
Hardening File Systems

Hardening File Systems
Fortificación de S.O.

Master en Seguridad Informática. 2023/24
Universidade da Coruña
Universidade de Vigo

Antonio Yáñez Izquierdo
José Rodŕıguez Pereira

Hardening File Systems

Contents I

1 Basic concepts of files and directories in linux
files and directories
other types of files
commands for dealing with files

2 Introduction to filesystems in linux
Discs, partitions and filesystems
Filesystems in partitions
LVM

3 Possible threats

4 ACLs

5 Quotas
Quotas on ext4 filesystems

6 Crypting
Crypting partitions

plain type

Hardening File Systems

Contents II

LUKS type

Crypting LVMs
encfs

7 Locking directories and restricting access to devices

Hardening File Systems

Basic concepts of files and directories in linux

Basic concepts of files and directories in linux

Hardening File Systems

Basic concepts of files and directories in linux

files and directories

Basic concepts of files and directories in linux
→files and directories

Hardening File Systems

Basic concepts of files and directories in linux

files and directories

files and directories

everything stored in the system is a file

a C program text
some letter
the executable file that constitutes a comand
the list of users in the system (/etc/passwd)
. . .

security on unix depends greatly on access to files

files are organized in a hierarchical structure. Looks like a tree
but it is actually a graph

this structure has a root directory designed by /

Hardening File Systems

Basic concepts of files and directories in linux

files and directories

file permissions and ownership

Each file in the system is owned by both ONE user and ONE
group

the user owning the file may belong to several groups, but the
file is owned only by one group

The file has three sets of permissions associated (usually
called the mode of the file)

each set of permissions is a subset of the word rwx
the letter indicates the permission is granted
the - sign instead the letter indicates the permission is not
granted

Hardening File Systems

Basic concepts of files and directories in linux

files and directories

file permissions and ownership

The first set are the permissions for the user owning the file,
the second set the permissions for the group owning the file
and the third set the permissions for the rest of the users in
the system

r the file can be read: view the file contents
w the file can be written: modify the file contents, that is, the

file can be appended, modified, overwritten . . .
x the file can be executed

Hardening File Systems

Basic concepts of files and directories in linux

files and directories

file ownership and permissions

example
-rw-r----- 1 antonio audio 4656065 Sep 13 13:06 audiofile.mp3

this file is owned by user antonio and group audio, its
permissions are rw-r----- (the first - indicates it’s a regular
file)

the first set of permissions, rw-, means that a process from
user antonio can read and write to the file
the second set of permissions, r--, means that a process from
any user belonging to group audio can read the file
the third set of permissions, ---, means that the rest of the
users in the system can’t read the file, nor write to it, neither
execute it (were it an executable file)

Hardening File Systems

Basic concepts of files and directories in linux

files and directories

permission representations

the permissions are represented by an octal three digit number

one octal digit per set of permissions
to obtain the binary value for each of permissions we use 1 to
represent the permission is granted and 0 otherwise

that way rw-r----- is represented as binary 110 100 000

and octal 640

rwxr-xr-- would be represented as binary 111 101 100 and
octal 754

Hardening File Systems

Basic concepts of files and directories in linux

files and directories

special permissions

there are three more special permissions

sticky bit (octal 1000) (--------t). On modern systems it
has no effect on files, on older systems, if one executable had
the sticky bit set, the system would not deassign the swap
space after executing the file
setgid (octal 2000) (-----s---) The process excuting a file
with the setgid bit set gets the group credential of the group
owning the executable
setuid (octal 4000) (--s------) The process excuting a file
with the setuid bit set gets the user credential of the user
owning the executable

Hardening File Systems

Basic concepts of files and directories in linux

files and directories

example of special permissions

Consider the file
-rwsr-sr-x 1 antonio audio 4656065 Sep 13 13:06 program1.out

its permissions are rwsr-sr-x (binary 110 111 101 101, octal
6755)

processes from user antonio can read write and execute the file

processes from users belonging to group audio can read and
execute the file

processes from any user can read and execute the file

a process executing the file gets its user credential changed to
that of user antonio and its group credential changed to that
of group audio

Hardening File Systems

Basic concepts of files and directories in linux

files and directories

permissions in directories

the permissions in directories have the following meaning

r The directory can be listed: see the names of the files in it
w The contents of the directory can be modified: files can be

added to it or files can be removed from it
x The files in the directory can be accessed

setgid Files created in this directory get owned by directory group
instead of the group of the process creating the file

sticky bit Only the owner (or one who has write acess) of a file can
delete it, even having write access to the directory

Hardening File Systems

Basic concepts of files and directories in linux

other types of files

Basic concepts of files and directories in linux
→other types of files

Hardening File Systems

Basic concepts of files and directories in linux

other types of files

other types of files

In addition to files and directories unix supports the following
types of files

block devices. They have no assigned space, just two
numbers (major a minor) used to tell the kernel which device
driver to use when accessing the device
character devices
symbolic links A file whose contents are the path to the file
the link refers to
fifo A first in first out file

Hardening File Systems

Basic concepts of files and directories in linux

other types of files

other types of files

non symbolic links are not special files, they are just another
name to an existing file
the comand ls -l lets us distinguish the different types of
files in a unix system
abyecto:/home/antonio/pru# ls -l

total 12

brw-r--r-- 1 root root 15, 3 Sep 13 18:02 block_device

crw-r--r-- 1 root root 9, 51 Sep 13 18:14 char_device

-rw-r--r-- 2 root root 93 Sep 13 18:03 file

-rw-r--r-- 2 root root 93 Sep 13 18:03 link

lrwxrwxrwx 1 root root 4 Sep 13 18:18 symlink -> file

drwxr-xr-x 2 root root 4096 Sep 13 18:01 this_is_a_directory

prw-r--r-- 1 root root 0 Sep 13 18:03 this_is_a_fifo

Hardening File Systems

Basic concepts of files and directories in linux

commands for dealing with files

Basic concepts of files and directories in linux
→commands for dealing with files

Hardening File Systems

Basic concepts of files and directories in linux

commands for dealing with files

usual commands to access files

these are the most usual commands to access files in a unix
system. The online man page is the ultimate source of
information in the system we’re using

mv moves (or renames) a file or directory
cp copies files or directories

chown changes the owner of a file (must be root)
chmod changes the mode (permissions) of a file (must be owner)
chgrp changes the group of a file (must be owner)
mkdir creates a directory

Hardening File Systems

Basic concepts of files and directories in linux

commands for dealing with files

usual commands to access files

mknod creates a special file (directory, device or fifo)
mkfifo creates a special fifo file

ln creates a link (both symbolic and non symbolic)
rm removes a file

rmdir removes a directory
ls lists the contents of a directory
cd changes directory

umask sets the file creation mask (default permissions)

Hardening File Systems

Introduction to filesystems in linux

Introduction to filesystems in linux

Hardening File Systems

Introduction to filesystems in linux

Discs, partitions and filesystems

Introduction to filesystems in linux
→Discs, partitions and filesystems

Hardening File Systems

Introduction to filesystems in linux

Discs, partitions and filesystems

Discs and partitions

in linux we create filesystems on block devices to store our
information in files

block devices are named /dev/sda, /dev/sdb, /dev/sdc

..., this includes disks with different interfaces (usb, SATA,
SCSI, IDE, usb pendrives, memory cards . . .) although in
older linux kernels IDE hard drivers were named ... /dev/hda,
/dev/hdc. . .

this devices are usually partitioned and the partitions in them
named /dev/sda1, /dev/sda2, /dev/sda3 Most
common partition formats in the linux world are the MBR and
GPT formats (as seen on the lesson about hardening boot)

progams to partition disk are fdisk, cfdisk, parted,

gpart . . .

Hardening File Systems

Introduction to filesystems in linux

Discs, partitions and filesystems

Discs and partitions

older devices, such as floppy discs (typically named /dev/fd0,
/dev/fd1 . . .) were used without partitioning.

Sometimes usb pendrives and memory cards are used without
partitioning, although it is not the usual method

we would use ’mkfs /dev/sdc’ to create a file system on an
usb drive (were its device sdc)
we would use ’mkfs /dev/sdc1’ to create a file system on
the first patition of an usb drive (were its device sdc)

Hardening File Systems

Introduction to filesystems in linux

Discs, partitions and filesystems

Creating filesystems

prior to accessing filesystems they must be created (the
equivalent to windows formatting)

filesystems can be created with the command mkfs

mkfs -t type [fs-options] device

mkfs is just a frontend, when we call mkfs -t ext4 we are
actually calling the command mkfs.ext4. The latter is the
preferred method

in the following lines we create an ext2 filesystem with a
blocksize of 4K in /dev/sda4 and a filesystem of type ext4
with an inodesize of 256 bytes on /dev/mapper/lvm0

mkfs -t ext2 -b 4096 /dev/sda4

.....

mkfs.ext4 -I 256 /dev/mapper/lvm0

Hardening File Systems

Introduction to filesystems in linux

Discs, partitions and filesystems

Accessing filesystems

to access a filesystem we have to mount it at some direcory.
The filesystem then becommes accesible under that directory
(in windows, each filesystem is assigned a drive letter, for
example C:)

linux understands different type of filesystems: ext2, ext3,

ext4, jfs, vfat, ntfs, udf, iso9660 ..., so the
syntax of the mount command is
mount -t filesystemtype -o comma-separated-options device directory

The foolowing example mounts the filesystem of type ext4 in
/dev/sdb5 onto directory /mnt in a readonly and noexec
mode

mount -t ext4 -o ro,noexec /dev/sdb5 /mnt

Hardening File Systems

Introduction to filesystems in linux

Discs, partitions and filesystems

Accessing filesystems

the root filesystem is specified via the boot loader.

Filesystems mounted automatically at boot type (also
including the root filesystem), are specified in the
/etc/fstab file

the format of the /etc/fstab is simple, one line per file
system to mount, with fields separated by blanks

Hardening File Systems

Introduction to filesystems in linux

Discs, partitions and filesystems

format of the /etc/fstab file

each line of the /etc/fstab file has the following fields

device device to mount
dir directory to mount onto

type type of filesystem
opts comma separated list of mount options (filesystem type

dependant)
dump 1 or 0 depending whether the filesystem backup is controlled

by the dump command
pass specifies if the device is checked at boot time

Hardening File Systems

Introduction to filesystems in linux

Discs, partitions and filesystems

format of the /etc/fstab file

the most usual mount options are defaults, ro, rw, nosuid,
nexec, noauto, usrquota . . .
example of /etc/fstab file
<file system> <mount point> <type> <options> <dump> <pass>

/dev/sda1 / ext4 defaults 0 1

/dev/sda7 none swap sw 0 0

/dev/sda5 /var xfs noexec,nosuid 0 1

/dev/cdrom /cdrom iso9660 defaults,ro,user,noauto 0 0

Hardening File Systems

Introduction to filesystems in linux

Discs, partitions and filesystems

format of the /etc/fstab file

in modern linux systems, we can, instead of using the name of
the device (i.e. /dev/sda4), use the UUID (Universally Unique
IDentifier)

so, an entry in the /etc/fstab file will look like this

UUID="d39577d4-fb9b-4b18-be4e-53ff32dbf856" /home ext4 noatime 0 2

that number can be obtained with the command blkid.
Example

root@abyecto:/home/antonio# blkid /dev/sdb2

/dev/sdb2: UUID="7b127a41-0ff1-45ed-8c0a-dac6816cd02c" TYPE="ext2" PARTUUID="e9ddd7cb-911f-3b47-916b-d7c9192a153f"

root@abyecto:/home/antonio#

Hardening File Systems

Introduction to filesystems in linux

Discs, partitions and filesystems

Partitions and Logical Volumes

there are two approaches to using discs and partitions in linux

1 we create filesystems on devices such as discs or partitions and
we mount them onto directories. This is the traditional
approach

2 we combine different devices to create a Logical Volume, and
we create the filesystem on top of the Logical Volume. Space
can be added to the logical volume at a latter time

either case, the filesystems need to be mounted to be accessed

Hardening File Systems

Introduction to filesystems in linux

Filesystems in partitions

Introduction to filesystems in linux
→Filesystems in partitions

Hardening File Systems

Introduction to filesystems in linux

Filesystems in partitions

Filesystems in partitions

this is the traditional simple approach

we create a file system onto each physical device (disc or
partition)

that filesystem must be mounted to be accessed

as partitions cannot be easily resized this way of doing things
lacks flexibility

(the program resizefs can shrink a filesystem or enlarge it,
provided there’s room at the end of the partition)

unless we explicitly select LVM during installation, well get this
approach. It is also the preferred method for removable media

this type of file systems can be crypted

Hardening File Systems

Introduction to filesystems in linux

LVM

Introduction to filesystems in linux
→LVM

Hardening File Systems

Introduction to filesystems in linux

LVM

lvm

Logical volumes are more flexible than the traditional
approach as we can dynamically add space to a filesystem

naming schemes can be more clear and thus easier to
administer

Logical Volumes can be crypted

not advisable for the /boot partition

to use LVM in debian type distros the lvm2 package must be
installed

Hardening File Systems

Introduction to filesystems in linux

LVM

LVM: Physical Volumes

a Physical Volume is either a disk, or a partition (or even a file
using the loopback device) configured as such

it consists of a header and a certain number of physical
extents (which are the smallest contiguous extent in the
physical volume that can be assigned to a Logical Volume).
The default size for a logical extent is 4 Mb

to create a Physical Volume on a partition

we create a partition (MBR or GPT) with the appropiate tag
code (0x8e, 0x8e00: Linux LVM)
we create the Physical Volume on it (which basically creates
the header) with the command pvcreate

#pvcreate /dev/sda2

we can track created PVs with the command pvdisplay

Hardening File Systems

Introduction to filesystems in linux

LVM

LVM: Volume Group

a Volume Group is a collection of PV grouped together

we can create one with the command vgcreate as in the
following example (sda4, sdb2 and sdc1 are suposed to be
PVs already created)

vgreate NuevoVol /dev/sda4 /dev/sdb2 /dev/sdc1

or we can first create it on a PV and the extend it

vgreate NuevoVol /dev/sda4

vgextend NuevoVol /dev/sdb2

vgextend NuevoVol /dev/sdc1

Hardening File Systems

Introduction to filesystems in linux

LVM

LVM: Logical Volume

we create Logical Volumes on top of the Volume Group giving
then a name and specifying the size of the LV. More than one
LV can be created on a Volume Group

lvcreate -L 2G NuevoVol -n LVDatos

creates a Logical Volume of 2G named LVDatos on Volume
Group NuevoVol

the command lvdisplay shows it, lvresize allows us to
change its size . . .

we now have the special file /dev/NuevoVol/LVDatos where
we can create a filesystem on to be mounted afterwards

we can also create a line in the /etc/fstab file to get the
Logical Volume mounted at boot time

Hardening File Systems

Introduction to filesystems in linux

LVM

LVM: Logical Volume

output of the command lvdisplay

root@hardeningB:/home/antonio# lvdisplay

--- Logical volume ---

LV Path /dev/NuevoVol/LVDatos

LV Name LVDatos

VG Name NuevoVol

LV UUID VpThC4-ARJo-ucQ6-7EUz-1BYX-8XlV-uYGp1m

LV Write Access read/write

LV Creation host, time hardeningB, 2019-01-31 20:36:07 +0100

LV Status available

open 0

LV Size 2.00 GiB

Current LE 512

Segments 1

Allocation inherit

Read ahead sectors auto

- currently set to 256

Block device 254:0

Hardening File Systems

Introduction to filesystems in linux

LVM

LVM: Logical Volume

a Logical Volume can be easily resized, even if mounted
root@hardeningB:/home/antonio# df /datos/

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/mapper/NuevoVol-LVDatos 3030800 6144 2850988 1% /datos

root@hardeningB:/home/antonio# lvresize -L 4G -r NuevoVol/LVDatos

Size of logical volume NuevoVol/LVDatos changed from 3.00 GiB (768 extents) to 4.00 GiB (1024 extents).

Logical volume NuevoVol/LVDatos successfully resized.

resize2fs 1.43.4 (31-Jan-2017)

Filesystem at /dev/mapper/NuevoVol-LVDatos is mounted on /datos; on-line resizing required

old_desc_blocks = 1, new_desc_blocks = 1

The filesystem on /dev/mapper/NuevoVol-LVDatos is now 1048576 (4k) blocks long.

root@hardeningB:/home/antonio# df /datos/

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/mapper/NuevoVol-LVDatos 4062912 8184 3839120 1% /datos

We see that we have mounted /dev/NuevoVol/LVDatos and
that the device that appears actually mounted is
/dev/mapper/NuevoVol-LVDatos. They are both symlinks
to the actual device used (probably /dev/mapper/dm-0)

Hardening File Systems

Possible threats

Possible threats

Hardening File Systems

Possible threats

Posible threats to filesystems

the main threats to a file system are

a) unathorized access to information stored on it
b) filling the file system thus preventing other users to write to

the file system
c) corrupting the file system making it unusable
d) (on networked or removable fylesystems) gaining access to

malicious executable files with increased privileges

Hardening File Systems

Possible threats

Posible threats to filesystems

as far as unathorized access goes, we have to be carefull of file
premissions. Some tips are

all home directories must be 700. We can set umask to be 077
configuration files for different daemons need not be
world-readable
take away execution permissions not strictly needed
all system’s directories must be non-writable execpt for the
system administrato root
/tmp must be world writable but with the sticky bit on
rwxrwxrwt

Hardening File Systems

Possible threats

Posible threats to filesystems

some linux distros have programs that check (and set) all the
file permissions in the filesysem on a periodic basis (for
example, Mandriva’s msec)

if we feel that the approach owner-group-world is not enough
and we need to finetune the file permissions we can make use
of ACLs

Hardening File Systems

Possible threats

Posible threats to filesystems

we can also crypt our filesytems to prevent unathorized access
from someone gaining physical access to the machine

to prevent a user (or a group of users, for that matter) from
filling up the file system we can make use of quotas

the nosuid mount option should be always used on networked
and removable file systems. On removable file systems the
option noexec is also advisable

Hardening File Systems

Possible threats

Posible threats to filesystems

to prevent file system corruption we must

use a tested and reliable filesystem, avoiding experimental
features
keep the kernel patched version and do not use an
experimental filesystem layer
watch carefully for device file permissions (files in the /dev
directory)
keep the machine in an stable environment (constant power
supply, adecuate temperature . . .)
physically protect the machine

Hardening File Systems

ACLs

ACLs

Hardening File Systems

ACLs

ACLs

ACLs stands for Access Control Lists

it’s a mechanism that allows us to define file permissions
explicitly for each user and/or group (not just
owner-group-world approach)

linux implements POSIX ACLs

ACLs can be stablished with the command setfacl

ACLS can be checked with the command getfacl

Hardening File Systems

ACLs

ACLs

to use ACLs we have to have ACL support in the kernel (if we
use a standard distribution kernel we most likely have, if we
compiled it ourselves...we know)

the filesystems were we want to have ACLs must be mounted
with the option acl

we can specify that option in the /etc/fstab file
we can check the mount options in /proc/mounts

to set specific user and group permissions on a file we use the
following commands

setfacl -m "u:user:permissions" <file/dir>

setfacl -m "g:group:permissions" <file/dir>

Hardening File Systems

ACLs

ACLs: example

the following example sets read and write permissions for user
antonio on file nuevofich which is root owned and has
permissions 600

after that, user antonio is allowed to read and write to the file

note that before changing the file’s ACL ls -l showed the
standard permissions rw-------

after changing the ACL ls -l showed rw-------+ with a +
sign, indicating that the file has ACL

Hardening File Systems

ACLs

ACLs: example

root@hardeningB:/datos# ls -l nuevofich

-rw------- 1 root root 0 Feb 1 11:11 nuevofich

root@hardeningB:/datos# getfacl nuevofich

file: nuevofich

owner: root

group: root

user::rw-

group::---

other::---

root@hardeningB:/datos# setfacl -m u:antonio:rw nuevofich

root@hardeningB:/datos# ls -l nuevofich

-rw-rw----+ 1 root root 0 Feb 1 11:11 nuevofich

root@hardeningB:/datos# getfacl nuevofich

file: nuevofich

owner: root

group: root

user::rw-

user:antonio:rw-

group::---

mask::rw-

other::---

root@hardeningB:/datos#

Hardening File Systems

Quotas

Quotas

Hardening File Systems

Quotas

Quotas

quotas allow us to restrict the amount of space a user (or a
group) can use on a file system

quotas configuration is per user (or group) and filesystem

quotas reside in the files aquota.user (or aquota.group in
the root directory of the filesystem where the quota is
established

Hardening File Systems

Quotas

Quotas

for each user (or group) in a file system we can establish a
limit both on the files (inodes) and blocks (space) that a user
or group can use. This is what we call the quota

for each user (or group) in a file system both a soft and a
hard limit (for both files and blocks) are configured

upon reaching the soft limit a warning is issued, but the write
system calls still work
upon reaching the hard limit write system calls fail, so the user
(or group) can never exceed the hard limit
the user (or group) can stay over the soft limit for a period of
time (call grace period) after which the soft limit becomes the
hard limit (write system calls fail)

Hardening File Systems

Quotas

Enabling quotas

to enable quotas on a file system we need

1 have quota support in the kernel (mostly all preconfigured
distro kernels come with quota support)

2 mount the file system with the usrquota (and/or grpquota)
option

3 have installed the corresponding quota management programs
(in debian type distros apt-get install quota)

Hardening File Systems

Quotas

Enabling quotas: utilities

the quota package includes the following utilities

quotacheck creates, checks and/or repairs quota files in a files
system
quotaon, quotaoff turns on (or off) quotas on a files system
edquota allows modification of a user (or group) quotas
repquota, quota reports the status of the quotas in a file
system

Hardening File Systems

Quotas

Defining quotas: edquota

we use the program edquota to establish quotas for different
users. A summary of its usage is

edquota -u name opens the editor defined in $EDITOR for us
to modify the soft and hard limits for user name.
edquota -g grpname opens the editor defined in $EDITOR
for us to modify the soft and hard limits for group grpname.
edquota -p prototype name establishes quotas for user name
the same as user prototype.
edquota -t establishes the grace period

Hardening File Systems

Quotas

Defining and stablishing quotas: example

in the following example

we’ll create the quota files (for both user and group) in the
filesystem at /dev/NuevoVol/LVDatos
we’ll establish quotas in the filesystem at
/dev/NuevoVol/LVDatos for user antonio and group bin
we’ll turn on quotas for that file system
we’ll make every user defined locally in the system with the
/bin/bash as his/her login shell have the same quota as user
antonio

note that the next time we boot the system, if the filesystem
is mounted with the quota options on /etc/fstab the
booting scripts will take care of checking and turning the
quotas on, so we need do nothing

Hardening File Systems

Quotas

Defining and stablishing quotas: example

.

root@hardeningB:/home/antonio#

root@hardeningB:/home/antonio# mount -t ext4 -o usrquota,grpquota /dev/NuevoVol/LVDatos /datos/

root@hardeningB:/home/antonio#

root@hardeningB:/home/antonio#

root@hardeningB:/home/antonio# quotacheck -uv /datos/

quotacheck: Your kernel probably supports journaled quota but you are not using it. Consider switching to journaled quota to avoid running quotacheck after an unclean shutdown.

quotacheck: Scanning /dev/mapper/NuevoVol-LVDatos [/datos] done

.....

quotacheck: Old file not found.

root@hardeningB:/home/antonio#

root@hardeningB:/home/antonio# quotacheck -gv /datos/

quotacheck: Your kernel probably supports journaled quota but you are not using it. Consider switching to journaled quota to avoid running quotacheck after an unclean shutdown.

quotacheck: Scanning /dev/mapper/NuevoVol-LVDatos [/datos] done

quotacheck: Checked 2 directories and 2 files

quotacheck: Old file not found.

root@hardeningB:/home/antonio#

root@hardeningB:/home/antonio# quotaon /dev/NuevoVol/LVDatos

root@hardeningB:/home/antonio#

root@hardeningB:/home/antonio# edquota -u antonio

root@hardeningB:/home/antonio# edquota -g bin

root@hardeningB:/home/antonio# edquota -t

root@hardeningB:/home/antonio# for name in ‘cat /etc/passwd | grep /bin/bash | cut -f1 -d:‘ ;

do edquota -p antonio $name ; done

Hardening File Systems

Quotas

Quotas on ext4 filesystems

Quotas
→Quotas on ext4 filesystems

Hardening File Systems

Quotas

Quotas on ext4 filesystems

Quotas on ext4 filesystems

Quotas reside on the root directory of the filesystem they
define (files aquota.user and aquota.group)

Ext4 filesystems also support quotas as extended attributes.
Modern quotacheck utilities refuse to update (create) the
quota files if they do not already exist on an ext4 filesystem.
We must used the -c (create) option and -m (advisable: do
not mount read-only) in quotacheck to create the quota
files.

Example, to create quota files on /dev/sda7
quotacheck -ucmv /dev/sda7

Hardening File Systems

Quotas

Quotas on ext4 filesystems

Quotas on ext4 filesystems

In addition to the previous method, we can also create quotas
on a ext4 filesystems the “ext4 way”. The following example
is for user quotas.
Create the filesystem with the quota option and the adecuate
quotatype as attribute. (should the filesystem be already
created we can use tune2fs to change the options)

mkfs.ext4 -O quota -E quotatype=usrquota /dev/sda6

Mount the filesystem with the adecuate quota option

mount -o usrquota /dev/sda6 /mnt

Activate the quota with quotaon

quotaon /dev/sda6

And finally, edit the user quotas with edquota -u

Hardening File Systems

Crypting

Crypting

Hardening File Systems

Crypting

Crypting partitions

Crypting
→Crypting partitions

Hardening File Systems

Crypting

Crypting partitions

Crypting partitions

we use the module dm-crypt, which creates a link between
/dev/mapper/our-chosen-name and the real crypted device
(for example /dev/sdb4)

we deal with an uncrypted device
/dev/mapper/our-chosen-name and it is transparently
crypted to the real device (for example /dev/sdb4) with the
key that remains in kernel memory

we supply the software with a passphrase with which it
generates the real key to crypt. The passphrase can also be
read from a file --key-file option

not a good idea to use non ASCII chars in the passphase

the hash used to create the key from the passphrase is
configurable, as is the cipher algorithm.

Hardening File Systems

Crypting

Crypting partitions

Crypting partitions

we have two ways of using cryptsetup (frontend to
dm-crypt)
plain type

the link is a link between the crypted and the plain device; the
encryption options to be employed are used directly to create
the mapping between an encrypted disk and a named device
we can create the mapping against a partition or a full device.
In the latter we can get a crypted partition table o no
partitions at all

LUKS type
LUKS creathes aheader on the device, with the crypting
options and the masterkey crypted using the passphrase
it is compatible with some windows software
the passphrase can be changed if we have root access to the
volume

all the following examples use a keyboard entered passphrase
and the default options

Hardening File Systems

Crypting

Crypting partitions

Crypting partitions: plain type example

we create the crypting device
root@hardeningB:/home/antonio#cryptsetup open /dev/sdb4 cifrado --type plain

Enter passphrase:

root@hardeningB:/home/antonio#

we make the filesystem on it and mount it

root@hardeningB:/home/antonio# mkfs.ext4 /dev/mapper/cifrado

mke2fs 1.43.4 (31-Jan-2017)

Creating filesystem with 786176 4k blocks and 196608 inodes

Filesystem UUID: d0492b11-bff6-40d3-8bc5-d957b1b6880d

Superblock backups stored on blocks:

32768, 98304, 163840, 229376, 294912

Allocating group tables: done

Writing inode tables: done

Creating journal (16384 blocks): done

Writing superblocks and filesystem accounting information: done

root@hardeningB:/home/antonio# mount /dev/mapper/cifrado /mnt/

from that point on, we can use the file system. When we’re
done we can umount it and remove the crypting device
root@hardeningB:/home/antonio# umount /mnt/

root@hardeningB:/home/antonio# cryptsetup close cifrado

root@hardeningB:/home/antonio#

Hardening File Systems

Crypting

Crypting partitions

Crypting partitions: plain type example

if we want to use the crypted file system, we only need to do
root@hardeningB:/home/antonio#cryptsetup open /dev/sdb4 cifrado --type plain

Enter passphrase:

root@hardeningB:/home/antonio# mount /dev/mapper/cifrado /mnt/

Now we can use it. After that we can umount it and remove
the crypting device
root@hardeningB:/home/antonio# umount /mnt/

root@hardeningB:/home/antonio# cryptsetup close cifrado

root@hardeningB:/home/antonio#

note that we can not change the passpharase and as we did
not specify options for cryptsetup we are using the defaults,
(ripemd160 to create key from passpharese and
aes-cbc-essiv:sha256 cipher) which we should remember
because they are stored nowhere

Hardening File Systems

Crypting

Crypting partitions

Crypting partitions: LUKS type example

first we write the LUKS header on the device, the -y
parameter is to be asked for the passphrase twice
root@hardeningB:/home/antonio# cryptsetup -y -v luksFormat --type luks /dev/sdb4

WARNING!

========

This will overwrite data on /dev/sdb4 irrevocably.

Are you sure? (Type uppercase yes): YES

Enter passphrase:

Verify passphrase:

Command successful.

root@hardeningB:/home/antonio#

we now open the crypting device. Note that if we misstype
the passphrase we get an error that no key associated with
that passphrase
root@hardeningB:/home/antonio# cryptsetup open /dev/sdb4 encriptadoLUKS

Enter passphrase for /dev/sdb4:

No key available with this passphrase.

Enter passphrase for /dev/sdb4:

root@hardeningB:/home/antonio#

Hardening File Systems

Crypting

Crypting partitions

Crypting partitions: LUKS type example

now we can proceed to create the filesystem, mount it , use it,
and umount it and close the crypting device when we are done
root@hardeningB:/home/antonio# mkfs.ext4 /dev/mapper/encriptadoLUKS

mke2fs 1.43.4 (31-Jan-2017)

Creating filesystem with 785664 4k blocks and 196608 inodes

Filesystem UUID: 584e9808-2334-4367-b70f-e3fdad5c8187

Superblock backups stored on blocks:

32768, 98304, 163840, 229376, 294912

Allocating group tables: done

Writing inode tables: done

Creating journal (16384 blocks): done

Writing superblocks and filesystem accounting information: done

root@hardeningB:/home/antonio# mount /dev/mapper/encriptadoLUKS /mnt

......

root@hardeningB:/home/antonio# umount /mnt/

root@hardeningB:/home/antonio# cryptsetup close encriptadoLUKS

root@hardeningB:/home/antonio#

should we want to change the passphrase
root@hardeningB:/home/antonio# cryptsetup luksChangeKey /dev/sdb4

Enter passphrase to be changed:

Enter new passphrase:

Verify passphrase:

root@hardeningB:/home/antonio#

Hardening File Systems

Crypting

Crypting partitions

Crypting partitions: several passphrases

LUKS allows us to store use up to eight passphrases for the
same device

we can add, revoke and change passphrases on an individual
basis

in the example we add a passphrase to device /dev/sdb4

oot@hardeningBi:~# cryptsetup luksAddKey /dev/sdb4

Enter any existing passphrase:

Enter new passphrase for key slot:

Verify passphrase:

Hardening File Systems

Crypting

Crypting LVMs

Crypting
→Crypting LVMs

Hardening File Systems

Crypting

Crypting LVMs

Crypting LVMS

there are several ways to tho this, although the simplest are

build the Physical Volumes on plain crypted devices
build the Physical Volumes on LUKS crypted devives

in the following example we are going to build two Logical
Volumes (Datos1 and Datos2) on a VG with one LUKS
crypted PV.Then we open the crypted device
first we create the LUKS header
root@hardeningB:/home/antonio# cryptsetup luksFormat --type luks /dev/sdb4

WARNING!

========

This will overwrite data on /dev/sdb4 irrevocably.

Are you sure? (Type uppercase yes): YES

Enter passphrase:

Verify passphrase:

root@hardeningB:/home/antonio# cryptsetup open /dev/sdb4 PVcriptao

Enter passphrase for /dev/sdb4:

root@hardeningB:/home/antonio#

Hardening File Systems

Crypting

Crypting LVMs

Crypting LVMS

then we create a Physical Volume on it and check its ok
root@hardeningB:/home/antonio# pvcreate /dev/mapper/PVcriptao

Physical volume "/dev/mapper/PVcriptao" successfully created.

root@hardeningB:/home/antonio# pvdisplay

--- Physical volume ---

PV Name /dev/sdb1

.............................(this were created before)

Free PE 254

Allocated PE 257

PV UUID cGVydZ-A7Mw-up38-yC1x-MCFH-cLk3-7SzPzY

"/dev/mapper/PVcriptao" is a new physical volume of "3.00 GiB"

--- NEW Physical volume ---

PV Name /dev/mapper/PVcriptao

VG Name

PV Size 3.00 GiB

Allocatable NO

PE Size 0

Total PE 0

Free PE 0

Allocated PE 0

PV UUID Kc2XdS-32WF-purA-FSA0-mpMp-Ff0X-0Kn3W4

root@hardeningB:/home/antonio#

Hardening File Systems

Crypting

Crypting LVMs

Crypting LVMS

then we create a Volume Group on it and check it’s ok
root@hardeningB:/home/antonio# vgcreate VolumeCriptao /dev/mapper/PVcriptao

Volume group "VolumeCriptao" successfully created

root@hardeningB:/home/antonio# vgdisplay

--- Volume group ---

VG Name NuevoVol

..(the one created before)

--- Volume group ---

VG Name VolumeCriptao

System ID

Format lvm2

Metadata Areas 1

Metadata Sequence No 1

VG Access read/write

VG Status resizable

MAX LV 0

Cur LV 0

Open LV 0

Max PV 0

Cur PV 1

Act PV 1

VG Size 3.00 GiB

PE Size 4.00 MiB

Total PE 767

Alloc PE / Size 0 / 0

Free PE / Size 767 / 3.00 GiB

VG UUID DR5yYQ-f7C5-U4Ml-hT25-Vy0t-QW1F-yxJC0z

root@hardeningB:/home/antonio#

Hardening File Systems

Crypting

Crypting LVMs

Crypting LVMS

finally we create the two Logical Volumes where we can make
filesystems and then have them mounted
root@hardeningB:/home/antonio# lvcreate -L 1G VolumeCriptao -n Datos1

Logical volume "Datos1" created.

root@hardeningB:/home/antonio# lvcreate -L 1G VolumeCriptao -n Datos2

Logical volume "Datos2" created.

root@hardeningB:/home/antonio# mkfs.ext4 /dev/VolumeCriptao/Datos1

mke2fs 1.43.4 (31-Jan-2017)

Creating filesystem with 262144 4k blocks and 65536 inodes

Filesystem UUID: 8aefbaa6-5e66-40de-a308-2974fdd5a4db

Superblock backups stored on blocks:

32768, 98304, 163840, 229376

Allocating group tables: done

Writing inode tables: done

Creating journal (8192 blocks): done

Writing superblocks and filesystem accounting information: done

root@hardeningB:/home/antonio# mkfs.ext4 /dev/VolumeCriptao/Datos2

mke2fs 1.43.4 (31-Jan-2017)

Creating filesystem with 262144 4k blocks and 65536 inodes

...

Creating journal (8192 blocks): done

Writing superblocks and filesystem accounting information: done

root@hardeningB:/home/antonio#

Hardening File Systems

Crypting

encfs

Crypting
→encfs

Hardening File Systems

Crypting

encfs

Crypting partitions and LVMs overhead

crypting partitions (and logical volumes for that matter) is a
system-wide solution

must be root to do that

the passphrase must be input (either by keyboard or
removable media) at boot (which might be an inconvenience)

we end up crypting much information unnecessarily (mostly
system files)

sometimes we need a more simple solution

crypting only the home directories needed (as done by ubuntu,
crypted directories reside in files and are decrypted and
mounted upon login)
let the user be able to crypt the directories he feels like without
bothering the system administrator (this is what encfs does)

Hardening File Systems

Crypting

encfs

Crypting directories with encfs

we only need to install the package encfs (in debian type
distros apt-get install encfs)
Now we create the crypted directory onto a clear one
antonio@hardeningB:~$ encfs /home/antonio/Crypted/ /home/antonio/Clear/

Creating new encrypted volume.

Please choose from one of the following options:

enter "x" for expert configuration mode,

enter "p" for pre-configured paranoia mode,

anything else, or an empty line will select standard mode.

?>

Standard configuration selected.

Configuration finished. The filesystem to be created has

the following properties:

Filesystem cipher: "ssl/aes", version 3:0:2

Filename encoding: "nameio/block", version 4:0:2

Key Size: 192 bits

Block Size: 1024 bytes

Each file contains 8 byte header with unique IV data.

Filenames encoded using IV chaining mode.

File holes passed through to ciphertext.

Now you will need to enter a password for your filesystem.

You will need to remember this password, as there is absolutely

no recovery mechanism. However, the password can be changed

later using encfsctl.

New Encfs Password:

Verify Encfs Password:

antonio@hardeningB:~$

Hardening File Systems

Crypting

encfs

Crypting directories with encfs

in this case our decrypted directory is /home/antonio/Clear
and the crypted (real) files reside in /home/antonio/Crypted
antonio@hardeningB:~$ ls Clear

Desktop Documents Downloads

antonio@hardeningB:~$ ls Crypted/

dPs3OXDuMOBNoY-E3xxer1kQ jHmBig77BxJ5p6WRFoqrRlTe T4siEtLQ,9jkWBRDsTzjE2w0

antonio@hardeningB:~$

to umount the directory Clear (so that we lose access to the
files)
antonio@hardeningB:~$ fusermount -u /home/antonio/Clear

to have it mounted again
antonio@hardeningB:~$ encfs /home/antonio/Crypted/ /home/antonio/Clear/

(and supply the passphrase)

Hardening File Systems

Crypting

encfs

Crypting directories with encfs

passphrase can be changed with the encfsctl command

important information resides in the file
/home/antonio/Crypted/.encfs6.xml including the cypher
algorithm and the (crypted form) key

loss of this file means loss of the whole contents of the crypted
directory

Hardening File Systems

Locking directories and restricting access to devices

Locking directories and restricting access to
devices

Hardening File Systems

Locking directories and restricting access to devices

Other considerations

There might be also some interest in locking down some
system directories: a perfect candidate is the /boot directory,
which contains files needed to boot the system

as this directory does usually reside in an independent
partition, we can consider having it mounted read-only, the
downside is that this way we cannot perform a kernel upgrade
unless we remount it read-write. As a bonus, this prevents the
boot configuration from being changed

we might also want to restrict access to some devices, an
interesting way of doing this is blacklisting the kernel modules
that give support to that devices.

we can disable access to usb by adding ’blacklist

usb storage’ to file /etc/modprobe.d/blacklist.conf

	Basic concepts of files and directories in linux
	files and directories
	other types of files
	commands for dealing with files

	Introduction to filesystems in linux
	Discs, partitions and filesystems
	Filesystems in partitions
	LVM

	Possible threats
	ACLs
	Quotas
	Quotas on ext4 filesystems

	Crypting
	Crypting partitions
	Crypting LVMs
	encfs

	Locking directories and restricting access to devices

