

- 1) (70 pts) En cada ciclo, un proceso X puede estar en la cola de preparados (p) o en entrada/salida (s). Además, la CPU puede estar ocupada (c) por algún proceso o vacía $(\neg c)$. Formula los siguientes enunciados en LTL
 - Si la CPU está vacía y el proceso X no está preparado, entonces X está en entrada/salida
 - Si el proceso X está preparado, la CPU debe estar ocupada en el siguiente ciclo.
 - El proceso X no sufre inanición: si está en la cola, en algún momento sale de ella
 - El proceso X nunca se bloquea permanentemente en entrada/salida
 - Entre dos períodos distintos de entrada/salida el proceso X pasa siempre por la cola de preparados
- 2) (20 pts) Explica cuál es la principal diferencia formal entre los contraejemplos para una propiedad de safety y los contraejemplos para una propiedad de liveness. Indica si la primera de las fórmulas que has obtenido para el ejercicio anterior es una condición de safety o de liveness.
- 3) (50 pts)Dadas las fórmulas:

$$\alpha \stackrel{def}{=} \Box(p \ \mathcal{U} \ q) \qquad \qquad \beta \stackrel{def}{=} \Box(p \land \Diamond q)$$

demostrar cada dirección de la equivalencia o, si no se cumple, presentar un contraejemplo $\models \alpha \to \beta$ ¿se cumple? []-Sí []-No Explicación:

Satisfaction of a temporal formula

Let $M = s_0, s_1, \ldots$ with $i \geq 0$. We say that $M, i \models \alpha$ when:

- $M, i \models p \text{ if } p \in s_i \text{ (for } p \in \Sigma)$
- $M, i \models \Box \alpha$ if $M, j \models \alpha$ for all $j \geq i$
- $M, i \models \Diamond \alpha$ if $M, j \models \alpha$ for some $j \geq i$
- $M, i \models \bigcirc \alpha \text{ if } M, i+1 \models \alpha$
- $M, i \models \alpha \ \mathcal{U} \ \beta$ if there exists $n \geq i, M, n \models \beta$ and $M, j \models \alpha$ for all $i \leq j < n$.
- $M, i \models \alpha \ \mathcal{W} \ \beta \ \text{if} \ M, i \models \Box \alpha \ \text{or} \ M, i \models \alpha \ \mathcal{U} \ \beta$

Kamp's translation

Temporal formula α at time point i becomes MFO(<) formula $\alpha(i)$

$$(p)(i) \stackrel{def}{=} p(i)$$

$$(\neg \alpha)(i) \stackrel{def}{=} \neg \alpha(i)$$

$$(\alpha \lor \beta)(i) \stackrel{def}{=} \alpha(i) \lor \beta(i)$$

$$(\alpha \land \beta)(i) \stackrel{def}{=} \alpha(i) \land \beta(i)$$

$$(\bigcirc \alpha)(i) \stackrel{def}{=} \alpha(i+1)$$

$$(\Diamond \alpha)(i) \stackrel{def}{=} \exists j \ge i : \alpha(j)$$

$$(\Box \alpha)(i) \stackrel{def}{=} \forall j \ge i : \alpha(j)$$

$$(\alpha \ \mathcal{U} \ \beta)(i) \stackrel{def}{=} \exists j \ge i : (\beta(j) \land (\forall k \in i...j-1 : \alpha(k)))$$

$$(\alpha \ \mathcal{V} \ \beta)(i) \stackrel{def}{=} \forall j \ge i : (\beta(j) \lor (\exists k \in i...j-1 : \alpha(k)))$$