isolation
because they share portions of the host kernel and operating
system instance.

linux has its container based virtualization environment called
LXC (linux containers)

the first thing is to create a container. We just have to
provide a name for the container and a template to create the
container from

root@abyecto:~# lxc-create -t ubuntu -n PruebaContainers

Hardening Applications

Virtualization environments

virtualization environments

the list of templates available is usually a
/usr/share/lxc/templates

antonio@abyecto:~$ ls -l /usr/share/lxc/templates/

total 408

-rwxr-xr-x 1 root root 13160 Jan 29 2018 lxc-alpine

-rwxr-xr-x 1 root root 13704 Jan 29 2018 lxc-altlinux

-rwxr-xr-x 1 root root 11373 Jan 29 2018 lxc-archlinux

-rwxr-xr-x 1 root root 12159 Jan 29 2018 lxc-busybox

-rwxr-xr-x 1 root root 29725 Jan 29 2018 lxc-centos

-rwxr-xr-x 1 root root 10374 Jan 29 2018 lxc-cirros

-rwxr-xr-x 1 root root 20243 Jan 29 2018 lxc-debian

-rwxr-xr-x 1 root root 17914 Jan 29 2018 lxc-download

-rwxr-xr-x 1 root root 49693 Jan 29 2018 lxc-fedora

-rwxr-xr-x 1 root root 28384 Jan 29 2018 lxc-gentoo

-rwxr-xr-x 1 root root 13868 Jan 29 2018 lxc-openmandriva

-rwxr-xr-x 1 root root 15946 Jan 29 2018 lxc-opensuse

-rwxr-xr-x 1 root root 41791 Jan 29 2018 lxc-oracle

-rwxr-xr-x 1 root root 11570 Jan 29 2018 lxc-plamo

-rwxr-xr-x 1 root root 19242 Jan 29 2018 lxc-slackware

-rwxr-xr-x 1 root root 26862 Jan 29 2018 lxc-sparclinux

-rwxr-xr-x 1 root root 6862 Jan 29 2018 lxc-sshd

-rwxr-xr-x 1 root root 25705 Jan 29 2018 lxc-ubuntu

-rwxr-xr-x 1 root root 11734 Jan 29 2018 lxc-ubuntu-cloud

antonio@abyecto:~$

Hardening Applications

Virtualization environments

virtualization environments

we start the machine and see that is running ok

root@abyecto:~# lxc-ls -f

NAME STATE AUTOSTART GROUPS IPV4 IPV6

PruebaContainer STOPPED 0 - - -

root@abyecto:~#

root@abyecto:~#

root@abyecto:~# lxc-start -n PruebaContainer -f /var/lib/lxc/PruebaContainer/config

root@abyecto:~# lxc-ls -f

NAME STATE AUTOSTART GROUPS IPV4 IPV6

PruebaContainer RUNNING 0 - - -

root@abyecto:~#

Hardening Applications

Virtualization environments

virtualization environments

the root file system for the container is at
/var/lib/lxc/container name/rootfs

its configuration at /var/lib/lxc/container name/config

we start the machine in the foregound with -F

to manipulate the machine we can use the lxc-* commands

root@abyecto:~# lxc

lxc-attach lxc-checkpoint lxc-create lxc-freeze lxc-monitor lxc-unfreeze

lxc-autostart lxc-config lxc-destroy lxcfs lxc-snapshot lxc-unshare

lxc-cgroup lxc-console lxc-device lxc-info lxc-start lxc-usernsexec

lxc-checkconfig lxc-copy lxc-execute lxc-ls lxc-stop lxc-wait

root@abyecto:~# lxc

Hardening Applications

Virtualization environments

virtualization environments

if you want to run lxc as a normal user you have to

1 add the following lines to file .config/lxc/default.conf

lxc.id_map = u 0 100000 65536

lxc.id_map = g 0 100000 65536

2 add the line kernel.unprivileged userns clone=1 to the
file /etc/sysctl.d/local.conf and then execute sysctl
--system

3 change the permissions of .local and .local/share to
rwxr-xr-x

4 use the download template

Hardening Applications

Virtualization environments

virtualization environments

there are other container based virtualization solutions for
linux

the two most widespread are

LXD
docker

both of them rely on cgroups and lxc libraries

Hardening Applications

M.A.C

M.A.C

Hardening Applications

M.A.C

D.A.C. versus M.A.C.

D.A.C. stands for Discrectionary Access Control, meaning
that the owner decides on who can do what on his/her files
and directories. Most operating systems use D.A.C.

M.A.C. stands for Mandatoy Access Control, means that the
O.S. enforces a policy on who can access what regardless of
the user’s given permissions

a user might not mind that others users accessed his/her files,
although it could pose a security risk or maybe go against
his/her employer’s policy

in M.A.C. systems a least privilege approach is used, when a
process wants to access a file,

first the D.A.C is checked, if it denies access, access is denied
if D.A.C allows access then the M.A.C. is checked and if
M.A.C. denies access, access is denied

Hardening Applications

M.A.C

M.A.C. in linux

the two M.A.C. solutions in linux are SELinux and apparmor

In SELinux every object in the system is labeled and access is
only permitted if there is a rule allowing it explicitly

it is mainly used in used in redhat and derivatives (fedora . . .)

in apparmor we have a file defining the privileges of an
apliccation (called the app profile)

it is mainly used in debian and derivatives (ubuntu, devuan . . .

Hardening Applications

M.A.C

AppArmor

M.A.C
→AppArmor

Hardening Applications

M.A.C

AppArmor

AppArmor

AppArmor is a mandatory access control system for Linux.

In AppArmor the kernel imposes restrictions on paths,
sockets, ports, and various input/output mechanisms

It was developed by Immunex and now is maintained by SUSE

It requires kernel 2.6.36 and is installed by default in debian
since debian 10 (buster)

Hardening Applications

M.A.C

AppArmor

AppArmor

we can check whether it is enabled with

cat /sys/module/apparmor/parameters/enabled

the command aa-status lists all the loaded profiles

the -Z option of command ps shows the status of confinement
of processes

Hardening Applications

M.A.C

AppArmor

AppArmor

for each application under apparmor control we have a profile
in

/etc/apparmor.d/

we can see the profiles loaded with aa-status

the profile file contains the restrictions imposed to the
program in represents

apparmor has two modes of operation

enforce mode restrictions are actually imposed
complain mode violations of restrictions are allowed but
logged

Hardening Applications

M.A.C

AppArmor

AppArmor

we can load an application profile with -r replaces the one in
use (if any)

apparmor_parser -r /etc/apparmor.d/profile_name

we can disable an application profile with (disabled profiles are
put on /etc/apparmor/disable)

aa-disable /path/to/executable

and we can put the in enforce or complain mode with

aa-enforce /path/to/executable

aa-complain /path/to/executable

Hardening Applications

M.A.C

AppArmor

AppArmor

We can create an (empty) profile with
aa-easyprof ejecutable > /etc/apparmor.d/nombre_ejecutable

After that we edit the profile file (is a plain text file) to meet
our needs

We load it

apparmor_parser -r /etc/apparmor.d/profile_name

And we have that app ’apparmored’

The following page shows the profile for an executable file
(/usr/bin/listar), that can only access only the /usr
directory and ALL of its descendants except directories under
/usr/share/doc

Hardening Applications

M.A.C

AppArmor

AppArmor

vim:syntax=apparmor

AppArmor policy for list

###AUTHOR###

###COPYRIGHT###

###COMMENT###

#include <tunables/global>

No template variables specified

/usr/bin/listar {

#include <abstractions/base>

No abstractions specified

No policy groups specified

No read paths specified

/usr/ r,

/usr/** r,

deny /usr/share/doc/** r,

No write paths specified

}

Hardening Applications

M.A.C

SELinux

M.A.C
→SELinux

Hardening Applications

M.A.C

SELinux

SElinux

is a series of kernel patches that allows linux to use M.A.C

in SElinux every object (applications, files . . .) is labeled

access is only permitted if there is an specific rule in the
system’s policy allowing it

when there is not specific rule access is denied

example:

the executable for the web server is labeled httpd exec t,
its configuration file has label httpd config t

. . .
any process running in the httpd context can only interact
with objects labeled httpd * t

Hardening Applications

M.A.C

SELinux

SElinux

SElinux can be enabled or disabled

if it is enabled in can be in either one of this two modes

enforcing the active policy is enforced, denying access when
necesary (a log entry is generated only the first time a access is
denied)
permissive the policy is not enforce, each time an access
should be denied, a log entry is generated

the commands getenforce and setenforce allow us to view
and set the current mode

Hardening Applications

M.A.C

SELinux

SElinux in debian

to enable SElinux in debian we must

have debian installed in ext2, ext3. ext4 or jfs file systems
get the default policy and the basic utilities by installing the
following packages

apt-get install selinux-basics selinux-utils selinux-policy-default auditd

run selinux-activate to configure the grub and get the
system relabeled at the next reboot (through the existence of
the file /.autorelabel)
enforcing or permisive mode will be defined in
/etc/selinux/config

Hardening Applications

M.A.C

SELinux

SElinux in debian

once we have SElinux running, each file and/or process is
labeled with what we call a selinux context.

a selinux context consists of four labels
selinux user:selinux role:selinux type:selinux level

we can see the the context of files and/or processes adding
the parameter -Z to the ls and/or ps commands

the commands chcon, restorecon, secon and runcon allow us
to acsess/modify the context of files or processes

	Identifying and eliminating unused applications
	Limiting applications resources
	pam_limits
	cpulimit and prlimit
	cgroups

	Executing in chroot jails
	Virtualization environments
	M.A.C
	AppArmor
	SELinux

