
An Experiment on Tabled Evaluation
for Hidden Predicates?

Pedro Cabalar and Mart́ın Diéguez

Department of Computer Science,
University of Corunna (Spain)

{cabalar,martin.dieguez}@udc.es

Abstract. Most Answer Set Programming grounders allow filtering the
information shown in each answer set by selecting which predicates must
be shown or become hidden instead. Full grounding of hidden predicates
(usually introduced for auxiliary computations) is in many cases not
necessary. In the paper, we consider the possibility of avoiding grounding
of hidden (stratified) predicates by using tabled evaluation: a top-down
strategy combined with an extension table that records the previously
solved goals.

1 Introduction

Answer Set Programming (ASP) [1, 2] has recently become one of the most pop-
ular and successful paradigms for Nonmonotonic Reasoning (NMR) and Knowl-
edge Representation (KR). Part of this success is due to the simplicity and
robustness of its theoretical foundations which rely on the notion of answer set
or stable model [3]. Originally defined for normal logic programs, this semantics
proved to be flexible enough to end up covering the general syntax of arbitrary
first order theories [4, 5] and accommodating useful operators for practical KR
like weight constraints [6] or aggregates [7, 8]. A second, but not less important
factor for the success of ASP has been the availability of efficient solvers that
were boosted both in number and performance, thanks to the establishment of
a competition [9] with public benchmarks and results. Most ASP solvers divide
their computation into two differentiate steps: in a first phase, called grounding,
variables in each rule are replaced by all their possible combinations of ground
instances (the constants in the program). In a second step, the solver computes
answer sets for the resulting ground program. Some tools like lparse1 or gringo2

are distributed as separate grounders that must be combined with solvers that
exclusively accept propositional programs as an input, like smodels3, clasp4,

? This research was partially supported by Spanish MEC project TIN2009-14562-C05-
04 and Xunta de Galicia project INCITE08-PXIB105159PR.

1 http://www.tcs.hut.fi/Software/smodels/
2 http://sourceforge.net/projects/potassco/files/gringo/
3 http://www.tcs.hut.fi/Software/smodels/
4 http://sourceforge.net/projects/potassco/files/clasp/



cmodels5 or assat6. Other tools like DLV7 embody the grounder and the propo-
sitional solver in a same package.

Although the input languages of lparse, gringo and DLV have some differ-
ences, the three tools allow selecting which predicates are shown in the obtained
stable models and which ones can be hidden. Typically, these hidden predi-
cates contain intermediate or auxiliary information that is actually irrelevant
for describing the final solutions of the problem we are interested in. The three
mentioned ASP grounders use this feature as a simple output choice, so that
when a predicate is hidden, it is just filtered out from the information displayed
in an answer set, but its grounding and computation is not actually affected.
However, the following question arises: once we know that the information pro-
vided by a predicate will be irrelevant, is it always necessary to compute its full
extent?

In this paper we consider a partial grounding of hidden predicates, so that
their extent is computed depending on the values of variables fixed by other pred-
icates. In this way, the hidden predicate is called as a top-down query rather than
computing its full extent using a bottom-up strategy. In order to avoid repeating
subgoals due to multiple recursive calls, instead of a pure top-down strategy, we
propose applying a technique called tabled evaluation [10] that combines top-
down queries with an extension table that keeps record of previously solved
goals. In fact, this technique has been implemented and extensively used in the
XSB8 Prolog interpreter, which has been used as a back-end in our preliminary
experiments.

The rest of the paper is organised as follows. In the next section we present a
motivating example that is followed in Section 3 by a description of the prototype
we have implemented and a preliminary experiment, commenting the obtained
results. Section 4 contains a brief discussion and concludes the paper.

2 A Motivating Example

To illustrate our main purpose, consider the following motivating example.

Example 1. Suppose we have a directed graph where some nodes are marked as
source and that we want to generate arbitrary sets of nodes that are reachable
from a source. To this aim, we include a predicate in(X) that points out that
node X is in our current selection.

5 http://www.cs.utexas.edu/users/tag/cmodels.html
6 http://assat.cs.ust.hk/
7 http:www.dbai.tuwien.ac.at/proj/dlv/
8 http://xsb.sourceforge.net/



A possible program that solves this problem and is syntactically accepted by
the three grounders mentioned before is the following one:

reach(X,Y )← edge(X,Y ) (1)
reach(X,Z)← node(X), reach(X,Y ), edge(Y,Z) (2)

in(Y )← source(X), reach(X,Y ),not out(Y ) (3)
out(Y )← source(X), reach(X,Y ),not in(Y ) (4)

As usual in ASP, the cyclic rules (3)-(4) involving an auxiliary predicate out(X),
complement of in(X), are used to generate possible solutions. Each instance of
this problem would be given as a set of facts for predicates node(X), edge(X,Z)
and source(X). For instance, the graph depicted in Figure 1 (double circled
nodes are sources) would be represented by the set of facts:

node(1..9). source(3). source(5).
edge(1, 2). edge(2, 3). edge(1, 4). edge(2, 5).
edge(3, 6). edge(4, 5). edge(5, 6). edge(4, 7).
edge(5, 8). edge(6, 9). edge(7, 8). edge(8, 9).

As only three nodes, 6, 8 and 9, are reachable from source nodes, it is easy
to check that the resulting program has eight answer sets, that correspond to all
solutions, i.e., all possible subsets of {in(6), in(8), in(9)}. The complete answer
sets, however, will contain much more information than the extent for predicate
in(X). In particular, each answer set will contain the facts we entered to describe
the graph plus the extent of predicates reach(X,Y ) and out(X). For instance,
all answer sets will include the following 27 facts for predicate reach(X,Y ):

reach(1, 2), reach(1, 3), reach(1, 4), reach(1, 5), reach(1, 6), reach(1, 7),
reach(1, 8), reach(1, 9), reach(2, 3), reach(2, 5), reach(2, 6), reach(2, 8),
reach(2, 9), reach(3, 6), reach(3, 9), reach(4, 5), reach(4, 6), reach(4, 7),
reach(4, 8), reach(4, 9), reach(5, 6), reach(5, 8), reach(5, 9), reach(6, 9),

reach(7, 8), reach(7, 9), reach(8, 9)

Since our interest is focused on the solutions in terms of in(X), we would
typically hide the rest of predicates. In lparse and gringo this is done by
including the clauses:

hide.
show in(X).

whereas in DLV we would include the command line option -filter=in for the
same purpose. In the three grounders, hiding the extent of a predicate does not
have any real implication on the grounding or computation of the answer sets:
it just filters the facts that are shown in the output, but all the information
is computed anyway. However, if we look carefully at our example, it can be
noticed that computing reachable nodes from 1, 2, 4 and 7 could be avoided if we



?>=<89:;1

��

//?>=<89:;2

��

//?>=<89:;/.-,()*+3

��?>=<89:;4

��

//?>=<89:;/.-,()*+5

��

//?>=<89:;6

��?>=<89:;7 //?>=<89:;8 //?>=<89:;9

Fig. 1. An example of directed graph with two “source” nodes.

just started from source nodes 3 and 5 and followed predicate reach on demand.
For instance, once we fix X = 3 in rule (3) as one of the possible values obtained
from source(X), we would make a call to reach(3, Y ) and try to solve it using
a top-down strategy. By recursive applications of (1)-(2) we would then obtain
the values Y = 6 and Y = 9, which would finally allow us generating the ground
rules:

in(6)← not out(6)
in(9)← not out(9)

Using this strategy, we would never need computing facts for reach(1, Y ), reach(2, Y ),
reach(4, Y ) or reach(7, Y ), something that reduces the 27 facts obtained before
to only the following 7:

reach(3, 6), reach(3, 9), reach(5, 6), reach(5, 8),
reach(5, 9), reach(6, 9), reach(8, 9)

A pure top-down evaluation, however, introduces a new problem, not present
in bottom-up computation: some goals are called more than once and its com-
putation must be repeated. As a simple example, suppose we marked node 1
as source, making source(1) true. Then, we would be continuously repeating
goals: for instance, reach(6, 9) would also be called in the computation of each
reach(Y, 9) for all nodes Y = 1, . . . , 5, that is, those that pass through node 6
to reach 9. In an example like that, the bottom-up procedure would be much
more efficient since, after all, there is no way to avoid the full computation of
reach(X,Y ) (all nodes would be reachable from 1).

To avoid this goal repetition, we have considered an alternative strategy
called tabled evaluation [10] that can be seen as a midpoint between bottom-up
and top-down. It consists in maintaining a table with previously solved goals
so that they can be reused without repeating their computation. In our worst
case version of the example when source(1), if we compare it to the bottom-up
strategy, this technique would only introduce the cost of checking the existence
of each goal in the extension table.



2.1 Stratified predicates

Making a partial grounding for hidden predicates is not always applicable, as the
non-computed part may affect the existence of answer sets for a given program.
For instance, suppose we want to rule out solutions where we pick nodes that
are reachable from 7. This is done using the constraint:

← node(X), in(X), reach(7, X)

A constraint like this is usually implemented by introducing a new fresh auxiliary
predicate aux(X) and modifying the rule as follows:

aux(X)← node(X), in(X), reach(7, X),not aux(X) (5)

Since aux(X) will be a hidden predicate and is never used in the rest of the
program, a partial grounding of aux(X) would just ignore rule (5). However,
this constraint should be grounded at least for values X = 8 and X = 9 (that
is, the accessible nodes from 7):

aux(8)← in(8),not aux(8)
aux(9)← in(9),not aux(9)

and this should rule out all previous solutions that contained atoms in(8) or
in(9). Furthermore, a simple rule like:

aux′(X)← node(X),not aux′(X)

would make the program to have no answer sets (provided that we have at least
one node) whereas partial grounding would ignore predicate aux′(X) if it is not
used in other rules.

These examples show that, in order to ignore some ground instances of a
hidden predicate, we must be sure that this will not affect the set of answer sets
of the program. As a simple sufficient condition, we have considered the case in
which the hidden predicate is stratified [11]. The dependence graph of a program
is formed by taking a node per each predicate and an arc p→ q (meaning that
p directly depends on q) when p is in the head of some rule in which q occurs
in the body. The dependence is said to be negative when q is in the scope of
default negation not , and said to be positive otherwise. A program is stratified
if it contains no dependence loop that involves some negative dependence.

We say that p depends on a rule r, if p occurs in the head of r or there exists
some path in the dependence graph from p to a predicate q occurring in the
head of r. Given a program Π and a predicate p, let Πp denote the set of rules
on which p depends. A predicate p is stratified iff Πp is a stratified program.
Let us take now the set of stratified hidden predicates P and let ΠP the union
of all Πp for each hidden predicate p ∈ P . It is clear that we can split program

Π into two parts, bottom(Π) def= ΠP and top(Π) def= Π \ ΠP that satisfy that
no predicate in bottom(Π) depends on rules in top(Π). In this situation, we can



apply the splitting theorem from [12] to show that the answer sets of Π can
be computed in two stages: first obtain an answer set I of bottom(Π) (in our
case, I is unique) and second, simplify program top(Π) with the information in
I for predicates defined in bottom(Π), getting answer sets for the rest of facts
for remaining predicates.

In the previous example, bottom(Π) consists of rules (1) and (2) that define
predicate reach plus the following facts (i.e., those on which these rules depend):

node(1..9). edge(1, 2). edge(2, 3).
edge(1, 4). edge(2, 5). edge(3, 6). edge(4, 5). edge(5, 6).
edge(4, 7). edge(5, 8). edge(6, 9). edge(7, 8). edge(8, 9).

On the other hand, top(Π) = Π \ bottom(Π) contains the rest of rules and facts
in Π. Note that no atom of bottom(Π) occurs in any rule head of top(Π).

As a result, if part of the unique answer set I for the stratified bottom
program ΠP is not actually computed, this will not affect the answer sets of
the program Π provided that we actually generate the full ground program for
top(Π).

3 The experiment

As a first prototype, we have implemented an XSB Prolog program that reads an
ASP program as an input. After selecting a set P of intensional hidden predicates
that are stratified, we call DLV with a modification of the rest of rules Π \ΠP

to ground all variables that can be fixed by the rest of predicates not in P . For
instance, in our previous example, we would take P = {reach} and transform
rules (3)-(4) so that we capture variables that can be independently fixed without
reach predicate:

aux1(X)← source(X)
aux2(X)← source(X)

In this way, predicate aux1 will capture instances for variable X in (3) and aux2

instances for X in (4). As a result, we get the partially ground program:

in(Y )← reach(3, Y ),not out(Y ) (6)
in(Y )← reach(5, Y ),not out(Y ) (7)
out(Y )← reach(3, Y ),not in(Y ) (8)
out(Y )← reach(5, Y ),not in(Y ) (9)

After this first step, we use the XSB assert mechanism to include the rules
(1)-(2) for predicate reach so that any call to this predicate will be solved us-
ing the built-in tabled evaluation algorithm of XSB. Finally, for each partially



grounded rule, we take non-ground atoms for hidden predicates and make the
corresponding call to XSB. For instance, for (6), we make the call reach(3, Y )
obtaining the possible solutions Y = 6 and Y = 9 which eventually generate the
ground rules:

in(6)← not out(6)
in(9)← not out(9)

We have performed some preliminary experiments with some random graph
instances for problem in Example 1. For each random graph, we have varied
the number of nodes, the connectivity (the number of outgoing arcs per node)
and we have tried with one or two random source nodes. Results are shown in
Table 1 where we compare the time obtained by a direct single call to DLV to the
proposed combined execution of DLV and XSB that makes a partial grounding
of hidden predicates. For graphs that are very connected, most nodes can be
reached from all the rest. Thus, we can notice that the time for DLV+XSB is
not significantly better or can be even worse due to additional processing and
the checkings in the extension table. However, for small connectivity ratios, the
time is considerably reduced. The smaller the relevant part of the graph to be
traversed, the better performance obtained.

Nodes Connectivity DLV DLV+XSB

1 source node

500 10 0m34.581s 2m44.064s

500 20 5m14.837s 2m14.965s

500 30 9m22.146s 4m42.853s

500 40 12m20.197s 8m13.163s

500 60 17m40.125s 17m51.523s

500 100 24m2.454s 48m32.006s

2 source nodes

600 20 4m54.504s 1m20.178s

620 20 10m32.675s 3m47.708s

640 20 12m7.537s 4m0.469s

660 20 14m3.903s 4m16.870s

700 20 16m39.363s 4m58.550s

Table 1. Running times for randomly generated graphs for problem in Example 1.

As an exaggerated case, we have constructed a graph similar to Figure 1 but
of 100 × 100 nodes instead of 3 × 3, fixing 9850 as the only source node. This
means that only 101 nodes are reachable from the source whereas the bottom-up
computation will compute more than 10000 facts for reach(X,Y ) for the whole
graph. DLV was able to solve the problem in 903 minutes versus DLV+XSB that
took slightly more than 8 minutes.



Of course, it may be objected that the particular example we chose could
have been implemented in a different way much more favorable to an efficient
(complete) grounding for the problem to be considered. For instance, if we write
the alternative encoding:

reachs(Y )← source(X), edge(X,Y )
reachs(Y )← reachs(X), edge(X,Y )

in(X)← node(X), reachs(X),not out(X)
out(X)← node(X), reachs(X),not in(X)

where this time, predicate reachs means reachable from some source node, we
would obviously reduce the number of ground instances for reachs to be con-
sidered, so that partial grounding would become much less interesting. On the
other hand, we cannot always expect that the program we get as an input is the
best encoding for an efficient grounding. In fact, we claim that adapting each
problem encoding to reduce the grounding effort usually reduces flexibility: for
instance, it could be the case that rules for predicate reach(X,Y ) came from a
general module for reachability that could be reused for other different problems.

4 Conclusions

We have considered the partial grounding of hidden predicates by treating body
atoms for them as queries to be solved using tabled evaluation. We have imple-
mented a first prototype that combines the use of an existing grounder (DLV)
with the use of the XSB Prolog interpreter, which has a built-in tabled evalua-
tion procedure. First results are promising but the application of this technique
is still in a preliminary stage.

The combination of a partial grounding process plus an external tool for
completing the remaining non-ground information is very similar to the tech-
nique applied in [13] where, in that case, the non-ground atoms obtained after
the partial grounding correspond to constraints to be solved by a Constraint
Logic Programming (CLP) tool. A relevant difference between both approaches
is that, in our case, our technique does not require any syntactic or semantic
extension and can be transparently applied to existing programs with the only
extra requirement of specifying hidden predicates, something already present in
all the existing grounders, but not currently exploited for reducing grounding.

In a future extended version of this document, we will include formal proofs
for the correctness of the method. Future work also includes encoding a spe-
cialised tabled evaluation algorithm on top of the existing open source grounder
gringo, for applying this technique on (stratified) hidden predicates.



References

1. Marek, V., Truszczyński, M. In: Stable models and an alternative logic program-
ming paradigm. Springer-Verlag (1999) 169–181

2. Niemelä, I.: Logic programs with stable model semantics as a constraint pro-
gramming paradigm. Annals of Mathematics and Artificial Intelligence 25 (1999)
241–273

3. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In
Kowalski, R.A., Bowen, K.A., eds.: Logic Programming: Proc. of the Fifth Interna-
tional Conference and Symposium (Volume 2). MIT Press, Cambridge, MA (1988)
1070–1080

4. Pearce, D., Valverde, A.: Quantified equilibrium logic and foundations for answer
set programs. In: Proc. of the 24th Intl. Conf. on Logic Programming (ICLP’08).
(2008) 547–560

5. Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: Proceed-
ings of the 20th International Joint Conference on Artificial Intelligence (IJCAI’07).
(2007) 372–379

6. Niemelä, I., Simons, P.: Extending the smodels system with cardinality and weight
constraints. In: Logic-Based Artificial Intelligence, Kluwer Academic Publishers
(2000) 491–521

7. Denecker, M., Pelov, N., Bruynooghe, M.: Ultimate well-founded and stable se-
mantics for logic programs with aggregates. In: 17th International Conference on
Logic Programming (ICLP’01). (2001) 212–226

8. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic pro-
grams: Semantics and complexity. In: Proc. of the 9th European Conference on
Logics in Artificial Intelligence (JELIA’04). (2004)

9. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The second
Answer Set Programming competition. In: Proc. of the 10th International Con-
ference on Logic Programming and Nonmonotonic Reasoning (LPNMR’09). LNAI
(5753), Springer-Verlag (2009) 637–654

10. Chen, W., Warren, D.S.: Tabled evaluation with delaying for general logic pro-
grams. Journal of the ACM 43(1) (1996) 20–74

11. Lloyd, J.W.: Foundations of Logic Programming, 2nd Edition. Springer (1987)
12. Lifschitz, V., Turner, H.: Splitting a logic program. In: Proceedings of the 11th

International Conference on Logic programming (ICLP’94). (1994) 23–37
13. Mellarkod, V.S., Gelfond, M., Zhang, Y.: Integrating answer set programming and

constraint logic programming. Annals of Mathematics and Artificial Intelligence
53(1-4) (2008) 251–287


