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Abstract
In this paper we consider the problem of introducing variables in temporal logic programs under
the formalism of Temporal Equilibrium Logic (TEL), an extension of Answer Set Programming
(ASP) for dealing with linear-time modal operators. We provide several fundamental contribu-
tions that pave the way for the implementation of a grounding process, that is, a method that
allows replacing variables by ground instances in all the possible (or better, relevant) ways.

1 Introduction

Many application domains and example scenarios from Answer Set Programming (ASP) [15,
13] contain a dynamic component, frequently representing transition systems over discrete
time. However, temporal reasoning in ASP tends to be quite rudimentary, just treating
time as an integer variable which is grounded for a finite interval1. To cope with more
elaborated temporal reasoning, in [1] a formalism called Temporal Equilibrium Logic (TEL)
was proposed. TEL is syntactically identical to propositional Linear-time Temporal Logic
(LTL) [18], but semantically, it relies on a temporal extension of Equilibrium Logic [16], the
most general and best studied logical characterisation of stable models (or answer sets) [9].
A recent work [2] introduced a reduction of TEL into regular LTL, for a syntactic subclass
of temporal theories called Splitable Temporal Logic Programs. Although this syntactic
fragment is a strict subset of the TEL normal form obtained in [4], it deals with temporal
rules in which, informally speaking, “past does not depend on the future,” something general
enough to cover most (if not all) existing examples of ASP temporal scenarios. The reduction
was implemented in a tool, STeLP2 [6], that computes the temporal stable models of a given
program, showing the result in the form of a Büchi automaton.

Although the theoretical results on which STeLP is based are restricted to the proposi-
tional case, the input language was extended with the introduction of variables. This was
done imposing some strict limitations on the syntax, forcing that any variable instance is
not only safe (that is, occurring in the positive body of the rule) but also “typed” by a
static predicate, i.e., a predicate whose extent does not vary along time. In many cases,
this restriction implied the generation of irrelevant ground rules that increase the size of the
resulting ground LTL theory while they could be easily detected and removed by a simple
analysis of the temporal program. Furthermore, the treatment of variables had not been
proved to be sound with respect to the important property of domain independence [3] –
essentially, a program is domain independent when its stable models do not vary under the
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arbitrary addition of new constants. Although the DLV definition of safe variables guarantees
domain independence, there was no formal proof for temporal logic programs under TEL.

In this paper we provide several fundamental results that pave the way for an improved
grounder for temporal logic programs with variables. The rest of the paper is organised as
follows. In the next section, we explain our motivations using an illustrative example. In
Section 3 we introduce the first order extension of TEL and provide some basic definitions,
explaining the syntactic form for our input language. Next, we study the relaxed definition
of safe variables and prove that it guarantees domain independence. Section 5 defines the
concept of derivable facts, explaining how they can be computed and used afterwards to
generate smaller ground theories. Finally, Section 6 concludes the paper.

2 A motivating example

For a better understanding of our motivations, let us consider a simple illustrative example.

I Example 1. Suppose we have a set of cars placed at different cities and, at each transition,
we can drive a car from one city to another in a single step, provided that there is a road
connecting them. �

Figure 1 contains a possible representation of this scenario in the language of STeLP.
In the rules, operator ‘o’ stands for “next” whereas ‘::-’ corresponds to the standard ASP
conditional ‘:-’, but holding at all time points. Rule (1) is the effect axiom for driving car
X to city A. The disjunctive rule (2) is used to generate possible occurrences of actions in a
non-deterministic way. Rules (3) and (4) represent the inertia3 of fluent at(X,A). Finally,
rule (5) just forbids that a car is at two different cities simultaneously.

static city/1, car/1, road/2.
o at(X,A) ::- driveto(X,A), car(X), city(A). % (1)

driveto(X,B) v no_driveto(X,B) ::- at(X,A), car(X), road(A,B). % (2)
o at(X,A) ::- at(X,A), not o no_at(X,A), car(X), city(A). % (3)

no_at(X,A) ::- at(X,B), A!=B, car(X), city(A), city(B). % (4)
::- at(X,A), at(X,B), A!=B, car(X), city(A), city(B). % (5)

Figure 1 A simple car driving scenario.

As we can see in the first line, predicates city/1, car/1 and road/2 are declared to
be static. The scenario would be completed with rules for static predicates. These rules
conform what we call the static program and can only refer to static predicates without
containing temporal operators. An example of a static program for this scenario could be:

road(A,B) :- road(B,A). % roads are bidirectional
city(A) :- road(A,B).
car(1). car(2).
road(lisbon,madrid). road(madrid,paris). road(boston,ny). road(ny,nj).

Additionally, our temporal program would contain rules describing the initial state like, for
instance, the pair of facts:

3 Auxiliary predicates no_driveto(X,B) and no_at(X,A) play the role here of strong negation.
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at(1,madrid). at(2,ny).

Note that all variables in a rule are always in some atom for a static predicate in the
positive body. This sometimes makes rule bodies quite long and slightly redundant. The
current grounding process performed by STeLP just consists in feeding the static program
to DLV and, once it provides an extension for all the static predicates, each temporal rule
is instantiated for each possible substitution of variables according to static predicates. In
our running example, for instance, DLV provides a unique model4 for the static program
containing the facts:

car(1), car(2), city(lisbon), city(madrid), city(paris), city(boston),
city(ny), city(nj), road(lisbon,madrid), road(madrid,lisbon),
road(madrid,paris), road(paris,madrid), road(boston,ny),
road(ny,boston), road(ny,nj), road(nj,ny)

With these data, rule (1) generates 12 ground instances, since we have two possible cars for
X and six possible cities for A. Similarly, rule (4) would generate 60 instances as there are
30 pairs A,B of different cities and two cars for X. Many of these ground rules, however, are
irrelevant. Consider, for instance, the following pair of generated rules:

o at(1,ny) ::- driveto(1,ny).
no_at(1,paris) ::- at(1,ny).

corresponding, respectively, to possible instantiations of (1) and (4). In both cases, the
body refers to a situation where car 1 is located or will drive to New York, while we can
observe that it was initially at Madrid and that the European roadmap is disconnected from
the American one. Of course, one could additionally encode a static reachability predicate
to force that rule instances refer to reachable cities for a given car, but this would not be
too transparent or elaboration tolerant. One would expect that the grounder was capable of
detecting these “non-derivable” cases ignoring them in the final ground theory, if possible.

On the other hand, if we forget, for a moment, the temporal operators and we consider
the definition of safe variables used in DLV, one may also wonder whether it is possible to
simply require that each variable occurs in the positive body of rules, without needing to
refer to static predicates mandatorily. Figure 2 contains a possible variation of the same
scenario allowing this possibility. Our goal is allowing this new, more flexible definition of
safe variables and exploiting, if possible, the information in the temporal program to reduce
the set of generated ground rules.

3 Temporal Quantified Equilibrium Logic

Syntactically, we consider function-free first-order languages L = 〈C,P 〉 built over a set of
constant symbols, C, and a set of predicate symbols, P . Using L, connectors and variables,
an L = 〈C,P 〉-formula F is defined following the grammar:

F ::= p | ⊥ | F1 ∧ F2 | F1 ∨ F2 | F1 → F2 | © F | �F | ♦F | ∀xF (x) | ∃xF (x)

where p ∈ P is an atom, x is a variable and ©, � and ♦ respectively stand for “next”,
“always” and “eventually.” A theory is a finite set of formulas. We use the following derived

4 If the static program yields several stable models, each one generates a different ground theory whose
temporal stable models are computed independently.
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static city/1, car/1, road/2.
o at(X,A) ::- driveto(X,A).

driveto(X,B) v no_driveto(X,B) ::- at(X,A), road(A,B).
o at(X,A) ::- at(X,A), not o no_at(X,A).

no_at(X,A) ::- at(X,B), A!=B, city(A).
::- at(X,A), at(X,B), A!=B.

Figure 2 A possible variation of the cars scenario.

operators and notation: ¬F def= F → ⊥, > def= ¬⊥ and F ↔ G
def= (F → G) ∧ (G → F ) for

any formulas F,G. An atom is any p(t1, . . . , tn) where p ∈ P is a predicate with n-arity and
each ti is a term (a constant or a variable) in its turn. We say that a term or a formula is
ground if it does not contain variables. An L-sentence or closed-formula is a formula without
free-variables. The application of i consecutive©’s is denoted as follows: ©iϕ

def=©(©i−1ϕ)
for i > 0 and ©0ϕ

def= ϕ. A temporal fact is a construction of the form ©iA where A is an
atom. If D is a non-empty set, we denote by At(D,P ) the set of ground atomic sentences of
the language 〈D,P 〉. For the semantics, we will also define a mapping σ : C ∪D → D such
that σ(d) = d for all d ∈ D.

A first-order LTL-interpretation is a structure 〈(D,σ),T〉 where D is a non-empty set
(the domain), σ is a mapping as defined above (the interpretation of constants) and T is an
infinite sequence of sets of ground atoms T = {Ti}i≥0. Intuitively, Ti ⊆ At(D,P ) contains
those ground atoms that are true at situation i. Given two LTL-interpretations H and T we
say that H is smaller than T, written H ≤ T, when Hi ⊆ Ti for all i ≥ 0. As usual, H < T
stands for: H ≤ T and H 6= T. We define the ground temporal facts associated to T as
follows: Facts(T) def= {©ip | p ∈ Ti}. It is easy to see that H ≤ T iff Facts(H) ⊆ Facts(T).

I Definition 2. A temporal-here-and-there L-structure with static domains, or a TQHT-
structure, is a tuple M = 〈(D,σ),H,T〉 where 〈(D,σ),H〉 and 〈(D,σ),T〉 are two LTL-
interpretations satisfying H ≤ T. �

A TQHT-structure of the form M = 〈(D,σ),T,T〉 is said to be total. If M =
〈(D,σ),H,T〉 is a TQHT-structure and k any positive integer, we denote by (M, k) =
〈(D,σ), (H, k), (T, k)〉 the temporal-here-and-there L-structure with (H, k) = {Hi}i≥k and
(T, k) = {Ti}i≥k. The satisfaction relation for M = 〈(D,σ),H,T〉 is defined recursively
forcing us to consider formulas from 〈C ∪ D,P 〉. Formally, if ϕ is an L-sentence for the
atoms in At(C ∪D,P ), then:

If ϕ = p(t1, . . . , tn) ∈ At(C ∪D,P ), then

M |= p(t1, . . . , tn) iff p(σ(t1), . . . , σ(tn)) ∈ H0.

M |= t = s iff σ(t) = σ(s)

For ⊥, ∧ and ∨, as usual.
M |= ϕ→ ψ iff 〈(D,σ), w,T〉 6|= ϕ or 〈(D,σ), w,T〉 |= ψ for all w ∈ {H,T}
M |=©ϕ if (M, 1) |= ϕ.
M |= �ϕ if ∀j ≥ 0, (M, j) |= ϕ

M |= ♦ϕ if ∃j ≥ 0, (M, j) |= ϕ

〈(D,σ),H,T〉 |= ∀xϕ(x) iff 〈(D,σ), w,T〉 |= ϕ(d) for all d ∈ D and for all w ∈ {H,T}.
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M |= ∃xϕ(x) iffM |= ϕ(d) for some d ∈ D.

The resulting logic is called Quantified Temporal Here-and-There Logic with static do-
mains, and denoted by SQTHT or simply by QTHT. It is not difficult to see that, if we
restrict to total TQHT-structures, 〈(D,σ),T,T〉 |= ϕ iff 〈(D,σ),T,T〉 |= ϕ in first-order
LTL. Furthermore, the following property can be easily checked by structural induction.

I Proposition 3. For any formula ϕ, if 〈(D,σ),H,T〉 |= ϕ, then 〈(D,σ),T,T〉 |= ϕ

A theory Γ is a set of L-sentences. An interpretationM is a model of a theory Γ, written
M |= Γ, if it satisfies all the sentences in Γ.

I Definition 4 (Temporal Equilibrium Model). A temporal equilibriummodel of a theory Γ is a
total modelM = 〈(D,σ),T,T〉 of Γ such that there is no H < T satisfying 〈(D,σ),H,T〉 |=
Γ. �

If M = 〈(D,σ),T,T〉 is a temporal equilibrium model of a theory Γ, we say that
the First-Order LTL interpretation 〈(D,σ),T〉 is a temporal stable model of Γ. We write
TSM(Γ) to denote the set of temporal stable models of Γ. The set of credulous consequences
of a theory Γ, written CredFacts(Γ) contains all the temporal facts that occur at some
temporal stable model of Γ, that is:

CredFacts(Γ) def=
⋃

〈(D,σ),T〉∈TSM(Π)

Facts(T)

A property of TEL directly inherited from Equilibrium Logic (see Proposition 5 in [17])
is the following:

I Proposition 5 (Cummulativity for negated formulas). Let Γ be some theory and let ¬ϕ
be some formula such that M |= ¬ϕ for all temporal equilibrium models of Γ. Then, the
theories Γ and Γ ∪ {¬ϕ} have the same set of temporal equilibrium models. �

It is well-known that stable models (and so Equilibrium Logic) do not satisfy cummu-
lativity in the general case: that is, if a formula is satisfied in all the stable models, adding it
to the program may vary the consequences we obtain. However, when we deal with negated
formulas, Proposition 5 tells us that cummulativity is guaranteed.

In this work, we will further restrict the study to a syntactic subset called splitable5
temporal formulas (STF) which will be of one of the following types:

B ∧N → H (1)
B ∧©B′ ∧N ∧©N ′ → ©H ′ (2)

�(B ∧©B′ ∧N ∧©N ′ → ©H ′) (3)

where B and B′ are conjunctions of atomic formulas, N and N ′ are conjunctions of ¬p,
being p an atomic formula and H and H ′ are disjunctions of atomic formulas.

I Definition 6. A splitable temporal logic program (STL-program for short) is a finite set of
sentences like

ϕ = ∀x1∀x2 . . . ∀xnψ,

where ψ is a splitable temporal formula with x1, x2, . . . , xn free variables.

5 The name splitable refers to the fact that these programs can be splitted using [12] thanks to the
property that rule heads never refer to a time point previous to those referred in the body.
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We will also accept in an STL-program an implication of the form �(B ∧N → H) (that
is, containing � but not any©) understood as an abbreviation of the pair of STL-formulas:

B ∧N → H

�(©B ∧©N → ©H)

I Example 7. The following theory Π7 is an STL-program:

¬p → q (4)
q ∧ ¬© r → ©p (5)

�(q ∧ ¬© p → ©q) (6)
�(r ∧ ¬© p → ©r ∨©q) (7)

For an example including variables, the encoding of Example 1 in Figure 2 is also an
STL-program Π1 whose logical representation corresponds to:

�( Driveto(x, a) → ©At(x, a) ) (8)
�( At(x, a) ∧Road(a, b) → Driveto(x, b) ∨NoDriveto(x, b) ) (9)

�( At(x, a) ∧ ¬©NoAt(x, a) → ©At(x, a) ) (10)
�( At(x, b) ∧ City(a) ∧ a 6= b → NoAt(x, a) ) (11)
�( At(x, a) ∧At(x, b) ∧ a 6= b → ⊥ ) (12)

Remember that all rule variables are implicitly universally quantified. For simplicity, we
assume that inequality is a predefined predicate.

An STL-program is said to be positive if for all rules (1)-(3), N and N ′ are empty (an
empty conjunction is equivalent to >). An STL-program is said to be normal if it contains
no disjunctions, i.e., for all rules (1)-(3), H and H ′ are atoms. Given a propositional
combination ϕ of temporal facts with ∧,∨,⊥,→, we denote ϕi as the formula resulting from
replacing each temporal fact A in ϕ by ©iA. For a formula r = �ϕ like (3), we denote by
ri the corresponding ϕi. For instance, (6)i = (©iq ∧¬©i+1 p→©i+1q). As © behaves as
a linear operator in THT, in fact F i ↔©iF is a THT tautology.

I Definition 8 (expanded program). Given an STL-program Π for signature Σ we define its
expanded program Π∞ as the infinitary logic program containing all rules of the form (1),
(2) in Π plus a rule ri per each rule r of the form (3) in Π and each integer value i ≥ 0. �

The program Π∞7 would therefore correspond to (4), (5) plus the infinite set of rules:

©iq ∧ ¬©i+1 p→©i+1q ©i r ∧ ¬©i+1 p→©i+1r ∨©i+1q

for i ≥ 0. We can interpret the expanded program as an infinite non-temporal program
where the signature is the infinite set of atoms of the form ©ip with p ∈ At and i ≥ 0.

I Theorem 9 (Theorem 1 in [2]). 〈T,T〉 is a temporal equilibrium model of Π iff {©ip | p ∈
Ti, i ≥ 0} is a stable model of Π∞ under the (infinite) signature {©ip | p ∈ Σ}. �

I Proposition 10. Any normal positive STL-program Π has a unique temporal stable model
〈(D,σ),T〉 which coincides with its ≤-least LTL-model. We denote LM(Π) = Facts(T). �
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4 Safe Variables and Domain Independence

In this section we consider the new definition of safe variables which does not refer to static
predicates any more. As a result, we obtain a direct extrapolation of DLV-safety by just
ignoring the temporal operators.

I Definition 11. A splitable temporal formula ϕ of type (1), (2) or (3) is said to be safe if,
for any variable x occurring in ϕ, there exists an atomic formula p in B or B′ such that x
occurs in p. A formula ∀x1∀x2 . . . ∀xnψ is safe if the splitable temporal formula ψ is safe.

For instance, rules (8)-(12) are safe. A simple example of unsafe rule is the splitable temporal
formula > → P (x) where x does not occur in the positive body (in fact, the rule body is
empty). Although an unsafe rule not always leads to lack of domain independence (see
examples in [7]) it is frequently the case. We prove next that domain independence is, in
fact, guaranteed for safe STL-programs.

I Theorem 12. If ϕ is a safe sentence and 〈(D,σ),T,T〉 is a temporal equilibrium model
of ϕ, then T|C = T and Ti ⊆ At(σ(C), P ) for any i ≥ 0.

Let (D,σ) be a domain and D′ ⊆ D a finite subset; the grounding over D′ of a sentence
ϕ, denoted by GrD′(ϕ), is defined recursively

GrD′(p)
def= p, where p denotes any atomic formula

GrD′(ϕ1 � ϕ2) def= GrD′(ϕ1)�GrD′(ϕ2), with � any binary operator in {∧,∨,→}

GrD′(∀xϕ(x)) def=
∧

d∈D′
GrD′ϕ(d)

GrD′(∃xϕ(x)) def=
∨

d∈D′
GrD′ϕ(d)

GrD′(©ϕ) def= ©GrD′(ϕ)

GrD′(�ϕ) def= �GrD′(ϕ)

GrD′(♦ϕ) def= ♦GrD′(ϕ)

I Proposition 13. Given any non-empty finite set D:
〈(D,σ),H,T〉 |= ϕ iff 〈(D,σ),H,T〉 |= GrD(ϕ). �

I Theorem 14 (Domain independence). Let ϕ be safe splitable temporal sentence. Suppose
we expand the language L by considering a set of constants C ′ ⊇ C. A total QTHT-model
〈(D,σ),T,T〉 is a temporal equilibrium model of GrC′(ϕ) if and only if it is a temporal
equilibrium model of GrC(ϕ).

5 Derivable ground facts

In this section we present a technique for grounding safe temporal programs based on the
construction a positive normal ASP program with variables. The least model of this program
can be obtained by the ASP grounder6 DLV and it can be used afterwards to provide the
variable substitutions to be performed on the STL-program. Besides, in some cases, this
technique means a reduction of the number of generated ground rules with respect to the
previous strategy that relied on static predicates.

6 Or any other ASP grounder, such as gringo, respecting DLV definition of safe variables.
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The method is based on the idea of derivable ground temporal facts for an STL-program
Π. This set, call it ∆, will be an upper estimation of the credulous consequences of the
program, that is, CredFacts(Π) ⊆ ∆. Of course, the ideal situation would be that ∆ =
CredFacts(Π), but the set CredFacts(Π) requires the temporal stable models of Π and
these (apart from being infinite sequences) will not be available at grounding time. In the
worst case, we could choose ∆ to contain the whole set of possible temporal facts, but this
would not provide relevant information to improve grounding. So, we will try to obtain
some superset of CredFacts(Π) as small as possible, or if preferred, to obtain the largest
set of non-derivable facts we can find. Note that a non-derivable fact ©ip 6∈ ∆ satisfies that
©ip 6∈ CredFacts(Π) and so, by Proposition 5, Π ∪ {¬©i p} is equivalent to Π, that is,
both theories have the same set of temporal equilibrium models. This information can be
used to simplify the ground program either by removing rules or literals.

We begin defining several transformations on STL-programs. For any temporal rule r,
we define r∧ as the set of rules:

If r has the form (1) then r∧ def= {B → p | atom p occurs in H}
If r has the form (2) then r∧ def= {B ∧©B′ →©p | atom p occurs in H ′}
If r has the form (3) then r∧ def= {�(B ∧©B′ →©p) | atom p occurs in H ′}

In other words, r∧ results from removing all negative literals in r and, informally speaking,
transforming disjunctions in the head into conjunctions, so that r∧ will imply all the original
disjuncts in the disjunctive head of r. It is interesting to note that for any rule r with an
empty head (⊥) this definition implies r∧ = ∅. Program Π∧ is defined as the union of r∧
for all rules r ∈ Π. As an example, Π∧7 consists of the rules:

> → q

q → ©p
�(q → ©q) �(r → ©r)

�(r → ©q)

whereas Π∧1 would be the program:

�( Driveto(x, a) → ©At(x, a) ) (13)
�( At(x, a) ∧Road(a, b) → Driveto(x, b) ) (14)
�( At(x, a) ∧Road(a, b) → NoDriveto(x, b) ) (15)

�( At(x, a) → ©At(x, a) ) (16)
�( At(x, b) ∧ City(a) ∧ a 6= b → NoAt(x, a) ) (17)

If we look carefully at this example program, we are now moving each car x so that it will
be at several cities at the same time (constraint (12) has been removed) and, at each step,
it will additionally locate car x in all adjacent cities to the previous ones “visited” by x. In
this way, if we conclude ©iAt(x, a) from this program this is actually representing that car
x can reach city a in i steps or less. In some sense, Π∧ looks like a heuristic simplification7
of the original problem obtained by removing some constraints (this is something common
in the area of Planning in Artificial Intelligence).

Notice that, by definition, Π∧ is always a positive normal STL-program and, by Propos-
ition 10, it has a unique temporal stable model, LM(Π∧).

I Proposition 15. For any STL-program Π, CredFacts(Π) ⊆ LM(Π∧). �

7 We could further simplify Π∧ removing rules (15) and (17) by observing that their head predicates
never occur in a positive body of Π1. However, for the formal results in the paper, this is not essential,
and would complicate the definitions.
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Unfortunately, using ∆ = LM(Π∧) as set of derivable facts is unfeasible for practical
purposes, since this set contains infinite temporal facts corresponding to an “infinite run” of
the transition system described by Π∧. Take for instance Π∧1 for the cars scenario. Imagine
a roadmap with thousands of connected cities. LM(Π∧) can tell us that, for instance, car
1 cannot reach Berlin in less than 316 steps, so that ©315At(1, Berlin) is non-derivable,
although ©316At(1, Berlin) is derivable. However, in order to exploit this information for
grounding, we would be forced to expand the program up to some temporal distance, and
we have no hint on where to stop. Note that, on the other hand, when we represent the
transition system as usual in ASP, using a bounded integer variable for representing time,
then this fine-grained optimization for grounding can be applied, because the temporal path
always has a finite length.

As a result, we will adopt a compromise solution taking a superset of LM(Π∧) extracted
from a new theory, ΓΠ. This theory will collapse all the temporal facts from situation 2 on,
so that all the states Ti for i ≥ 2 will be repeated. We define ΓΠ as the result of replacing
each rule �(B ∧©B′ →©p) in Π∧ by the formulas:

B ∧©B′ → ©p (18)
©B ∧©2B′ → ©2p (19)
©2B ∧©2B′ → ©2p (20)

and adding the axiom schema:

©2 �(p↔©p) (21)

for any ground atom p ∈ At(D,P ) in the signature of Π. As we can see, (18) and (19) are
the first two instances of the original rule �(B ∧©B′ → ©p) corresponding to situations
i = 0 and i = 1. Formula (20), however, differs from the instance we would get for i = 2
since, rather than having ©3B′ and ©3p, we use ©2B′ and ©2p respectively. This can be
done because axiom (21) is asserting that from situation 2 on all the states are repeated.

In the cars example, for instance, rule (13) in Π∧1 would be transformed in ΓΠ1 into the
three rules:

Driveto(x, a)→©At(x, a) ©Driveto(x, a)→©2At(x, a)
©2Driveto(x, a)→©2At(x, a)

It is not difficult to see that axiom (21) implies that checking that some M is a temporal
equilibrium model of ΓΠ is equivalent to check that {©ip | p ∈ Ti , i = 0, 1, 2} is a stable
model of ΓΠ \ {(21)} and fixing Ti = T2 for i ≥ 3. This allows us to exclusively focus on the
predicate extents in T0, T1 and T2, so we can see the �-free program ΓΠ \{(21)} as a positive
normal ASP (i.e., non-temporal) program for the propositional signature {p,©p,©2p | p ∈
At(D,P )} that can be directly fed to DLV, after some simple renaming conventions.

I Theorem 16. ΓΠ has a least LTL-model, LM(ΓΠ) which is a superset of LM(Π∧).

In other words CredFacts(Π) ⊆ LM(Π∧) ⊆ LM(ΓΠ) = ∆, i.e., we can use LM(ΓΠ) as
set of derivable facts and simplify the ground program accordingly. Note that this simpli-
fication does not mean that we first ground everything and then remove rules and literals:
we simply do not generate the irrelevant ground cases.

A slight adaptation8 is further required for this method: as we get ground facts of the
form p,©p and ©2p we have to unfold the original STL-program rules to refer to atoms in

8 In fact, this means that we have to extend the definition of splitable temporal rule to cope with ©2

atoms. This is not essential, but has forced to reprogram the translation into LTL performed by STeLP.
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the scope of ©2. For instance, given (9) we would first unfold it into:

At(x, a) ∧Road(a, b) → Driveto(x, b) ∨NoDriveto(x, b) (22)
©At(x, a) ∧©Road(a, b) → ©Driveto(x, b) ∨©NoDriveto(x, b) (23)

�( ©2At(x, a) ∧©2Road(a, b) → ©2Driveto(x, b)
∨©2 NoDriveto(x, b) ) (24)

and then check the possible extents for the positive bodies we get from the set of derivable
facts ∆ = LM(ΓΠ). For instance, for the last rule, we can make substitutions for x, a and b
using the extents of ©2At(x, a) and ©2Road(a, b) we have in ∆. However, this still means
making a join operation for both predicates. We can also use DLV for that purpose by just
adding a rule that has as body, the positive body of the original temporal rule r, and as
head, a new auxiliary predicate Substr(x, a, b) referring to all variables in the rule. In the
example, for rule (24) we would include in our DLV program:

©2At(x, a) ∧©2Road(a, b)→ Subst(24)(x, a, b)

In this way, each tuple of Substr(x1, . . . , xn) directly points out the variable substitution
to be performed on the temporal rule.

6 Conclusions

We have improved the grounding method for temporal logic programs with variables in dif-
ferent ways. First, we provided a safety condition that directly corresponds to extrapolating
the usual concept of safe variable in Answer Set Programming as required, for instance, by
the input language of DLV [11]. In this way, any variable occurring in a rule is considered
to be safe if it also occurs in the positive body of the rule, regardless the possible scope
of temporal operators. An interesting topic for future study is trying to extend [3, 10, 7]
to the temporal case, providing a general safety condition for arbitrary quantified temporal
theories. Second, we have designed a method for grounding the temporal logic program that
consists in constructing a non-temporal normal positive program with variables that is fed
to solver DLV to directly obtain the set of variable substitutions to be performed for each
rule. The proposed method allows reducing in many cases the number of ground temporal
rules generated as a result. For instance, in the cars scenario from Figure 2 and the small
instance case described in the paper (2 cars and 6 cities) we reduce the number of generated
ground rules in the scope of ‘�’ from 160 using the current STeLP grounding method to 62
with the technique introduced here. Due to the combinatorial nature of this decrease, we do
not include figures for other instances of the example. The reader may easily imagine that
the higher degree of cities interconnection, the smaller obtained reduction of rule instances,
as this approaches to the worst case of n2, where the n cities are all pairwise connected. On
the other hand, the example is general enough to illustrate the proposed technique, as rules
for temporal predicates usually limit the possible combinations of variable values we must
consider.

A stand-alone prototype for proving examples like the one in the paper has been con-
structed, showing promising results. The immediate future work is incorporating the new
grounding method inside STeLP and analysing its performance on benchmark scenarios. We
will also study different improvements like, for instance, detecting rules with variables that
are irrelevant for grounding.
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