
Hardening the boot procedure

Hardening the boot procedure
Fortificación de S.O.

Master en Seguridad Informática. 2023/2024
Universidad da Coruña
Universidade de Vigo

Antonio Yáñez Izquierdo
José Rodŕıguez Pereira

Hardening the boot procedure

Contents I

1 The Boot procedure
Understanding the boot procedure
booting steps
BIOS and UEFT type firmware
Partitions
MBR and GPT partitions

2 Securing the firmware

3 The Grub boot loader
The Grub boot loader
The Grub boot loader. Vulnerabilities

4 Securing the Grub boot Loader
Grub users and superusers
Grub Passwords

5 Other boot loaders

Hardening the boot procedure

The Boot procedure

The Boot procedure

Hardening the boot procedure

The Boot procedure

Understanding the boot procedure

The Boot procedure
→Understanding the boot procedure

Hardening the boot procedure

The Boot procedure

Understanding the boot procedure

booting

booting is the process by which the O.S. is loaded and the
system is ready to be used by users

as the O.S. provides the services necessary for the system to
be usable

those services would be necessary to load the O.S.
the O.S. must be loaded without those services in what we call
the bootstrapping process
usually a loader of the O.S. is loaded and executed and it is
this loader that loads the O.S.

Hardening the boot procedure

The Boot procedure

Understanding the boot procedure

automatic booting

the booting process is very hardware dependent

we can distinguish between two ways of booting

automatic
manual

automatic booting is the way the system boots most of the
times.

it does not requiere human intervention
the system boots by it’s own and a multiuser environment is
available after booting

we perform the manual booting when there’s some kind of
error and we need to oversee the booting process

Hardening the boot procedure

The Boot procedure

booting steps

The Boot procedure
→booting steps

Hardening the boot procedure

The Boot procedure

booting steps

booting steps

although it is very dependent on the hardware, the booting
process can be thought of consisting of the following steps

1 loading and executing the motherboard firmware boot program
2 loading and executing the boot loader (how this is done

depends on the type of motherboard firmware: BIOS, UEFI,
openboot . . .). It can consist of several stages

3 loading and executing the linux kernel
4 running the initialization scripts and starting the system

services

Hardening the boot procedure

The Boot procedure

booting steps

first booting step: motherboard firmware

the motherboard firmware contains some code to start the
booting of the machine

how this code works depends on the type of firmware.

most present linux systems run on one of these platforms:
intel x86 platform or amd64 platform

for these platforms there are two types firmware

a) BIOS type firmware. All 32 bit intel x86 machines and some
amd64 machines

b) UEFI type firmware. Newer amd64 machines

this firmware does not load the kernel dircectly (neither it is
capable of) but loads a program, the boot loader that itself
loads the kernel

Hardening the boot procedure

The Boot procedure

booting steps

second booting step: the boot loader

the boot loader is (should be) a simple program which only
has to load the kernel
its configuration file has two essential items to define

which kernel to load (and where to find it)
which device to use as root file system when that kernel is
loaded (and pass this information to the kernel)

UNFORTUNATELY most of the present bootloaders include
some non essential options such as splash images, menus . . .
which makes them bigger, slower and more tedious to install
and configure.
some boot loaders understand filesystems, so the kernel
location can be specified directly in the boot loader
configuration file
some boot loaders DO NOT UNDERSTAND filesystems, so
some additional steps need to be taken to make the boot
loader aware of the kernel location
the boot loader can be unistalled, reinstalled ot have its
configuration changed from the O.S.

Hardening the boot procedure

The Boot procedure

booting steps

third booting step: loading and executing the linux kernel

the kernel is loaded in memory and trasfered control

in linux the kernel typically resides in the file
/boot/vmlinuz....

as the linux kernel is modular (some of its functionality resides
on modules), sometimes it needs a minimal filesystem in
memory to provide it with modules necessary to boot (the
initial ram disk or initrd file)

it creates its data structures, probes for devices and performs
initialization routines

creates init, the first “user process“ in the system (some
systems have substituted init by systemd) which will initiate
the various services

Hardening the boot procedure

The Boot procedure

booting steps

fourth booting step: running the initialization scripts

the initialitiation scripts perform routine booting tasks (such
as properly configure the hardware) and start the system
services

init reads its configuration file (/etc/inittab) where it gets
the runlevel to boot to (systemd has a default target to boot
to, that can be changed with systemctl set-default. Available
targets can be seen with systemctl -list-units --type

target)
if there is some kind of error or the system is configured to
boot into single user mode, a root shell is created with only
the root filesystem mounted
otherwise the scripts initiating the system services are started
(/etc/rcN.d directories for different runlevels). (Different
systemd targets start a different set of services).

among the services started are the login (both text and
graphical) programs.
after the scripts are run, the machine is ready to use

Hardening the boot procedure

The Boot procedure

BIOS and UEFT type firmware

The Boot procedure
→BIOS and UEFT type firmware

Hardening the boot procedure

The Boot procedure

BIOS and UEFT type firmware

booting with BIOS type firmware

by construction, when the system is powered on (or when a
reset is done) the motherboard executes the code at certain
memory addresses, there resides the firmware

this code contains some initialization routines and sometimes
access to a system configuration menu

a device is defined as the first boot device (CD/DVD, disk,
tape, usb, floppy . . .). An attempt is made to boot from that
device, if unsuccessful, the defined as second boot device is
tried and so on

this firmware DOES NOT UNDERSTAND filesystems so:
for this type of firmware booting from a device means loading
the first block and executing the code in it

there’s no interface to this firmware to be accesed from the
O.S.

Hardening the boot procedure

The Boot procedure

BIOS and UEFT type firmware

booting with BIOS type firmware

in this type of firmware booting from a device means
LOADING THE CODE AT THE FIRST BLOCK OF
THAT DEVICE AND EXECUTING IT

when the device is a disk the first block of the disk contains
some boot code and the partition table

the usual code to have in this first block of disk (also called
Master Boot Record) is to have very simple program, that
reads the partition table, looks which partition has the active
flag on and then loads that partition’s first block and executes
it: the boot loader code (at least its first stage) can be copied
to that disk block

Hardening the boot procedure

The Boot procedure

BIOS and UEFT type firmware

booting with BIOS type firmware

the partitions scheme for this type of firmware is called MBR
partitions

to install a boot loader in one of this system we can

install it at the Master Boot Record (first block on disk): that
bootloader will execute upon switching the machine on
regardeless of the active partition
install it at the first block of the partition: that bootloader will
execute when the partition is marked active and there’s no
other bootloader at the MBR

Hardening the boot procedure

The Boot procedure

BIOS and UEFT type firmware

booting with UEFI type firmware

by construction, when the system is powered on (or when a
reset is done) the motherboard executes the code at certain
memory addresses, there resides the firmware

this code contains some initialization routines and sometimes
access to a system configuration menu

there’s an interface to access the firmware booting
configuration from the O.S. (in linux the program efibootmgr
does it)

this firmware UNDERSTANDS THE FAT FILESYSTEM
so a boot loader is just a program in a FAT filesystem

this firmware is capable of running executables in its own
format (.efi). This is used to run the bootloaders

Hardening the boot procedure

The Boot procedure

BIOS and UEFT type firmware

booting with UEFI type firmware

disks must be partitioned using a GPT partition table

there must exist, at least, an EFI System Partition (ESP)

this partition must be formatted using either the FAT16 or
FAT32 filesystems
this partition holds, among other things, the EFI drivers and
the EFI bootloaders
Operating Systems typically place their bootloaders in a
subdirectory of the EFI directory in the ESP
booting different operating systems can be done at the
firmware level

unless otherwise specified, the firmware will run the program
\EFI\BOOT\BOOTX64.EFI

Hardening the boot procedure

The Boot procedure

BIOS and UEFT type firmware

booting with UEFI type firmware

installing a boot loader in a machine with UEFI firmware
means

1) copying the executable file (.efi format) to the EFI System
Partition

2) if we want that boot loader to be run at boot time we must
tell the firmware to: we can do so in the firmware setup
program or from the O.S. (in linux we can do that with the
efibootmgr command)

should this executables be required to be signed, the booting
procedure would be known as secure boot

the EFI variables define which of these .efi files must be
loaded when booting

Hardening the boot procedure

The Boot procedure

Partitions

The Boot procedure
→Partitions

Hardening the boot procedure

The Boot procedure

Partitions

disks

disk are used to create filesystems on them

several filesystems can exist on a disk device in what we
usually call partitions

several partitions can be combined into one filesystem via
Logical Volume Management software

Hardening the boot procedure

The Boot procedure

Partitions

partitions

a disk is usually divided into several units called partitions

filesystems are created in partitions, usually one filesystem in
each partition although several partitions can be combined
into one filesystem via Logical Volume Management Software

we even can install different O.S.s in different partitions

in linux disk are designated as /dev/sda, /dev/sdb

/dev/sdc ...

partitions on disk /dev/sda are designated as /dev/sda1,
/dev/sda2., ...

Hardening the boot procedure

The Boot procedure

Partitions

partition tables

each disk has a table, usually located at the first block, that
defines the partitions on that disk

there are many standard formats to that table

MBR partitions
BSD disklabel
Solaris VTOC label
GUID Partition Table (GPT)
others. . . (Amiga Rigid Disk Block, RDB), (Apple Partition
Map, APM)

linux in the intet x86 and amd64 uses MBR and GPT
partitions

Hardening the boot procedure

The Boot procedure

MBR and GPT partitions

The Boot procedure
→MBR and GPT partitions

Hardening the boot procedure

The Boot procedure

MBR and GPT partitions

MBR partitions

the partition is located in the first sector of the disk

widespread in PC architecture

used mainly in Windows a linux systems

up to 4 partitions, called primary partitions, can be defined in
a disk

Hardening the boot procedure

The Boot procedure

MBR and GPT partitions

MBR table format

offset size Description

0x000 446 reserved

0x1be 16 partition entry 1

0x1ce 16 partition entry 2

0x1de 16 partition entry 3

0x1ee 16 partition entry 4

0x1fe 2 0xaa55 (little endian)

Hardening the boot procedure

The Boot procedure

MBR and GPT partitions

MBR partitions

one of the partitions can be defined as extended partition

this partition can be subdivided into what is called logical
partitions

the first sector of that partition, called EBR (Extended Boot
Record), has the same format as the MBR table except for

only the first two entries are used
if more partitions are needed, one of these two is defined as
extended partition, thus allowing for and ”infinite”, .i.e. 32
number of partitions

Hardening the boot procedure

The Boot procedure

MBR and GPT partitions

format of a partion entry

offset size Description

0x00 1 byte 80h for active partition, otherwise 00h

0x01 1 head of partition start

0x02 2 cylinder/sector (10/6bits) of partition start

0x04 1 code of partition type

0x05 3 CHS of partition end

0x08 4 LBA partition start

0x0C 4 partition size

Hardening the boot procedure

The Boot procedure

MBR and GPT partitions

creating MBR partitions

partitions on disks using the MPR partition scheme are limited
to 2 Terabytes

MBR partitions can be created, and manipulated with the
fdisk or cfdisk utilities on linux systems

grub usually names them (hdN,msdosM)

Hardening the boot procedure

The Boot procedure

MBR and GPT partitions

GUID Partition Table

defined as part of the EFI (Extensible Firmware Interface)
standard

sometimes refered to as the EFI label, or EFI partition table

the MBR uses 32 bits for Logical Block Adressing, hence its
limitations in size

GPT uses 64 bits for LBA, this limits the maximun partition
size to 264 − 1 sectors

most modern O.S. support GPT although some still have
some restrictions to boot from such partitions

Hardening the boot procedure

The Boot procedure

MBR and GPT partitions

GUID Partition Table

two copies of the GPT exist, the primary GPT at the
beginning of the disk, and the secondary GPT at the end

GBT uses logical block addessing

the first sector of the disk has a MBR partition table called
protective MBR that allows the disk to be booted from a
system with traditional BIOS

following sector is the header of the primary GPT

the GPT partition table consists of 128 bytes entries. The
minimun size of the table is 16Kbytes

Hardening the boot procedure

The Boot procedure

MBR and GPT partitions

format of a GPT partion entry

offset size Description

0x00 16 bytes GUID partition type

0x10 16 bytes Partition GUID

0x20 8 bytes Partition start LBA

0x28 8 bytes Partition end LBA

0x30 8 bytes Attribute flags

0x38 72 bytes Partition name

Hardening the boot procedure

The Boot procedure

MBR and GPT partitions

Comparision of MBR and GPT

Figure: https://i-technet.sec.s-msft.com/dynimg/IC197579.gif

Hardening the boot procedure

The Boot procedure

MBR and GPT partitions

GPT Partition Table

to access the GPT on linux the following commands can be
used

parted and gdisk

modern versions of fdisk

grub usually names them (hdN,gptM)

Hardening the boot procedure

Securing the firmware

Securing the firmware

Hardening the boot procedure

Securing the firmware

Firmware configuration

Most systems have a small program for configuring (to a
certain extent) the firmware

This program is usually accesed presing some of the Function
keys during POST (Power On Self Test) or pressing a
dedicated key

Among other things, with this program we usually can
configure the boot device (or which bootloader to run on
UEFI machines)

Hardening the boot procedure

Securing the firmware

Firmware configuration threat: booting from external
devices

Booting from external devices MUST be disabled

If we allow booting from external devices in the firmware

anyone with physical access to the machine can boot an
installation media or a live system or . . .
then it can access our files getting information, changing the
configuration, installing a backdoor . . .

Hardening the boot procedure

Securing the firmware

Firmware configuration threat: accessing the firmware
configuration

We MUST install a password to avoid anyone with physical
access to the machine change the booting configuration

Some firmware configuration programs define more than one
password

password to boot the machine
password to change the firmware configuration (usually called
setup)

Hardening the boot procedure

The Grub boot loader

The Grub boot loader

Hardening the boot procedure

The Grub boot loader

The Grub boot loader

The Grub boot loader
→The Grub boot loader

Hardening the boot procedure

The Grub boot loader

The Grub boot loader

The Grub boot loader

Grand Unified Boot Loader is the boot loader of choice in
linux since several years ago

It can boot directly linux and other O.S.: freeBSD, OpenBSD,
Solaris . . . or chainload to other bootloaders

Highly configurable, can display splash images, a menu . . .

It understands different file systems (ext2fs, ext4fs, ntfs, fat,
ufs . . .) and different partition types (MBR, gpt . . .) through
loadable modules

The boot menu can be edited at boot time and it has a rescue
mode command line interepreter capable o accesing
filesystems

Hardening the boot procedure

The Grub boot loader

The Grub boot loader

The Grub boot loader. Versions

There are two versions

Grub version 1, also refered to as Grub legacy

Configuration file editable by hand, tipycally
/boot/grub/menu.lst

Can only boot systems with BIOS type firmware

Grub version 2, the one that is being installed at present by
mostly every linux distro

Script generated configuration file (non editable by hand).
Typically /boot/grub/grub.cfg

Can boot both BIOS type and UEFI type firmware

Both versions provide a boottime-editable boot menu and a
rescue mode command line interepreter capable o accesing
filesystems

Hardening the boot procedure

The Grub boot loader

The Grub boot loader

The Grub boot loader. Basic usage

to install the grub with BIOS type firmware:
grub-install device : Example

grub-install /dev/sda2

to install the grub with UEFI type : grub-install

--efi-directory dir with ESP : Example

grub-install --efi-directory /boot/efi

Hardening the boot procedure

The Grub boot loader

The Grub boot loader

The Grub boot loader. Basic usage

To change de grub legacy configuration

edit the file /boot/grub/menu.lst

To change de grub version 1 configuration

edit the corresponding file in /etc/grub.d

update the grub configuration file (/boot/grub/grub.cfg
with grub-mkconfig

grub-mkconfig -o /boot/grub/grub.cfg

some versions allow for some customization to the
configuration file at boot time using /boot/grub/custom.cfg

or use update-grub or update-grub2

Hardening the boot procedure

The Grub boot loader

The Grub boot loader

Grub Menu

Figure: Grub menu

Hardening the boot procedure

The Grub boot loader

The Grub boot loader. Vulnerabilities

The Grub boot loader
→The Grub boot loader. Vulnerabilities

Hardening the boot procedure

The Grub boot loader

The Grub boot loader. Vulnerabilities

The Grub boot loader. Accesing files from the Grub

The Grub has a comand line interface and can understand
filesystems

We can use the command line interface (accesed when we
press ’c’ at the boot menu)

There we can inspect the contents of different partitions (may
need to load different modules)

We can even see the contents on some files

Hardening the boot procedure

The Grub boot loader

The Grub boot loader. Vulnerabilities

Grub command line

Figure: Grub command line

Hardening the boot procedure

The Grub boot loader

The Grub boot loader. Vulnerabilities

Accessing passwords with grub

Figure: Crypted form of the passwords

Hardening the boot procedure

The Grub boot loader

The Grub boot loader. Vulnerabilities

Accessing passwords with grub

Figure: Editing one Grub Menu item

Hardening the boot procedure

The Grub boot loader

The Grub boot loader. Vulnerabilities

The Grub boot loader. Booting single user mode

We can modify Grub menu lines at boot time (pressing ’e’ at
the menu)

With the adecuate parameters we can change the menu items
so that when we boot we boot in single user mode without
being prompted with a password

Now we can access the whole system with administrator
privileges

Hardening the boot procedure

Securing the Grub boot Loader

Securing the Grub boot Loader

Hardening the boot procedure

Securing the Grub boot Loader

Securing the grub boot loader

we want to disable access to grub funcionality that allows us
to view files or to modify menu items

in grub2 we can define the variable superusers as a list of
names of users who have access to the command line mode or
editing mode

these need not be system’s actual user names, just names for
the grub to identify by

if the variable is defined but left empty, no one will have
access to the command line or editing mode.

Hardening the boot procedure

Securing the Grub boot Loader

Grub users and superusers

Securing the Grub boot Loader
→Grub users and superusers

Hardening the boot procedure

Securing the Grub boot Loader

Grub users and superusers

Grub users and superusers

in grub2 we can also define the variable users as a list of
names of users who have access to the corresponding
menuentries

again these need not be system’s actual user names, just
names for the grub to identify by
a menuentry is usable by an user if stated so when defining the
menuentry

menuentry "Only to be booted by a superuser or user1" --users user1 {

set root=(hd0,2)

menuentries can be used by anyone if --unrestricted is
specified
menuentry "Anyone can boot this" --unrestricted {

set root=(hd0,2)

Menuentries without the --unrestricted or -user can only
be used by a superuser

Hardening the boot procedure

Securing the Grub boot Loader

Grub Passwords

Securing the Grub boot Loader
→Grub Passwords

Hardening the boot procedure

Securing the Grub boot Loader

Grub Passwords

Grub passwords

passwords for users and superusers can be set in the grub
configuration file with the command passwd

if we do not want the password be in clear text in this
configuration file very reasonable!! we can use the
password pbkdf2 comand
to generate this form of the passwd we can use the
grub-mkpasswd-pbkdf2 command
grub-mkpasswd-pbkdf2

Enter password:

Reenter password:

PBKDF2 hash of your password is grub.pbkdf2.sha512.10000.ACE955DF7381D3E5E2C4E4C27302FF6

7ADD3A4FF0F40CD71739634DF926C301C1E829287D493AF9801D3B80754FA56D47837225D3218CBFFD5FCFB1

66AC039B1.7BD5B5A1AE2D19B4723E0E4A8ACBC551FB56A969EF2FF5772DC695B9C54BC064872BD4BFEB868D

6CD598C2BDFDEF3A59681BE405180063CB78ED603C82621494

Hardening the boot procedure

Securing the Grub boot Loader

Grub Passwords

Accessing passwords with grub

Figure: Sample grub.cfg with passwords

Hardening the boot procedure

Securing the Grub boot Loader

Grub Passwords

Notes on grub authentification

superusers, users and passwords must no be defined directly in
the grub.cfg file as this file will be overwriten the next time
grub configuration is updated

the should be defined in one of the files in /etc/grub.d

as of now, grub-mkconfig doesn not handle autentification, so
if we want any menu entry to be unrestricted or usable by
users we must

create a corresponding menuentry en one of the files in
/etc/grub.d

modify the grub.cfg file by hand (and expect to remodify it
each tme grub-mkconfig is run)

Hardening the boot procedure

Other boot loaders

Other boot loaders

Hardening the boot procedure

Other boot loaders

Other boot loaders

althoug grub is most widespread bootloader in the linux world,
its not the only one

there are others much simpler: syslinux (typically used for
removable FAT formatted media) lilo, elilo . . .

we’ll comment briefly the lilo and elilo bootloaders

Hardening the boot procedure

Other boot loaders

LILO boot loader

Only boots with BIOS type firmware

Can chainload to other boot loaders

Its configuration resides by default in the file /etc/lilo.conf

It doesn’t understand any filesystem so it cannot read its
configuration: the program /sbin/lilo must be run after
changing the configuration file to update its internal tables

a password can be set for each entry with the command
password in its configuration file

with restricted we require the password not to boot, but to
append kernel parameters

Hardening the boot procedure

Other boot loaders

Sample LILO configuration file

A password (win) is required to boot windows

A password (pasguor) is required to append parameters to the
linux kernel
The default image (Linux) can boot with no password
image = /boot/vmlinuz-4.9.0-6-amd64

label = "Linux"

read-only

password=pasguor

restricted

initrd = /boot/initrd.img-4.9.0-6-amd64

other=/dev/sda1

password=win

label=windows

if the password is set to the empty string, it will be prompted
when running /sbin/lilo

Hardening the boot procedure

Other boot loaders

ELILO boot loader

Only boots with UEFI type firmware

Only understands FAT filesystem, so the loader (elilo.efi), its
configuration file (elilo.conf) the kernel and the initrd
must reside in the EFI System partition

Its configuration file resembles that of LILO

Hardening the boot procedure

Other boot loaders

others

There are other boot loaders for linux on the amd64
architecture, depending on the firmware type

rEFInd syslinux-efi and systemd-boot for UEFI type firmware

syslinux, em loadlin for BIOS type firmware

	The Boot procedure
	Understanding the boot procedure
	booting steps
	BIOS and UEFT type firmware
	Partitions
	MBR and GPT partitions

	Securing the firmware
	The Grub boot loader
	The Grub boot loader
	The Grub boot loader. Vulnerabilities

	Securing the Grub boot Loader
	Grub users and superusers
	Grub Passwords

	Other boot loaders

