
Answer Set; Programming? ?

Pedro Cabalar

Dept. Computación,
University of Corunna (Spain)

cabalar@udc.es

Abstract. Motivated by a discussion maintained by Michael Gelfond
and other researchers, this short essay contains some thoughts and re-
fections about the following question: should ASP be considered a pro-
gramming language?

1 Introduction

During a break in the Commonsense1 2007 Symposium, sat around a table in
some cafeteria inside the Stanford campus, an interesting and solid debate be-
tween Michael Gelfond and some well-known researcher (call him A.B.) in the
area of Logic Programming and Nonmonotonic Reasoning was initiated. The dis-
cussion started when A.B. claimed at some point that Answer Set Programming
(ASP) was a programming paradigm. Although at that moment, this seemed a
quite obvious, redundant and harmless assertion, surprisingly, Gelfond’s reac-
tion was far from agreement. With his usual kind but firm, rational style, he
proceeded to refute that argument, defending the idea that ASP was exclusively
a logical knowledge representation language, not a programming language. This
short essay contains some disconnected, personal thoughts and reflections moti-
vated by that discussion.

2 Programming as implementing algorithms

Of course, the keypoint relies on what we consider to be a programming language
or more specifically which is the task of programming. In its most frequent use,
this term refers to imperative programming, that is, specifying sets of instruc-
tions to be executed by a computer in order to achieve some desired goal. This
is opposed to declarative programming, which is frequently defined as specifying
what is to be considered a solution to a given problem, rather than the steps
describing how to achieve that solution. ASP would perfectly fit in this sec-
ond definition, had not it been the case that declarative programming actually
involves much more than this ideal goal of pure formal specification.
? This work was partially supported by Spanish MEC project TIN2009-14562-C05-04

and Xunta de Galicia project INCITE08-PXIB105159PR.
1 Eighth International Symposium on Logical Formalizations of Commonsense Rea-

soning.

In practice, despite of the big differences between imperative and declarative
programming languages, we can generally identify programming as implement-
ing algorithms. We actually expect that a programming language allows us a
way to execute algorithms on a computer. When a (declarative) programmer
designs a program, either in Prolog or in some functional language, she must
not only write a formal specification (using predicates, functions, equations,
etc), but also be aware of how this specification is going to be processed by
the language interpreter she is using, so that both things together become the
algorithm implementation. This idea was clearly expressed by Kowalski’s equa-
tion [7] “Algorithm = Logic + Control” or A = L + C, meaning that a given
algorithm A can be obtained as the sum of a logical description L (our formal
specification) plus a control strategy C (top-down, bottom-up, SLD, etc). The
same algorithm A can be the result of different combinations, say A = L1 + C1

or A = L2 + C2. Efficiency issues and even termination will strongly depend on
the control component C we choose. If we use an interpreter like Prolog, where
the control component is fixed, we will face the typical situation where the logic
component L must be adapted to the control strategy. A simple change in the
ordering among clauses or literals in L may make the program to terminate or
not.

Now, back to our concern for ASP, despite of being an LP paradigm, it seems
evident that the algorithmic interpretation for Predicate Logic [16] (which was
in the very roots of the LP area) is not applicable here. In fact, in an ASP
program, there is no such a thing as a “control strategy.” In this sense, we reach
a first curious, almost paradoxical, observation:

Observation 1 ASP is a purely declarative language, in the sense that it ex-
clusively involves formal specification, but cannot implement an algorithm, that
is, cannot execute a program!

Thus, ASP fits so well with the ideal of a declarative programming language
(i.e., telling what and not how) that it does not allow programming at all.

3 Programming as temporal problem solving

The previous observation saying that ASP cannot implement an algorithm may
seem too strong. One may object that ASP has been extensively used for solving
temporal problems in transition systems, including planning, that is, obtaining
a sequence of actions to achieve a desired goal. This may look close to algorithm
implementation. Let us illustrate the idea with a well-known example.

Example 1 (Towers of Hanoi). We have three vertical pegs a, b, c standing on a
horizontal base and a set of n holed disks, numbered 1, . . . , n, whose sizes are
proportional to the disk numbers. Disks must always be stored on pegs, and a
larger disk cannot rest on a smaller one. The HANOI problem consists in moving
a tower formed with the n disks in peg a to peg c, by combination of individual
movements that can carry the top disk of some peg on top of another peg. ut

Figure 1 shows an ASP program for solving HANOI in the language of
lparse2. Constant n represents the number of disks and constant pathlength
the number of transitions, so that, we must make iterative calls to the solver
varying pathlength=0,1,2,. . . until a solution is found. For instance, for n=2
the first solution is found with pathlength=3 and consists in the sequence of
actions move(a,b,0) move(a,c,1) move(b,c,2); for n=3, the minimal solution
is pathlength=7 obtaining the sequence:

move(a,c,0) move(a,b,1) move(c,b,2) move(a,c,3) move(b,a,4)
move(b,c,5) move(a,c,6)

whereas for n=3 with pathlength=15 we get:

move(a,b,0) move(a,c,1) move(b,c,2) move(a,b,3) move(c,a,4)
move(c,b,5) move(a,b,6) move(a,c,7) move(b,c,8) move(b,a,9)
move(c,a,10) move(b,c,11) move(a,b,12) move(a,c,13) move(b,c,14)

Although the ASP program correctly solves the HANOI problem, it is far
from being an algorithm. In particular, we would expect that an algorithm told
us how to proceed in the general case for an arbitrary number n of disks. This
means finding some general process from which the above sequences of actions
can be extracted once we fix the parameter n. For instance, in the sight of the
three solved instances above, it is not trivial at all how to proceed for n = 4.

In the case of HANOI, such a general process to generate an arbitrary solution
does exist. In fact, the HANOI problem is a typical example extensively used
in programming courses to illustrate the idea of a recursive algorithm. We can
divide the task of shifting n disks from peg X to peg Y , using Aux as an auxiliary
peg, into the general steps

1. Shift n− 1 disks from X to Aux using Y as auxiliary peg;
2. Move the n-th disk from X to Y ;
3. Shift n− 1 disks from Aux to Y using X as auxiliary peg.

This recursive algorithm is encoded in Prolog in Figure 2, where predicate
hanoi(N,Sol) gets the number of disks N and returns the solution Sol as a
list of movements to be performed.

Note now the huge methodological difference between both programs. On the
one hand, the ASP program exclusively contains a formal description of HANOI
but cannot tell us how to proceed in a general case, that is, cannot yield us a
general pattern for the sequences of actions for an arbitrary n. On the other
hand, the Prolog program (or any implementation3 of the recursive algorithm)

2 http://www.tcs.hut.fi/Software/smodels/lparse.ps
3 We could perfectly use instead any programming language allowing recursive calls.

In the same way, Prolog can also be used to implement a planner closer to the
constraint-solving spirit of the ASP program.

http://www.tcs.hut.fi/Software/smodels/lparse.ps

%---- Types and typed variables

disk(1..n). peg(a;b;c).

transition(0..pathlength-1). situation(0..pathlength).

location(Peg) :- peg(Peg). location(Disk) :- disk(Disk).

#domain disk(X;Y). #domain peg(P;P1;P2). #domain transition(T).

#domain situation(I). #domain location(L;L1).

%---- Inertial fluent: on(X,L,I) = disk X is on location L at time I

on(X,L,T+1) :- on(X,L,T), not otherloc(X,L,T+1). % inertia

otherloc(X,L,I) :- on(X,L1,I), L1!=L.

:- on(X,L,I), on(X,L1,I), L!=L1. % on unique location

%---- Defined fluents

% inpeg(L,P,I) = location L is in peg P at time I

% top(P,X,I) = location L is the top of peg P. If empty, the top is P

inpeg(P,P,I).

inpeg(X,P,I) :- on(X,L,I), inpeg(L,P,I).

top(P,L,I) :- inpeg(L,P,I), not covered(L,I).

covered(L,I) :- on(X,L,I).

%---- State constraint: no disk X on a smaller one

:- on(X,Y,I), X>Y.

%---- Effect axiom

on(X,L,T+1) :- move(P1,P2,T), top(P1,X,T), top(P2,L,T).

%---- Executability constraint

:- move(P1,P2,T), top(P1,P1,T). % the source peg cannot be empty

%---- Generating actions

movement(P1,P2) :- P1 != P2. % valid movements

1 {move(A,B,T) : movement(A,B) } 1. % pick one at each transition T

%---- Initial situation

on(n,a,0). on(X,X+1,0) :- X<n.

%---- Goal: at last situation, all disks in peg c

onewrong :- not inpeg(X,c,pathlength).

:- onewrong.

Fig. 1. An ASP program to solve the HANOI problem.

hanoi(N,Sol) :- shift(N,a,c,b,Sol).

shift(0,_,_,_,[]) :- !.

shift(N,X,Y,Aux,Sol) :- N1 is N-1,

shift(N1,X,Aux,Y,Pre),

append(Pre,[move(X,Y)|Post],Sol),

shift(N1,Aux,Y,X,Post).

Fig. 2. A Prolog program implementing a recursive algorithm to solve HANOI.

tells us the steps that must be performed in a compact (and in fact, much more
efficient) way, but contains no information at all about the original problem.
The recursive algorithm is just a “solution generator” or if preferred, a regular
way of describing the structure of sequences of actions that constitute a solution.

This naturally leads to the following topic: verification. How can we guarantee
that the actions recursively generated for some n actually move our tower to the
desired target without violating the problem constraints? Verifying the recursive
algorithm is a crucial work, since it contains no information on the original
puzzle. In the case of the ASP encoding, since it already constitutes a formal
specification, verification is a much more subtle task. It would require providing
a second, different enough, formal specification (perhaps using mathematical
objects closer to the original problem) and proving afterwards that the answer
sets we obtain are in one-to-one correspondence to the solutions of our second
representation.

Together with verification, another typical issue in algorithm analysis is com-
plexity. The recursive algorithm can be easily used to prove that a solution to
HANOI requires 2n − 1 steps. Obtaining this complexity result from the ASP
program (plus the iteration of pathlength) is far from trivial. Although the com-
plexity of arbitrary ASP is well-known, a different open and interesting question
is how to use ASP for complexity analysis of a given encoded temporal problem.

One final comment that stresses the difference between both programs is
that, obviously, the recursive algorithm approach is not elaboration tolerant
at all. A simple variation of HANOI that allowed a fourth peg would lead to
shorter solutions (for instance, with n = 4 a solution is found in 9 steps). Note
that the only change in the ASP representation would just require adding the
fact peg(d). It is easy to think about simple variations that would even make
the Prolog program to become incorrect.

4 Programming as implementing a Turing machine

One of the usually desirable properties of programming languages is Turing
completeness, that is, the capability of capturing any computation that can be
performed by a Turing machine. It is well-known [15] that Prolog (in fact Horn
clauses with functions) is Turing complete. Figure 3 shows one possible encoding
of a generic Turing machine in Prolog. It just consists of five rules for predicate

tm(S,L,X,R) which represents a machine configuration. The current state is
represented by argument S and the tape is fragmented into three portions: L
is the (reversed) list of symbols to the left of the machine head; X is the tape
symbol currently pointed by the head; and R is the list of symbols to the right
of the head. Constant 0 stands for the blank symbol. Predicate nexttm is just a
recursive call to tm preceded by a display output of the new configuration.

tm(S, _, _, _) :- final(S).

tm(S,[Y|L],X, R) :- t(S,X,S1,X1,l), nexttm(S1,L,Y,[X1|R]).

tm(S, L, X,[Y|R]) :- t(S,X,S1,X1,r), nexttm(S1,[X1|L],Y,R).

tm(S, L, X, []) :- t(S,X,S1,X1,r), nexttm(S1,[X1|L],0,[]).

tm(S, [], X, R) :- t(S,X,S1,X1,l), nexttm(S1,[],0,[X1|R]).

nexttm(S,L,X,R) :- write(tm(S,L,X,R)),nl,tm(S,L,X,R).

Fig. 3. A general implementation of a Turing machine in Prolog.

In order to implement a particular machine, we just have to include facts for
the predicates t/5 (the transition table), and final/1 (which states are final),
assuming that no transition is given for a final state. As an example, the following
facts would specify a 3 state, 2 symbol busy beaver:

t(a,0,b,1,r). t(b,0,a,1,l). t(c,0,b,1,l). t(a,1,c,1,l).
t(b,1,b,1,r). t(c,1,halt,1,r). final(halt).

The execution of the busy beaver on an empty tape beginning with state ‘a’
would correspond to the query call shown in Figure 4.

Back again to ASP, under its most accepted understanding as a logic pro-
gramming paradigm [8,13], one of its characteristic features is the complex-
ity class it can cover: NP-completeness for normal logic programs [9]; ΣP

2 -
completeness for disjunctive programs [4]. Both results refer to existence of a
stable model for a propositional program. The use of variables as abbreviations
of all their possible ground instances to obtain a finite propositional program is
possible thanks to another fundamental feature of the traditional ASP paradigm:
forbidding function symbols. These complexity bounds point out that, although
useful for solving many constraint-like problems, ASP is far from being a Turing-
complete programming language.

However, this “traditional” picture needs to be revised in the sight of recent
results obtained during the last years. First, in the theoretical field, the classical
definition of stable models [6], which was only applicable to propositional pro-
grams, has been extended for covering any arbitrary first order theory, thanks to
the definition of First Order Equilibrium Logic [14], a nonmonotonic formalism
relying on a monotonic intermediate logic, or the equivalent General Theory of

?- nexttm(a,[],0,[]).

tm(a, [], 0, [])

tm(b, [1], 0, [])

tm(a, [], 1, [1])

tm(c, [], 0, [1, 1])

tm(b, [], 0, [1, 1, 1])

tm(a, [], 0, [1, 1, 1, 1])

tm(b, [1], 1, [1, 1, 1])

tm(b, [1, 1], 1, [1, 1])

tm(b, [1, 1, 1], 1, [1])

tm(b, [1, 1, 1, 1], 1, [])

tm(b, [1, 1, 1, 1, 1], 0, [])

tm(a, [1, 1, 1, 1], 1, [1])

tm(c, [1, 1, 1], 1, [1, 1])

tm(halt, [1, 1, 1, 1], 1, [1])

Yes

Fig. 4. A query and its corresponing display output for the 3 state, 2 symbol
busy beaver machine.

Stable Models [5], a syntactic construct very close to Circumscription [12]. Un-
der these extensions, we can even remove the restriction to Herbrand models,
so that assumptions like, for instance, domain closure or unique names are now
optional. Thus, at least as a theoretical device, the new generalisations of ASP
can now perfectly deal4 with (Herbrand models) of the encoding of a Turing
machine we presented in Figure 3.

But this capability is not limited to the theoretical field. A second important
recent breakthrough has been the introduction of functions in ASP [2] and its im-
plementation with solver DLV-complex [3]. When a program with functions, dis-
junction and negation satisfies a given property, so-called being finitely-ground, it
has nice computational features: brave and cautious reasoning become decidable,
and its answer sets are computable. An interesting result is that finitely-ground
programs can encode any computable function. This was proven by encoding a
Turing machine as an ASP program so that a function computation stops in
the machine iff its ASP encoding is finitely recursive (and the answer set will
contain the execution steps). As it can be expected, checking whether a program
is finitely recursive is undecidable. In fact, the encoding of Figure 3 is practically
the same one5 recently used in [1] to prove Turing-completeness of ASP with
functions. In practical terms, this means that we can feed a program similar to
the one in Figure 3 to DLV-complex and, as the machine halts, obtain one answer
set containing all the facts for tm shown in Figure 4.

At the sight of this new scenario, we must reconsider our main question:
should ASP be considered now a programming language? Capturing a Turing

4 A correctness proof of this program with respect to any of these two first order
formalisms would be interesting.

5 The original encoding considered a version of Turing machine with a left-ended tape.

machine looks an undeniable proof. However, we can still find a subtle distinc-
tion between ASP and Prolog behaviours. The ASP encoding is being used to
represent a Turing machine and its computations, whereas the Prolog encoding
actually executes those computations. We can associate a time stamp to each
of the ordered lines that the computer prints to solve the Prolog query: time is
“real.” Contrarily, the answer set would contain the same set of tm facts, but
with no associated ordering. In fact, if we wanted to reconstruct the order among
the steps followed by the machine, we would have to include one more parameter
for an explicit representation of time. Thus, in ASP time is “virtual.”

Observation 2 Although ASP and Prolog can encode a Turing machine, ASP
represents the machine computations using virtual, reified time, whereas Prolog
executes the machine computations using real time.

Under our point of view, this observation reaffirms the idea of seeing ASP
as a formal specification language rather than a programming language. Note
how the ASP orientation could be used to analyse a real-time application or a
reactive system, but not to implement it in a real scenario.

5 Programming as a craft

Finally, one more meaning we may sometimes associate to the idea of program-
ming to distinguish it from formal specification is that the former involves some
kind of craft work whereas the latter is frequently seen as an accurate task and
free from efficiency issues. In the particular case of Prolog programs, we all know
that practical programming involves capabilities like a reasonable use of the cut
predicate or an efficient list construction strategy. This usually means important
sacrifices in program readability and declarativeness (the simple inclusion of a
cut predicate may easily change the program semantics).

Unfortunately, efficiency considerations are also present in practical ASP
(mostly related to reduce grounding) and, as happens with Prolog, they fre-
quently introduce a sacrifice with respect to the program quality too. As ASP
is a formal specification language, this sacrifice does not have to do with a lack
of declarativeness – we can say that ASP programs are always declarative. The
cost to pay may come as a lack of elaboration tolerance [10]. As defined by John
McCarthy:

“A formalism is elaboration tolerant to the extent that it is convenient
to modify a set of facts expressed in the formalism to take into account
new phenomena or changed circumstances.”

The quest for elaboration tolerance was present in ASP from its very be-
ginning. Stable models and their use of default negation allowed establishing a
fruitful connection between Logic Programming and Nonmonotonic Reasoning
(NMR). We can even say that ASP constitutes nowadays one of the most suc-
cessful tools for practical NMR. However, the fact that a language is elaboration

tolerant (up to some degree) does not necessarily mean that any program built
with that language is elaboration tolerant too. When we talk about elabora-
tion tolerance of ASP, we mean that there exists a flexible way of representing
a problem, not that any encoding of that problem in ASP will have the same
degree of elaboration tolerance, or that it will have that property at all.

For instance, back to our HANOI problem, we will have few actions (and so,
few choice points) if we consider, as we did, movements from one peg to another:
for three pegs, this always means six possible actions. On the contrary, if we take,
for instance, movements from a given disk to a given location (a peg base or
another disk), the number of possible actions blows up as n increases. The peg-
to-peg representation is, however, less elaboration tolerant, as it is more focused
on the given problem we try to solve rather than the physical possibilities of the
scenario. As an example, assume now that some marked disks could be carried
with all the disks they have above at a time. The disk-to-location encoding would
still be valid, but the peg-to-peg representation no, as it implicitly assumes that
we always take the top disk. Decisions like this arise in almost any ASP problem
solving project.

To further illustrate this dilemma, think about the Second ASP Solver Com-
petition6, where efficiency plays a preeminent role, as expected. In this edition,
the competition just defined the input and output format of the benchmark
problems, and the final encoding was left to the competitors. This idea had the
important advantage of opening the competition to solvers that accepted dif-
ferent languages, so they could compete altogether for a faster solution. The
disadvantage, however, is obvious: we are measuring not only the performance
of a given solver, but also the craft or experience of the ASP programmer to ob-
tain a more “efficient representation” (usually, a less grounding-consuming one).
Furthermore, if we look at the three ASP encodings available in the competition
site for the HANOI problem we will find out that elaboration tolerance sacrifices
have been considerable. None of the three solutions contain the default rule of
inertia to avoid the frame problem [11], which has been the cornerstone of the
NMR area of Reasoning about Actions and Change. In fact, the use of negation
is quite limited (no defaults are really used) and two of the encodings contain an
automaton-style description, which is probably one of the less elaboration toler-
ant ways of describing a problem (any slight variation usually means rebuilding
the whole automaton).

Although we recognize the crucial importance of an efficiency competition for
an active improvement of the available solvers (as happened in the SAT area),
it is perhaps worth to consider a different track including benchmarks focused
on an fixed, elaboration tolerant encoding of a given problem. After all, our
final goal should proving that efficient elaboration tolerance is feasible. We can
summarize this focusing by ending up with another quote by McCarthy, when
talking about the use of chess as a drosophila for AI:

“Unfortunately, the competitive and commercial aspects of making com-
puters play chess have taken precedence over using chess as a scientific

6 http://dtai.cs.kuleuven.be/events/ASP-competition/index.shtml

http://dtai.cs.kuleuven.be/events/ASP-competition/index.shtml

domain. It is as if the geneticists after 1910 had organized fruit fly races
and concentrated their efforts on breeding fruit flies that could win these
races.”

6 Conclusions

After examining several aspects of the idea of programming, we claim that ASP
is not a programming paradigm in a strict sense, but a formal specification lan-
guage instead. Still, we find that the term Answer Set programming can be more
vaguely used to refer to the craft (and perhaps in the future, to the methodolo-
gies) for developing an efficient and elaboration tolerant formal representation
of a given problem.

Acknowledgements Special thanks to Michael Gelfond for his always inspiring
and enlightening discussions - hearing or reading him always means extracting
new valuable ideas. Also thanks to Ramón P. Otero and Alessandro Provetti,
who introduced me to Dr. Gelfond and brought my attention to his work some
years ago.

References

1. Mario Alviano, Wolfgang Faber, and Nicola Leone. Disjunctive ASP with func-
tions: Decidable queries and effective computation. Theory and Practice of Logic
Programming, 10(4-6):497–512, 2010.

2. Francesco Calimeri, Susanna Cozza, Giovambattista Ianni, and Nicola Leone. Com-
putable functions in ASP: Theory and implementation. In 24th Intl. Conf. on Logic
Programming, volume 5366 of Lecture Notes in Computer Science, pages 407–424.
Springer-Verlag, 2008.

3. Francesco Calimeri, Susanna Cozza, Giovambattista Ianni, and Nicola Leone. An
ASP system with functions, lists, and sets. In 10th Intl. Conf. on Logic Program-
ming and Nonmonotonic Reasoning, volume 5753 of Lecture Notes in Computer
Science, pages 483–489. Springer-Verlag, 2009.

4. Thomas Eiter and Georg Gottlob. Complexity results for disjunctive logic program-
ming and application to nonmonotonic logics. In Proceedings of the International
Logic Programming Symposium (ILPS, pages 266–278. MIT Press, 1993.

5. P. Ferraris, J. Lee, and V. Lifschitz. A new perspective on stable models. In Proc.
of the International Joint Conference on Artificial Intelligence (IJCAI’07), pages
372–379, 2004.

6. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R. A. Kowalski and K. A. Bowen, editors, Logic Programming: Proc. of the
Fifth International Conference and Symposium (Volume 2), pages 1070–1080. MIT
Press, Cambridge, MA, 1988.

7. R. Kowalski. Algorithm = logic + control. Communications of the ACM,
22(7):424–436, 1979.

8. V. Marek and M. Truszczyński. Stable models and an alternative logic programming
paradigm, pages 169–181. Springer-Verlag, 1999.

9. W. Marek and M. Truszczyński. Autoepistemic logic. Journal of the ACM, 38:588–
619, 1991.

10. J. McCarthy. Elaboration tolerance. In Proc. of the 4th Symposium on Logical
Formalizations of Commonsense Reasoning (Common Sense 98), pages 198–217,
London, UK, 1998. Updated version at
http://www-formal.stanford.edu/jmc/elaboration.ps.

11. J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. Machine Intelligence Journal, 4:463–512, 1969.

12. John McCarthy. Circumscription - a form of non-monotonic reasoning. Artif.
Intell., 13(1-2):27–39, 1980.

13. I. Niemelä. Logic programs with stable model semantics as a constraint program-
ming paradigm. Annals of Mathematics and Artificial Intelligence, 25:241–273,
1999.

14. David Pearce and Agust́ın Valverde. Towards a first order equilibrium logic for
nonmonotonic reasoning. In Proc. of the 9th European Conf. on Logics in AI
(JELIA’04), pages 147–160, 2004.

15. Sten-Ake Tärnlund. Horn clause computability. BIT, 16(2):215–226, 1977.
16. Maarten H. van Emden and Robert A. Kowalski. The semantics of predicate logic

as a programming language. J. ACM, 23(4):733–742, 1976.

	Answer Set; Programming?
	Pedro Cabalar

