
telingo = ASP + Time

Pedro Cabalar1[0000−0001−7440−0953], Roland Kaminski2[0000−0002−1361−6045], Philip
Morkisch2[0000−0002−3915−2808], and Torsten Schaub2?[0000−0002−7456−041X]

1 University of Corunna, Spain
2 University of Potsdam, Germany

Abstract. We describe telingo, an extension of the ASP system clingo with tem-
poral operators over finite linear time and provide insights into its implementation.
telingo takes temporal logic programs as input whose rules contain only future
and present operators in their heads and past and present operators in their bod-
ies. Moreover, telingo extends the grammar of clingo’s input language with a
variety of temporal operators that can even be used to represent nested temporal
formulas. By using clingo’s interface for manipulating the abstract syntax tree of
non-ground programs, temporal logic programs are transformed into regular ones
before grounding. The resulting regular logic program is then solved incremen-
tally by using clingo’s multi-shot interface. Notably, this involves the consecutive
unfolding of future temporal operators that is accomplished via external atoms.
Finally, we provide an empirical evaluation contrasting standard incremental ASP
programs with their temporal counterparts in telingo’s input language.

1 Introduction

Answer Set Programming (ASP [15]) has become a popular approach to solving
knowledge-intense combinatorial search problems due to its performant solving en-
gines and expressive modeling language. However, both are mainly geared towards static
domains and lack native support for handling dynamic applications. This shortcoming
was addressed over the last decade by creating a temporal extension of ASP based
on Linear Temporal Logic (LTL [17]) and referred to as Temporal Equilibrium Logic
(TEL [5, 1]). Recently, this was distilled into a computationally more feasible version
based on finite linear time. The resulting logic, TELf [4] has meanwhile led to the
temporal ASP system telingo [4], which we describe in this system description. telingo
extends the full-fledged modeling language of the ASP system clingo by future and past
temporal operators and solves the corresponding temporal logic programs incrementally
by means of clingo’s multi-shot solving interface. Hence, we also provide insights into
how clingo’s infrastructure can be used to implement more complex ASP languages.

2 Temporal equilibrium logic over finite traces

The semantics of TELf rests upon finite traces (or sequences) of equilibrium models
(cf. [4]), just as LTLf rests upon finite traces of regular models [6]. In fact, LTLf is

? Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.

2 Pedro Cabalar, Roland Kaminski, Philip Morkisch, and Torsten Schaub

obtained by adding the law of the excluded middle for each propositional atom and
each time point, or in terms of ASP, by adding a corresponding choice rule (see below).
Hence, telingo can be used just as well for computational tasks in LTLf .

TELf extends the language of propositional logic by the future and past temporal
operators listed in the second and fifth row of Table 1. The first line gives the two nullary

&initial I initial &final F final
’p •p previous p’ ◦p next

< • previous > ◦ next
<? S since >? U until
<* T trigger >* R release
<? � eventually before >? ♦ eventually afterward
<* � always before >* � always afterward
<: •̂ weak previous >: ◦̂ weak next

Table 1. Past and future temporal operators in telingo and TELf

operators I and F that hold exclusively at the initial and final state of a trace, respectively.
The common one-step operators • and ◦ allow us to test whether a proposition holds
in the previous or next state in a trace, respectively. Their weak versions are defined as
•̂ϕ def

= •ϕ ∨ I and ◦̂ϕ def
= ◦ϕ ∨ F, respectively. The unary operators � and � allow us to

refer to one or all states in the past, respectively, while their counterparts ♦ and � relate
to the future. Common to all operators, a bold version indicates a past operator, while an
outlined one refers to the future. As a simple example, the proposition •�p requires that
p must be true in all states of a trace starting from the state preceding the one at hand.
For another example, consider the formula

�(shoot ∧ •�shoot ∧�unloaded → ♦fail) (1)

expressing the sentence: “If we shoot twice with a gun that was never loaded, it will even-
tually fail.” Finally, an atom p is put under the semantics of LTLf by adding �(p ∨ ¬p).
For the binary operators S, T, U, and R along with more details and illustration regarding
the temporal language and its semantics the interested reader is referred to [1, 4].

Any temporal formula can be translated into a (strongly equivalent) temporal logic
program. Given an alphabet A, such programs consist of three types of temporal rules

– initial rules of form B → A
– dynamic rules of form ◦̂�(B → A)
– final rules of form �(F→ (B → A))

where B = b1 ∧ · · · ∧ bn with n ≥ 0, A = a1 ∨ · · · ∨ am with m ≥ 0 and the bi and
aj are temporal literals as in {a,¬a, •a,¬•a | a ∈ A} for dynamic rules, and regular
literals {a,¬a | a ∈ A} for initial and final rules.

As their names suggest, initial and final rules impose conditions on the first and last
state of a trace, respectively. The former can also be expressed in analogy to the latter

telingo = ASP + Time 3

as �(I→ (B → A)). A temporal program consisting of initial rules only amounts to a
regular logic program. Dynamic rules capture transitions among states. To this end, they
comprise regular and temporal literals that may refer to a preceding state via the previous
operator •. To avoid referring to states beyond the initial and final state, dynamic rules
are preceded with the weak next operator ◦̂ operator.

A temporal logic program can be converted into a regular one by adorning literals
with explicit timestamps (cf. [14]). For this, let Ak = {ak | a ∈ A} be a time stamped
copy of alphabetA for each time point k. We outline below the module-based translation
introduced in [4] since it accounts for telingo’s incremental approach to computing
traces: A module P is a triple (P, I,O) consisting of a logic program P over alphabet
AP and sets I and O of input and output atoms such that (i) I ∩O = ∅, (ii)AP ⊆ I ∪O,
and (iii) H(P) ⊆ O, where H(P) gives all atoms occurring in rule heads in P (cf. [16]).
Whenever clear from context, we associate P with (P, I,O). In our setting, a set X of
atoms is a stable model of P, ifX is a stable model of logic program P .3 Two modules P1

and P2 are compositional, if O1 ∩ O2 = ∅ and O1 ∩ C = ∅ or O2 ∩ C = ∅ for every
strongly connected component C of the positive dependency graph of the logic program
P1 ∪ P2. In other words, all rules defining an atom must belong to the same module, and
no positive recursion is allowed among modules. Whenever P1 and P2 are compositional,
their join is defined as the module P1 tP2 = (P1 ∪P2, (I1 \O2)∪ (I2 \O1), O1 ∪O2).
The module theorem [16] ensures that compatible stable models of P1 and P2 can be
mapped to one of P1 t P2, and vice versa.

Given this, the translation τ at time point k is defined for temporal literals as

τk(a)
def
= ak τk(¬a) def

= ¬ak for a ∈ A
τk(•a) def

= ak−1 τk(¬•a) def
= ¬ak−1 for a ∈ A

and for temporal rules r in a temporal logic program P partitioned into its initial, I (P),
dynamic, D(P), and final rules, F (P), as

τk(r)
def
= τk(a1) ∨ · · · ∨ τk(am)← τk(b1) ∧ · · · ∧ τk(bn) if r ∈ I (P) ∪D(P)

τk(r)
def
= τk(a1) ∨ · · · ∨ τk(am)← τk(b1) ∧ · · · ∧ τk(bn) ∧ ¬qk+1 if r ∈ F (P)

for a new atom q /∈ A. The modules Pk corresponding to a temporal logic program P
over A at time point k are then defined as

P0
def
= (P0, {q1},A0) Pk

def
= (Pk,Ak−1 ∪ {qk+1},Ak ∪ {qk}) for k > 0

where

P0
def
= {τ0(r) | r ∈ I (P)} ∪ {τ0(r) | r ∈ F (P)} (2)

Pk
def
= {τk(r) | r ∈ D(P)} ∪ {τk(r) | r ∈ F (P)} ∪ {qk ←} (3)

The idea is to associate the rules at each time point with a module and to successively
add modules corresponding to increasing time points (while leaving all previous modules

3 Note that the default value assigned to input atoms is false in multi-shot solving [10]; this differs
from the original definition [16] where a choice rule is used.

4 Pedro Cabalar, Roland Kaminski, Philip Morkisch, and Torsten Schaub

unchanged). A stable model obtained after k compositions then corresponds to a trace of
length k.

To ensure the compositionality of modules, dynamic rules are restricted to heads of
regular literals; such rules are called present-centered [4]. This restriction warrants that
modules only incorporate atoms from previous time points, as reflected by Ak−1 in the
input of Pk, and thus that no positive cycles can occur across modules.

The exception are auxiliary atoms like qk+1 that belong to the input of each Pk for
k > 0 but only get defined in the next module Pk+1. The goal of introducing atoms
like qk+1 in the translation of final rules r ∈ F (P) is to deactivate their image τk(r)
whenever k is incremented. More precisely, the idea is to let atom qk+1 be false at each
horizon k (by declaring it as a yet undefined input atom), while all previous atoms
q1, . . . , qk are set to true via the facts added in P1, . . . , Pk, respectively. In this way, for
r ∈ F (P) only τk(r) is potentially applicable at time point k, while all rules τi(r) are
inapplicable for earlier time points i = 1..k−1.

3 The telingo language

telingo extends the full-fledged modeling language of clingo by the future and past
temporal operators listed in the first and fourth row of Table 1.

Although telingo’s inner workings rely on present-centered temporal logic programs
(to support incremental ASP solving), it offers a more general input language. This is
because the fragment of past-future rules is reducible to present-centered programs [4].
A temporal formula is a past-future rule if it has form A← B where B and A are just
temporal formulas with the following restrictions: B and A contain no implications
(other than negations4), B contains no future operators, and A contains no past operators.
An example of a past-future rule is (1). This fragment is not only quite expressive but
also rather natural when using the causal reading of program rules by drawing upon the
past in rule bodies and referring to the future in rule heads. Considering that, past-future
rules also serve as the design guideline for telingo’s input language.

To this end, telingo allows for enclosing a nested temporal formula ϕ in an expression
of the form &tel{ϕ}. Formulas like ϕ are formed via the temporal operators in Line 3
to 8 in Table 1 along with the Boolean operators &, |, ˜ for conjunction, disjunction,
and negation, respectively (thus avoiding nested implications). The underlying idea is
to use the smaller symbol < as the basis of all past operators, and to combine it with a
question mark ? or a Kleene star * depending on whether the semantics of the respective
operator relies on an existential or universal quantification over states. This is nicely
exemplified by the always and eventually operators, represented by <* and <?. In fact,
the symbols <* and <? are overloaded due to their usage as binary and unary operators.
For a simple example, consider the formula •p ∨ �r represented as ‘&tel{< p | <?
p}’. Similarly, future operators are built with the greater symbol ‘>’ as their basis. More
generally, temporal expressions of the form &tel{ϕ} are treated like atoms in telingo’s
input language (and constitute theory atoms in clingo [9]); they are compiled away by
telingo’s preprocessing that ultimately yields present-centered logic programs. In order

4 Recall that ¬ϕ def
= ϕ→ ⊥ in the logic of here-and-there and thus in TELf , too.

telingo = ASP + Time 5

to keep this translation simple, the current version of telingo, viz 1.0, restricts their
occurrence in temporal rules A← B to being positive in A and preceded by one or two
negations in their body B.5 No restriction is imposed on their occurrences in integrity
constraints. For example, the integrity constraint ‘shoot ∧�unloaded ∧ •�shoot → ⊥’
is expressible in several alternative ways.

:- &tel { shoot & <* unloaded & < <? shoot }.
:- shoot, &tel { <* unloaded & < <? shoot }.
:- shoot, &tel { <* unloaded }, &tel { < <? shoot }.

Alternatively, present-centered logic programs can be written directly by using the
alternative notation for the common one-step operators • and ◦. Here, a quote is used
either at the beginning or the end of a predicate symbol to indicate that the literal at hand
must be true in the previous or next state in the trace, respectively. For instance, •p(7) is
represented by ’p(7), while ◦q(X) is q’(X). For convenience, telingo 1.0 allows for
using ◦ in singleton rule heads;6 as above, this is compiled away during preprocessing.

The distinction between different types of temporal rules is done in telingo via
clingo’s #program directives [10], which allow us to partition programs into subpro-
grams. More precisely, each rule in telingo’s input language is associated with a temporal
rule r of form A← B and interpreted as r, ◦̂�r, or �(F→ r) depending on whether
it occurs in the scope of a program declaration headed by initial, dynamic, or
final, respectively. Additionally, telingo offers always for gathering rules preceded
by � (thus dropping ◦̂ from dynamic rules). A rule outside any such declaration is
regarded to be in the scope of initial.

For illustration, we give in Listing 1 an exemplary telingo encoding of the Fox, Goose
and Beans Puzzle available at https://github.com/potassco/telingo/
tree/master/examples/river-crossing.

Once upon a time a farmer went to a market and purchased a fox, a goose,
and a bag of beans. On his way home, the farmer came to the bank of a river
and rented a boat. But crossing the river by boat, the farmer could carry only
himself and a single one of his purchases: the fox, the goose, or the bag of beans.
If left unattended together, the fox would eat the goose, or the goose would eat
the beans. The farmer’s challenge was to carry himself and his purchases to the
far bank of the river, leaving each purchase intact. How did he do it?

(https://en.wikipedia.org/wiki/Fox,_goose_and_bag_of_beans_puzzle)

In Listing 1, lines 3-5 and 9-10 provide facts holding in all and the initial states, respec-
tively; this is indicated by the program directives headed by always and initial.
The dynamic rules in lines 14-22 describe the transition function. The farmer moves
at each time step (Line 14), and may take an item or not (Line 15). Line 17 describes the
effect of action move/1, Line 18 its precondition, and Line 20 the law of inertia. The
second part of the always rules give state constraints in Line 24 and 25. The final
rule in Line 29 gives the goal condition.

5 The extension to arbitrary occurrences is no hurdle and foreseen in future versions of telingo.
6 As above, the extension to disjunctions is no principal hurdle and foreseen in future versions of

telingo; currently they must be expressed by using &tel.

6 Pedro Cabalar, Roland Kaminski, Philip Morkisch, and Torsten Schaub

1 #program always.

3 item(fox;beans;goose).
4 route(river_bank,far_bank). route(far_bank,river_bank).
5 eats(fox,goose). eats(goose,beans).

7 #program initial.

9 at(farmer,river_bank).
10 at(X,river_bank) :- item(X).

12 #program dynamic.

14 move(farmer).
15 0 { move(X) : item(X) } 1.

17 at(X,B) :- ’at(X,A), move(X), route(A,B).
18 :- move(X), item(X), ’at(farmer,A), not ’at(X,A).

20 at(X,A) :- ’at(X,A), not move(X).

22 #program always.

24 :- at(X,A), at(X,B), A<B.
25 :- eats(X,Y), at(X,A), at(Y,A), not at(farmer,A).

27 #program final.

29 :- at(X,river_bank).

31 #show move/1.
32 #show at/2.

Listing 1. telingo encoding for the Fox, Goose and Beans Puzzle

All in all, we obtain two shortest plans consisting of eight states in about 20 ms.
Restricted to the move predicate, telingo reports the following solutions:

Time Solution 1 Solution 2

1
2 move(farmer) move(goose) move(farmer) move(goose)
3 move(farmer) move(farmer)
4 move(beans) move(farmer) move(farmer) move(fox)
5 move(farmer) move(goose) move(farmer) move(goose)
6 move(farmer) move(fox) move(beans) move(farmer)
7 move(farmer) move(farmer)
8 move(farmer) move(goose) move(farmer) move(goose)

We have chosen this example since it was also used by [3] to illustrate the working
of stelp, a tool for temporal answer set programming with TELω . We note that stelp and

telingo = ASP + Time 7

telingo differ syntactically in describing transitions by using next or previous operators,
respectively. Since telingo extends clingo’s input language, it offers a richer input
language, as witnessed by the cardinality constraints in Line 15 in Listing 1. Finally,
stelp uses a model checker and outputs an automaton capturing all infinite traces while
telingo returns finite traces corresponding to plans.

4 The telingo system

The implementation of telingo draws heavily on the functionality provided by clingo’s
application programming interface (API7). This is also why telingo allows us to extend
the full-fledged modeling and solving capabilities of clingo.

We outline telingo’s operation below by following its workflow.

4.1 Parsing temporal logic programs

All of the temporal language additions are designed to use available syntax features, so
that clingo’s (or better gringo’s [11]) parser can be used as is. Atoms like &initial,
&final, and &tel, as well as the temporal operators in the first and fourth column of
Table 1 rely on clingo’s theory language capacities that allow for defining customized
syntactic expressions by supplementing a dedicated (theory) grammar (cf. [9]). Also,
clingo tolerates quotes in predicate names. Finally, telingo uses clingo’s #program
directive [10] for partitioning temporal logic programs into their four types of rules.

4.2 Translating temporal logic programs into regular ones

The translation of temporal logic programs into regular ones relies on the processing
of the temporal adornments described in Section 4.1. This information is used for
generating an (incremental) logic program, as described in Section 2. In practice, the
resulting program is equipped with program directives that allow clingo to use its
multi-shot solving capabilities (cf. [13, 10]) for solving the program incrementally. The
actual translation is accomplished by means of the functionalities of clingo’s API for
manipulating the abstract syntax tree of a logic program. That is, the list of rules is
extracted, rewritten, and finally passed back to clingo.

The most intriguing part in this process is the (incremental) rewriting of future-
oriented operators in heads of past-future rules. In fact, the restriction of having future
operators occur in rule heads only and past operators occur in rule bodies results in a
normal form where all future operators occur negatively in rule bodies and rule heads do
not contain temporal operators anymore. In general, this normal form creates a temporal
program with an infinite number of rules but only a finite number of them are required
for a fixed horizon. The translation rests on the idea that for past-future rules there can
be no positive cycles involving an atom from the current step and an atom from a future
step. This allows us to shift rule heads and bring a program in the above normal form.
The formal elaboration of this translation is detailed in a companion paper, and we focus
below on an example-driven presentation.

7 https://potassco.org/clingo

8 Pedro Cabalar, Roland Kaminski, Philip Morkisch, and Torsten Schaub

Let us begin by illustrating the elimination of negative occurrence of future operators
in rule bodies. As just mentioned, they appear during telingo’s translation in an interme-
diate step but can be turned back into present-centered temporal logic programs.8 For
example, consider an occurrence of ¬◦♦a (viz. ‘not &tel { > >? a }’) in a rule
body, since this pops up below again. Each such negative occurrence of ◦♦a is replaced
by an auxiliary atom `◦♦a:

�(A← ¬◦♦a ∧B) 7→ �(A← ¬`◦♦a ∧B)

Since the occurrence of ◦♦a is negative, TEL allows us to treat it as in classical (linear
time) logic, namely by starting from �(`◦♦a ↔ ◦♦a), we get �(`◦♦a ↔ ◦a ∨ ◦◦♦a),9
which we decompose into three integrity constraints in the standard way:

�(`◦♦a ∨ ¬`◦♦a)

�(⊥ ← `◦♦a ∧ ¬◦a ∧ ¬◦◦♦a) (4)
�(⊥ ← ¬`◦♦a ∧ ◦a)
�(⊥ ← ¬`◦♦a ∧ ◦◦♦a) (5)

While the first rule makes us choose the truth value of `◦♦a, the last three rules result
from rewriting the above equivalence (into two classical implications).

Finally, replacing in (4) and (5) the remaining occurrences of ◦♦a by `◦♦a and time
shifting the inner part backwards by one and the outer one forward again by prepending
◦̂ results in the following set of present-centered rules

�(`◦♦a ∨ ¬`◦♦a)

◦̂�(⊥ ← •`◦♦a ∧ ¬a ∧ ¬`◦♦a)

◦̂�(⊥ ← ¬•`◦♦a ∧ a)
◦̂�(⊥ ← ¬•`◦♦a ∧ `◦♦a)

�((⊥ ← `◦♦a)← F) (6)

all of which are now ready to be compiled into regular rules with the translation given in
Section 2. The application of the (weak) next operator shifts the temporal context of the
actual rules one step ahead; the usage of the weak version ◦̂ makes sure that they are not
falsified at the end of the trace. The final rule in (6) is added to ensure that `◦♦a is false
in the final state. All in all, we get a translation linear in the size of the original literal.

Now, to illustrate the actual rewriting of future-oriented operators in rule heads, let
us start with a simple past-future temporal rule

�(a ∨ ◦b← `) (7)

where ` can be thought of as an auxiliary atom, representing the original body. a ∨ ◦b
means that a is true now or b is true at the next point in time.

8 This is also why this extension to the past-future format is tolerated in telingo’s input language.
9 ◦♦a↔ ◦a ∨ ◦◦♦a is valid in TEL.

telingo = ASP + Time 9

The translation consists of three parts. First, we time-shift a rule for all possible time
points, in which an atom, viz. a or b, can be made true. For the above rule, there are only
two relevant rules:

�(a ∨ ◦b← `)

◦̂�(•a ∨ b← •`)

Until this point, both rules together are strongly equivalent to the original one in (7).
Note that •a ∨ b means (outside of any temporal context) that a is true at the previous
point in time or b is true now.

Then, in the resulting rules, we double negate each outermost next and previous
operator in the rule head. For our example, this results in:

�(a ∨ ¬¬◦b← `)

◦̂�(¬¬•a ∨ b← •`)

Here, we loose strong equivalence but the past-future condition guarantees that the
solutions of the obtained programs are the same.

Finally, we can unfold the formulas in the usual way. For our example, this is:

�(a← ¬◦b ∧ `)
◦̂�(b← ¬•a ∧ •`)

This is strongly equivalent to the rules obtained in the previous step of the translation.
Once the negative occurrence of ◦b is eliminated from the first rule (as shown above),
we get a set of present-centered dynamic rules being equivalent to the one in (7).

Finally, let us consider the treatment of an inductive operator, and have a look at the
eventually operator in the head of the following rule:

�(♦a← `) (8)

♦a means that a is true now or at some point in the future; its unfolding relies on the
temporal law ♦a↔ a ∨ ◦♦a.

By letting •0ϕ = ϕ and •iϕ = ••i−1ϕ for i > 0, we obtain in step one:

�(a ∨ ◦♦a← •0`)
�(•1a ∨ a ∨ ◦♦a← •1`)

...
�(•ia ∨ · · · ∨ •1a ∨ a ∨ ◦♦a← •i`)

Taken together, these rules are equivalent to the rule in (8) but differ in the number of
applications of the law ♦a↔ a ∨ ◦♦a.10

10 Unlike in the example above, we do not obtain strongly equivalent rules because we do not
introduce weak next operators. This is safe in this context because the literal •i` does not apply
for horizons smaller i.

10 Pedro Cabalar, Roland Kaminski, Philip Morkisch, and Torsten Schaub

For each i ≥ 0, we can then add the double negations as in the example above:

�(¬¬•ia ∨ · · · ∨ ¬¬•1a ∨ a ∨ ¬¬◦♦a← •i`)

And finally, we can shift the double negated literals into the rule body:

�(a← ¬•ia ∧ · · · ∧ ¬•1a ∧ ¬◦♦a ∧ •i`)

Once all negative occurrences of ◦♦a are eliminated (as shown above), we get once
more a linear number of present-centered dynamic rules (of successively increasing size)
being equivalent to the one in (8). In this case, we thus get a translation of quadratic size.

In general, the unfolding of future formulas may result in an exponential translation
whereas the one for past formulas is linear in size. Currently, telingo unfolds without
introducing shortcuts. We might be able to use a full Tseitin-style translation introducing
auxiliary atoms to keep the translation compact, along with a good strategy guaranteeing
compactness, which might be more difficult in the presence of inductive operators.

4.3 Solving regular logic programs incrementally

The above translation results in two (non-ground) regular logic programs corresponding
to P0 and Pk in (2) and (3), respectively. A control loop, similar to the one in [13], starts
with P0 and successively adds Pk for increasing k, grounds it, and solves the accumulated
program until a stop criterion is met. In other words, telingo computes the stable models
of P0 ∪

⋃
k≥0 Pk for k ≥ 0. This process is controlled by three options: --imin

and --imax, the minimum and maximum number of solving steps, respectively, and
--istop, the stop criterion, which defaults to sat and offers alternatives unsat and
unknown.

An interesting detail concerns the treatment of the final rule in Line 29 of Listing 1,
viz. ‘:- at(X,river_bank).’ standing for �(F → ¬at(X, river bank)). As
described in Section 2, final rules are equipped with a special-purpose literal, ¬qk+1,
during their translation into regular rules in order to control their range of applicability
in view of increasing k. In terms of module theory, qk+1 is an input atom, and they are
accounted for by #external declarations in clingo. In our example, the recurrent test
of ‘:- at(X,river_bank).’ at the final time point gives rise to the program:

1 #external q(k+1). [false]
2 :- at(X,river_bank,k), not q(k+1).

The time parameter k is handled by the aforementioned control loop through clingo’s
API. The declaration of q(k+1) as an external exempts it from simplification and
allows for assigning truth values via the API. The trailing [false] gives the initial
truth value.11 For brevity, we refrain from duplicating the rule for all instantiations
of X. For k = 0, we thus get ‘:- at(X,river_bank,0), not q(1).’ along
with q(1) being false. Hence, the integrity constraint amounts to requiring that
at(X,river_bank) is false for all instantiations of X at time point 0.

For k = 1, we have two instances of Line 2:
11 This feature is introduced with clingo 5.4.

telingo = ASP + Time 11

:- at(X,river_bank,0), not q(1).
:- at(X,river_bank,1), not q(2).

However, while as before q(2) is set to false by its declaration as an external (cf.
Line 1 above), the control loop changes the truth of q(1) to true. As a result, the first
integrity constraint becomes vacuous and only the second one applies, now requiring
that at(X,river_bank) is false at time point 1 (for all instantiations of X). This
mechanism ensures that final rules always apply exclusively to the last point in time.
Note that the change of the truth value of external atoms via the API accounts for the
addition of facts in (3).

4.4 Extracting traces from regular stable models

telingo translates a temporal logic program into a regular one, whose stable models are
incrementally computed by clingo. The obtained model is then translated back into a
temporal trace by reversing translation τ on the atoms in the model. That is, each atom
ak is turned into a and associated with the state numbered k.

5 Experiments

To check whether our approach imposes a significant burden on grounding and solving,
we set up the following experiment: We took the benchmark suite used in [8] for
incrementally solving ASP planning benchmarks.12 This benchmark suite was obtained
in [8] by manually producing incremental ASP encodings from encodings using a fixed
plan length. This includes the benchmark domains hanoi-tower, labyrinth, no-mystery,
ricochet-robots, sokoban, and visit-all, all originating in recent ASP competitions. In
turn, we manually translated the incremental encodings from [8] into the temporal input
language of telingo.13 This resulted in two benchmark suites, in each case consisting
of 69 benchmark instances. We then contrasted the results obtained by solving the
incremental instances with clingo 5.3 and the temporal ones with telingo 1.0 (also based
on clingo 5.3). The experiments ran under Linux on Intel Xeon E5-2650 v4 processors
and 64 GB memory; we selected instances solvable within 24h by both clingo and
telingo, and computed a single model.

Figure 1 shows two scatter plots comparing the runtime of clingo and telingo for
both grounding and solving. Each point in such a plot displays the runtimes for one
instance; the runtime of clingo is displayed on the x-axis and the runtime of telingo on
the y-axis. Thus, we find easier instances in the lower left part and harder instances in
the upper right part of a plot. Furthermore, the farther a point is away from the diagonal,
the more the runtimes of both systems diverge; for points in the lower right part of a
plot, telingo is faster and for points in the upper left part, clingo is faster. To highlight
runtime differences, we use the colors from a heat map ranging from blue (both systems
are equally fast) over yellow to red (highest runtime deviation of both systems).

12 https://github.com/potassco/asp-planning-benchmarks
13 https://github.com/potassco/clingo-vs-telingo-planning/tree/
v1.0.0

12 Pedro Cabalar, Roland Kaminski, Philip Morkisch, and Torsten Schaub

0 1 2 3

0

1

2

3

Grounding time clingo (s)

G
ro
u
n
d
in
g
ti
m
e
te
li
n
g
o
(s
)

100 101 102 103 104 105

100

101

102

103

104

105

Solving time clingo (s)

S
ol
v
in
g
ti
m
e
te
li
n
g
o
(s
)

Fig. 1. Grounding and solving times of clingo and telingo

First, let us look at the grounding times in the left plot in Figure 1. We see that most
points are close to the diagonal, showing that both systems perform quite similarly. All
instances could be grounded in less than 3 seconds making grounding times negligible
in the overall runtime. Furthermore, the resulting ground programs have nearly the same
number of rules and atoms (each deviates by 0.01% on average). These results are not
that surprising given that ASP planning benchmarks only deal with one-step transitions,
and do not involve any complex temporal statements. Here, the translation in telingo
boils down to adding time parameters to atoms. Hence, the translated program passed to
the grounder is very similar to the incremental program used by clingo.

Next, we look at the solving times depicted in the right plot in Figure 1. Note
that both clingo and telingo find solutions for the smallest horizon where a problem
is satisfiable. Since the difficulty of planning problems increases exponentially with
the search horizon, we use logarithmic axes in the plot. We see that there are runtime
fluctuations between both systems. This is due to different traversals of the search space
of both systems induced by heuristic effects. Such fluctuations are to be expected with
ASP solvers, which are sensitive to small changes in instances, where even changing the
order in which rules are passed to a solver can make a big difference in runtime.

All in all, our experiments confirm that telingo’s machinery imposes no significant
encumbrance compared to a direct treatment with clingo.14

6 Discussion

We have described the temporal ASP system telingo, starting from its input language,
over its workflow on top of clingo, to an empirical demonstration of its lightweight
machinery. Previous temporal extensions to ASP [3, 12] relied on different semantics
resulting in translations to automata and thus model checkers. What makes telingo
14 Detailed results are obtainable at https://github.com/potassco/
clingo-vs-telingo-planning/tree/v1.0.0/benchmark-results

telingo = ASP + Time 13

interesting is that it constitutes a true extension of the ASP system clingo, and provides
us with a full-fledged temporal modeling language. Moreover, it allows for an easy
embedding of action languages (cf. [4]) and offers the specification of nested logic
programs. For the future, we envisage the integration of constructs from dynamic logic,
as proposed in [2], and the integration of more flexible reasoning modes, as used in [8].

Acknowledgments. This work was partially supported by MINECO, Spain, grant TIC2017-
84453-P, Xunta de Galicia, Spain (GPC ED431B 2016/035 and 2016-2019 ED431G/01,
CITIC), and DFG grant SCHA 550/9.

References

1. Aguado, F., Cabalar, P., Diéguez, M., Pérez, G., Vidal, C.: Temporal equilibrium logic: a
survey. Journal of Applied Non-Classical Logics 23(1-2), 2–24 (2013)

2. Bosser, A., Cabalar, P., Diéguez, M., Schaub, T.: Introducing temporal stable models for linear
dynamic logic. In: Proceedings of the International Conference on Principles of Knowledge
Representation and Reasoning. pp. 12–21. AAAI Press (2018)

3. Cabalar, P., Diéguez, M.: STELP: a tool for temporal answer set programming. In: [7], pp.
370–375

4. Cabalar, P., Kaminski, R., Schaub, T., Schuhmann, A.: Temporal answer set programming on
finite traces. Theory and Practice of Logic Programming 18(3-4), 406–420 (2018)

5. Cabalar, P., Pérez Vega, G.: Temporal equilibrium logic: A first approach. In: Proc. of the
International Conference on Computer Aided Systems Theory. pp. 241–248. Springer (2007)

6. De Giacomo, G., Vardi, M.: Linear temporal logic and linear dynamic logic on finite traces.
In: Proceedings of the International Joint Conference on Artificial Intelligence. pp. 854–860.
IJCAI/AAAI Press (2013)

7. Delgrande, J., Faber, W. (eds.): Proceedings of the International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning, Springer (2011)

8. Dimopoulos, Y., Gebser, M., Lühne, P., Romero, J., Schaub, T.: plasp 3: Towards effective
ASP planning. Theory and Practice of Logic Programming (2018), to appear.

9. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.: Theory solv-
ing made easy with clingo 5. In: Technical Communications of the International Conference
on Logic Programming. vol. 52, pp. 2:1–2:15. OASIcs (2016)

10. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with clingo.
Theory and Practice of Logic Programming 19(1), 27–82 (2019)

11. Gebser, M., Kaminski, R., König, A., Schaub, T.: Advances in gringo series 3. In: [7], pp.
345–351

12. Giordano, L., Martelli, A., Theseider Dupré, D.: Reasoning about actions with temporal
answer sets. Theory and Practice of Logic Programming 13(2), 201–225 (2013)

13. Kaminski, R., Schaub, T., Wanko, P.: A tutorial on hybrid answer set solving with clingo. In:
Proc. of International Summer School of the Reasoning Web. pp. 167–203. Springer (2017)

14. Kamp, J.: Tense Logic and the Theory of Linear Order. Ph.D. thesis, UCLA (1968)
15. Lifschitz, V.: Answer set planning. In: Proceedings of the International Conference on Logic

Programming. pp. 23–37. MIT Press (1999)
16. Oikarinen, E., Janhunen, T.: Modular equivalence for normal logic programs. In: Proceedings

of the European Conference on Artificial Intelligence. pp. 412–416. IOS Press (2006)
17. Pnueli, A.: The temporal logic of programs. In: Proceedings of the Symposium on Foundations

of Computer Science. pp. 46–57. IEEE Press (1977)

