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Abstract

In this work, we present a causal extension of logic
programming under the stable models semantics where,
for a given stable model, we capture the alternative
causes of each true atom. The syntax is extended by
the simple addition of an optional reference label per
each rule in the program. Then, the obtained causes
rely on the concept of causal proof : an inverted tree
of labels that keeps track of the ordered application of
rules that has allowed deriving a given true atom.

Introduction

Causality is a concept firmly settled in commonsense
reasoning. It is present in all kind of human daily
scenarios, and has appeared in quite different cultures,
both geographically and temporally distant. Paradoxi-
cally, although people reveal an innate ability for causal
reasoning, the study of causality, or even its very defini-
tion, has become a difficult and controversial topic, be-
ing tackled under many different perspectives. Philoso-
phers, for instance, have been concerned with the final
nature of causal processes, and even discussed if there
exists so. Logicians have tried to formalise the concept
of causal conditionals, trying to overcome counterin-
tuitive effects of material implication. Scientists have
informally applied causal reasoning for designing their
experiments, but usually disregarded causal informa-
tion once their formal theories were postulated.

In Artificial Intelligence (AI), we can find two dif-
ferent and almost opposed focusings: (1) using causal
inference; and (2) extracting causal knowledge. Ori-
entation (1) has been adopted in the area of Reason-
ing about Actions and Change where most causal ap-
proaches have tried to implement some kind of causal
derivation in order to solve other reasoning or repre-
sentational problems. We can cite, for instance, the
so-called causal minimizations (Lifschitz 1987; Haugh
1987) that were among the first solutions to the well-
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known Yale Shooting Problem (Hanks and McDer-
mott 1987), or other later approaches like (Lin 1995;
McCain and Turner 1997; Thielscher 1997) applying
causal mechanisms to simultaneously solve the frame
and ramification problems. All these formalisms are
thought to reason using causality but not about causal-
ity. To put an example, we may use a causal rule like
“A causes B” to deduce that effect B follows from a
fact A, but we cannot obtain the information “A has
caused B.” The only concern is that the rule does not
manifest the non-directional behaviour of material im-
plication: for instance, we do not want to derive ¬A as
an effect of fact ¬B.

Orientation (2), on the contrary, consists in recog-
nizing cause-effect relations from a more elementary,
non-causal formalisation. For instance, (Halpern and
Pearl 2005) propose a definition for “event A is an
actual cause of event B in some context C” in terms
of counterfactuals dealing with possible worlds. These
possible worlds correspond to configurations of a set of
random variables related by so-called structural equa-
tions. Under this approach, we observe the behaviour
of the system variables in different possible situations
and try to conclude when “A has caused B” using the
counterfactual interpretation from (Hume 1748): had A
not happened, B would not have happened. Recently,
(Halpern 2008) refined this definition by considering a
ranking function to establish the more “normal” pos-
sible worlds as default situations. Under this focusing
we cannot, however, describe the system behaviour in
terms of assertions like “A causes B” as primitive rules
or axioms: this must be concluded from the structural
equations.

A third and less explored possibility would consist in
treating causality in an epistemological way, embodied
in the semantics as primitive information, so that we
can derive causal facts from it. In this case, the goal
is both to describe the scenario in terms of rules like
“A causes B” and derive from them facts like “A has
caused B”. This may look trivial for a single and direct
cause-effect relation, but may easily become a difficult
problem if we take into account indirect effects and joint
interaction of different causes. A preliminary approach
following this focusing was (Cabalar 2003) that was able



to derive, from a set of causal rules, which sets of ac-
tion occurrences where responsible for each effect in a
given transition system. This approach was limited in
many senses. For instance, only actions could form pos-
sible causes, but not intermediate events. The causal
semantics was exclusively thought for a single transi-
tion. Besides, the implementation of causal rules and
the inertia default relied on an additional (and inde-
pendent) use of logic programs under the stable model
semantics (Gelfond and Lifschitz 1988).

In this paper we go further and propose to embed
causal information inside answer set programming. In
particular, we are interested in capturing the causes
for each true atom in a given stable model. To this
aim, we extend the syntax by including a label for each
rule. Inspired by the Logic of Proofs (Artëmov 2001),
the causes of a given true atom p are then expressed
in terms of inverted trees of labels, called causal proofs,
that reflect the sequence and joint interaction of rule ap-
plications that have allowed deriving p as a conclusion.
As a result, we obtain a general purpose nonmonotonic
formalism that allows both a natural encoding of de-
faults and, at the same time, the possibility of reasoning
about causes.

The rest of the paper is organised as follows. In
the next section we explain our motivations and pro-
vide a pair of examples. After that, we introduce our
semantics for causal proofs, explaining their structure
and defining interpretations and valuation of formulas.
The next section proceeds to consider positive logic pro-
grams explaining how, for that case, a concept of mod-
els minimality is required. Then, we move to programs
with default negation, defining stable models in terms
of a straightforward adaptation of the well-known idea
of program reduct (Gelfond and Lifschitz 1988). Fi-
nally, we discuss some related work and conclude the
paper.

Motivation and examples
Let us see several examples to describe our under-
standing of a causal explanation for a given conclusion.
Causal explanations (or causal proofs) will be provided
in terms of rule labels used to keep track of the possible
different ways to obtain a derived fact. For readability,
we will use different names for labels (usually a sin-
gle letter) and propositions, but this restriction is not
really required. Sometimes, we will also handle unla-
belled rules, meaning that we are not really interested
in tracing their application for explaining causal effects.

We begin observing that, in order to explain a given
derived atom, we will need to handle causes that are due
to the joint interaction of multiple events. For instance,
suppose we have a row boat with two rowers, one at
each side of the boat. The boat will only move forward
fwd if both rowers strike at a time. We can encode the
program as:

p : port s : starb port ∧ starb→ fwd

where we labelled the facts port (port rower made a

stroke) and starb (starboard rower made a stroke) re-
spectively using p and s. From this program we expect
concluding not only that fwd (the boat moves forward)
is true, but also that its cause is {p, s}, that is, the si-
multaneous interaction of both strokes.

On the other hand, we will also need considering al-
ternative (though equally effective) causes for a same
conclusion. For instance, if we additionally have a fol-
lowing wind, the boat moves forward too:

w : fwind fwind→ fwd

so that we have now two alternative and independent
ways of explaining fwd: {w} and {p, s}.

From these examples, we conclude that in order to
explain a conclusion, we will handle a set of alternative
sets of individual events, so that the full explanation
for fwd above would be the set {{w}, {p, s}} of its two
alternative causes.

Apart from recording labels for facts, we may be in-
terested in a more detailed description that also keeps
track of the applied rules. To illustrate the idea, take
the following example. Some country has a law l that
asserts that driving drunk is punishable with impris-
onment. On the other hand, a second law m specifies
that resisting arrest has the same effect. The execu-
tion e of a sentence establishes that any punishment to
imprisonment is made effective unless the accused is ex-
ceptionally pardoned. Suppose that some person drove
drunk and resisted to be arrested. We can capture this
scenario with the next program:

l : drive ∧ drunk → punish d : drive
m : resist→ punish k : drunk
e : punish ∧ ¬pardon→ prison r : resist

We want to conclude that punish holds because of two
alternative causes. The first one is the application of
law l on the basis of the joint cause {d, k}. We will de-
note this as l ·{d, k}. Similarly, the second one would be
due to resistance to arrest m ·{r}. These two causes are
independent, so the explanation for punish would con-
tain two alternative causes: {{l · {d, k}} and {m · {r}}.
Finally, as there is no evidence of pardon we would
conclude that the two independent causes for prison
are inherited from punish plus the sentence execution
e, that is: {e · {{l · {d, k}}} and {e · {m · {r}}}. We
proceed next to formalise these ideas.

A semantics for causal proofs
A signature is a pair 〈At, Lb〉 of finite sets that respec-
tively represent the set of atoms (or propositions) and
the set of labels (or causal events). A formula F is
defined by the grammar:

F ::= p | ⊥ | F1 ∧ F2 | F1 ∨ F2 | l : F1 → F2

where p ∈ At is an atom and l can be a label l ∈ Lb
or the null symbol ε 6∈ Lb. Symbol ε is used when we
do not want to label an implication, so that we allow
an unlabelled formula ϕ → ψ as an abbreviation of



ε : ϕ → ψ. We write ¬ϕ to stand for the implication
ϕ → ⊥, and write > to stand for ¬⊥. We also allow
labelling non-implicational formulas l : ϕ with some
non-null label l ∈ Lb, so that it stands for an abbrevi-
ation of l : > → ϕ. A theory is a finite set of formulas
that contains no repeated labels (remember ε 6∈ Lb).

The semantics will rely on the following fundamental
concept.
Definition 1 (Causal proof) A causal proof for a
set of labels Lb is a structure l · C where l ∈ Lb is a
label (the root) and C is, in its turn, a set of causal
proofs. �

The informal reading of l ·C is that “the set of causal
proofs in C are used to apply l.” We can graphically
represent causal proofs as trees of labels, being l the
root and C the child trees, which cannot be repeated
(remember C is a set). Trees of labels will be depicted
upside down (the root in the bottom) and with arrows
reversed, as in Figure 1, since this better reflects the ac-
tual causal direction, as explained before. In the figure,
T1 and T2 are causal proofs but T3 no, since there exists
a node (the root a) with two identical child trees (the
leftmost and rightmost branches). We can deal with
usual tree terminology so that, for instance, a causal
proof with no children l · ∅ is called a leaf (we will just
write it l for short). Similarly, the height of a causal
proof is the length of the longest path to any of its
leafs.
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Figure 1: Three examples of (reversed) trees of labels.
T1 and T2 are causal proofs.

We define PLb as the set of all proofs for a set of
labels Lb. When clear from the context, we will re-
move subindex Lb. Note that P will be infinite for any
non-empty Lb. To see why, it suffices to see that just
taking Lb = {l} we can build, among others, the infi-
nite sequence of causal proofs l, l · {l}, l · {l · {l}}, etc.
However, as we can see, most causes in P are not very

interesting. Many of them contain some subproof l · C
where l occurs in C – this means that we are using l to
conclude l. When this happens, we say that l · C is a
self-supported causal proof. For instance, T2 in Figure 1
is self-supported. We call redundant to any causal proof
containing a self-supported subproof. For any finite Lb,
the set of non-redundant causal proofs is also finite and
its cardinal is given below.
Proposition 1 The number of non-redundant causal
proofs that can be formed with a set Lb of n different
labels is given by the recursive function:

f(n) =
{

1 if n = 1
n 2f(n−1) if n > 1

�

We define a cause C as any (finite) set of causal
proofs, that is, C ∈ 2PLb . We write CLb = 2PLb to
refer to the set of all possible causes for a set of labels
Lb. As before, subindex Lb is removed when there is
no ambiguity. An interesting observation is that given
any causal proof l · C, the set C forms a cause. Non-
redundant causes are those that can be formed with
non-redundant causal proofs.

For convenience, the term {ε ·C} will be understood
as an alternative notation for C. We define the ap-
plication of l to a set of causes S, written l � S, as
l � S def= { {l · C} | C ∈ S}. Using this definition, it is
easy to see that ε� S = S.

A causal interpretation is a function I : At −→ V
where V is the set of causal values defined as:

V def= 2C\{∅} ∪ {{∅}}
That is, a causal value is either a set of non-empty
causes, or the singleton {∅} exclusively containing the
empty cause. Intuitively, I(p) represents the set of al-
ternative causes for p to be true. This means that when
I(p) = ∅ (there is no cause for p) we understand that p
is false1. Note the difference with respect to I(p) = {∅}
meaning that p is true due to the empty cause ∅, that
is, without further justification. The empty cause will
allow deriving conclusions without tracing their proofs
with causal labels and, as we see next, it will represent
the concept of “maximal truth.”

We define an ordering relation ‘v’ on V causal values
so that: (1) for any S, S′ ∈ V different from {∅}, S v S′
iff S ⊆ S′; and (2) for any S ∈ V, S v {∅}.
Proposition 2 〈V,v〉 constitutes a poset with top ele-
ment {∅}, bottom element ∅ and least upper bound StS′
defined by:

S t S′ def=

{
{∅} if S = {∅} or S′ = {∅}
S ∪ S′ otherwise

1This is because we will later associate ¬p to default
negation: there is no cause for p. If we were interested
in representing causes for p being false, this would mean in-
troducing a second kind of negation, usually called explicit
or strong negation.



Definition 2 (Valuation of formulas) Given a
causal interpretation I for a signature 〈At, Lb〉, we de-
fine the valuation of a formula ϕ, by abuse of notation
also written I(ϕ), following the recursive rules:

I(⊥) def= ∅

I(ϕ ∧ ψ) def= {C ∪D | C ∈ I(ϕ) and D ∈ I(ψ)}

I(ϕ ∨ ψ) def= I(ϕ) t I(ψ)

I(l : ϕ→ ψ) def=
{
{∅} if l � I(ϕ) ⊆ I(ψ)
I(ψ) otherwise

�

Proposition 3 For any interpretation I and formula
α, I(α) is a causal value.

As explained before, falsity ⊥ is understood as ab-
sence of cause, and thus, I(⊥) = ∅. The causes of
a conjunction are formed with the joint interaction of
pairs of possible causes of each conjunct. That is, if C
is a cause for ϕ and D a cause for ψ then C ∪ D to-
gether is a cause for ϕ∧ψ. The causes for a disjunction
is the union of causes of both disjuncts, or {∅} if one
of them is also {∅}. Finally, the most important part is
the treatment of implication, as it must act as a proof
constructor. As we can see, we have two cases. In the
first case, the implication is assigned {∅} (simply true)
when any cause for the antecedent C ∈ I(ϕ) forms a
cause for the consequent {l · C} ∈ I(ψ) where, as we
can see, we “stamp” the application of l as a prefix. If
this is not the case, then the implication inherits the
causal value of the consequent I(ψ).

We say that a causal interpretation I is a causal model
of some theory Γ if for all ϕ ∈ Γ, I(ϕ) = {∅}.

Observation 1 If Lb = ∅ then valuation of formulas
collapses to classical propositional logic with truth val-
ues ∅ (false) and {∅} (true).

Let us see some particular cases of implications. For
instance, when l = ε, we get:

I(ϕ→ ψ) def=
{
{∅} if I(ϕ) ⊆ I(ψ)
I(ψ) otherwise

When ψ = ⊥ the implication becomes l : ¬ϕ and the
condition l � I(ϕ) ⊆ I(⊥) = ∅ amounts to I(ϕ) = ∅
obtaining the valuation:

I(l : ¬ϕ) def=
{
{∅} if I(ϕ) = ∅
∅ otherwise

In particular, we can use this to conclude I(l : >) =
I(l : ¬⊥) = {∅}. Another interesting particular case
is ϕ = >, that is, I(l : > → ψ) or I(l : ψ) for short.
In this case, the set l � I(ϕ) becomes l � {∅} that is
{{l · ∅}} = {{l}}. As a result, we obtain:

I(l : ψ) def=
{
{∅} if {l} ∈ I(ψ)
I(ψ) otherwise

A final degenerate case would be I(ε : > → ψ) for
which ε� {∅} = {∅} and we get the condition:

I(ε : > → ψ) def=
{
{∅} if {∅} ⊆ I(ψ)
I(ψ) otherwise

which trivially collapses into I(ε : > → ψ) = I(ψ).
We define an ordering relation v among causal in-

terpretations so that given two of them I, J , we write
I v J when I(p) v J(p) for all atom p.

Positive programs and minimal models
Although we will begin focusing on programs without
negation, let us first introduce the general syntax of a
logic program. As usual, a literal is an atom p (positive
literal) or its negation ¬p (negative literal). A (labelled)
logic program P is a finite set of rules of the form:

l : B → H

where B is a conjunction of literals (the rule body)
and H is a disjunction of literals (the rule head). The
empty conjunction (resp. disjunction) is represented as
> (resp. ⊥). We write B+ (resp. B−) to represent
the conjunction of all positive (resp. negative) literals
that occur as conjuncts in B. Similarly, H+ (resp. H−)
represents the disjunction of positive (resp. negative)
literals that occur as disjuncts in H. A logic program is
positive if H− and B− are empty, that is, if it contains
no negations. We assume that all the abbreviations
seen before are still applicable. Thus, for instance, a
rule with empty body l : > → H is also written as
l : H. A rule like l : p, with p an atom, is called a fact.

Let us see several simple examples. Consider first the
program P1 consisting of the single fact a : p. Models
of a : p must satisfy either {a} ∈ I(p) or I(p) = {∅}. If
{a} ∈ I(p) we could have, in fact, any arbitrary addi-
tional cause in I(p) and the interpretation would still
keep being a model. Consider now the program P2:

a : p b : p→ q

If we choose a model with {a} ∈ I(p), we must have
either {b · {a}} ∈ I(q) or I(q) = {∅}. But again, the
former does not prevent for including additional arbi-
trary and perhaps unrelated causes in I(q). Besides, for
any positive program, we always have a model where
I(x) = {∅} for any atom x. It seems obvious that, as
happens with standard (non-causal) logic programs, we
are interested in a Closed World Assumption, whose
reading here would be: “if something is not known to
cause a conclusion, it does not cause it.” In practice,
this means taking v-minimal models.

In this way, the least model of P1 is I(p) = {{a}}
(remember that any causal value is smaller than {∅})
which fits our intuition: p is true because a. Similarly,
the least model of P2 is I(p) = {{a}}, I(q) = {{b ·{a}}}
again, as expected.

Suppose now we extend P2 with the two rules:

c : r d : q ∧ r → s



Appart from maintaining the previous valuations of p
and q, the least model will also assign now I(r) = {{c}}
and I(s) = {{d · {b · {a}, c}}} so that the single causal
proof for s can be graphically depicted as:

a
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������

d

To see an example of how the top value {∅} works,
consider now the extension P3 = P2 ∪ {p}. Fact p can
also be seen as the rule ε : > → p (as we saw, both for-
mulas are equivalent). Since it must be valuated to {∅}
(as the rest of rules in the program) the only possible
model is I(p) = {∅}. Note that this still satisfies a : p,
whereas for rule b, we get the condition {b} ∈ I(q) or
I(q) = {∅}. In other words, program P3 becomes equiv-
alent to:

p b : > → q

It is easy to see that its least model is I(p) = {∅},
I(q) = {{b}}.

All the example programs we saw in this section con-
tained no disjunction and had a unique minimal model,
that is, a least model. We conjecture2 that, using a
similar fixpoint construction as in (non-causal) positive
logic programs (van Emden and Kowalski 1976), we will
obtain that there always exists such a least model for
any positive causal logic program. However, this least
model is not necessarily finite, as happened in the ex-
amples above. Consider now the program P4:

a : p b : p→ p

The causal value of I(p) in the least model will be the
infinite set of causes {a}, {b · {a}}, {b · {b · {a}}}, etc,
although only the first two are non-redundant (all the
rest are self-supported).

Finally, to illustrate the effect disjunction, consider
the program P5 consisting of the single rule a : p ∨ q.
Some models of this rule satisfy I(p) = {∅} or I(q) =
{∅}. For the rest of interpretations, we also have models
where {a} ∈ I(p) or {a} ∈ I(q). The program has two
minimal models I(p) = {{a}}, I(q) = ∅ and the dual
one I(p) = ∅, I(q) = {{a}}.

Default negation and stable models
Consider now the addition of negation, so that we deal
with arbitrary programs. In order to achieve a simi-
lar behaviour for default negation as that provided by
stable models in the non-causal case, we introduce the
following straightforward rephrasing of the traditional
program reduct (Gelfond and Lifschitz 1988).
Definition 3 (Program reduct) We define the
reduct of a program P with respect to an interpre-
tation I, written P I , as the result of the following
transformations on P :

2Attempting a proof is left for a future extended version
of this document.

1. Removing all rules s.t. I(B−) = ∅ or I(H−) = {∅};
2. Removing all negative literals from the rest of rules.

Definition 4 (Stable model) A causal interpreta-
tion I is a stable model of a causal program P if I
is a v-minimal model of P I .

As an example, take the program P6:

a : ¬q → p b : ¬p→ q c : p→ r

As we saw in previous sections, negation ¬ϕ is always
two-valued: it returns ∅ if ϕ has any cause and {∅} oth-
erwise. So, when deciding possible reducts, it suffices
with considering which atoms, among those negated,
will be assigned ∅. Suppose first we take some I such
that I(p) = ∅, I(q) 6= ∅. The reduct P I

6 will correspond
to:

b : > → q c : p→ r

whose least model is J(p) = ∅, J(q) = {{b}}, J(r) = ∅.
In particular, taking I = J is consistent so we obtain a
first stable model. Suppose now we take some I ′ such
that I ′(p) 6= ∅, I ′(q) = ∅. The reduct this time would
be:

a : > → p c : p→ r

The least model of this program is J ′(p) =
{{a}}, J ′(q) = ∅, J ′(r) = {c · {a}} which is consistent
with the assumption I ′ = J ′ so that we get a second
stable model. Applying a similar reasoning for the re-
maining cases, we can easily check that P6 has not more
stable models.

Related Work

Apart from the different AI approaches and orienta-
tions for causality we mentioned in the Introduction,
the work that has had a clearest and most influential
relation to the current proposal has been the Logic of
Proofs (Artëmov 2001) (LP). We have borrowed from
that formalism (most part of) the notation for our
causal proofs and rule labellings and the fundamental
idea of keeping track of justifications by considering the
rule applications. The syntax of LP is that of classical
logic extended with the construct t : F where F is any
formula and t a proof polynomial, a term following the
grammar:

t ::= a | x | !t | t1 · t2 | t1 + t2

where a is a proof constant (corresponding to our labels)
and x a proof variable. The meaning of t : F is that t
constitutes a proof for F . LP is an axiomatic system
containing the axioms:

A0. Propositional Calculus
A1. t : F → F “reflection”
A2. t : (F → G)→ (s : F → (t · s) : G) “application”
A3. t : F →!t : (t : F ) “proof checker”
A4. s : F → (s+ t) : F, t : F → (s+ t) : F “sum”



Without entering into further detail, let us overview the
main common points and differences between both for-
malisms. A first important difference comes from the
purpose of each approach. While LP is thought for
capturing a particular logical system, causal logic pro-
grams are thought for dealing with non-logical axioms
that allow knowledge representation of specific scenar-
ios. Besides, from a technical point of view, LP is an
axiomatic system, whereas our formalisation relies on a
semantic description.

As we can see, proof polynomials are quite similar
to our causal proofs. Axiom A2 looks like a syntactic
counterpart of our semantics for labelled implications.
However, there also exist some important differences
when comparing proof polynomials and causal proofs.
For instance, LP is much more expressive in the sense
that the t : F construction in our approach is exclu-
sively limited to the case in which t is a label. In other
words, we have not specified a syntax for expressing
that a given cause is assigned to some formula – this
information is only obtained as a semantic by-product.
As we explain later, the possibility of adding new oper-
ators for inspecting causes is left for future study. An-
other difference is that, while LP represents alternative
proofs s and t as the polynomial s + t, in our causal
proofs the ordering or repetition is irrelevant, and so,
we simply handle a set of causes. Note also that axiom
A4 does not make sense under our causal reading: if
s is a cause for F , then not any unrelated t will form
a cause s + t for F . It is also interesting to observe
that the idea of joint causes (that is, the simultane-
ous interaction of several causal proofs) does not have
a syntactic counterpart in LP.

Finally, another important difference, especially
when thinking about its application to Knowledge Rep-
resentation, is that LP is monotonic whereas our ap-
proach allows non-monotonic reasoning and, in fact, is
a proper extension of logic programs under the stable
model semantics. In this sense, the crucial feature is
the introduction of default negation, something that is
not present in LP.

Conclusions
We have introduced an extension of logic programming
under the stable model semantics that allows dealing
with causal explanations for each derived atom p in
a stable model. These explanations are given as sets
of alternative, independent causes. In their turn, each
cause corresponds to the joint interaction of (one or
more) causal proofs, being these used to keep track of
the different rule applications that have taken place in
the derivation of p.

This paper is an introductory work that opens a
new field for which many open topics remain for fu-
ture study. A first interesting topic is the introduc-
tion of new syntactic operators for inspecting causal in-
formation. Appart from directly representing whether
some cause is an explanation for a given formula, we
can imagine many different interesting constructs, like

checking the influence of a particular event or label in
a conclusion, expressing necessary or sufficient causes,
or even dealing with counterfactuals. Another interest-
ing topic is removing the syntactic reduct definition in
favour of some full logical treatment of default negation,
as happens for (non-causal) stable models and their
charaterisation in terms of Equilibrium Logic (Pearce
2006). This may allow extending the definition of causal
stable models to an arbitrary syntax and to the first or-
der case, where the use of variables in labels may also
introduce new interesting features. Finally, as this is
just a first formal definition, complexity results, imple-
mentation issues or potential applications are mostly
unexplored yet. Among the latter, we plan to design
a high level action language on top of causal logic pro-
grams with the purpose of modelling some typical sce-
narios from the literature on causality in AI. Another
possible application would be its use for debugging in
answer set programming, that is, trying to fix an “er-
ror” in the formalisation that has caused an unexpected
consequence in one or several stable models.
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Appendix. Proofs
Lemma 1 Let Lb be a set of n > 0 labels. The set of
non-redundant causal proofs of height equal or smaller
than k, 1 ≤ k ≤ n, that we can form for any subset
Lb′ ⊆ Lb of m labels from Lb, k ≤ m ≤ n, is given by
the function:

g(m, k) def=
{
m if k = 1
m 2g(m−1,k−1) if k > 1

Proof. We proceed by induction on k.

• For k = 1, take any subset Lb′ = {a1, . . . , am} ⊆ Lb
of m labels, 1 ≤ m ≤ n. We can form exactly m
trees of height 1 of the form ai · ∅ (that is, leaves)
with i = 1, . . . ,m and all of them are trivially non-
redundant causal proofs.

• Assume proved for some k − 1, 1 < k ≤ n and we
want to prove it for k. Take some subset Lb′ =
{a1, . . . , am} ⊆ Lb of m labels, k ≤ m ≤ n. Let
us first fix some label ai as root. The non-redundant
causal proofs ai ·C we can form with Lb′ of height k
or smaller must be built with non-redundant causal
proofs in C that have height k − 1 or smaller for the
m − 1 rest of labels Lb′ \ {ai} (as we cannot repeat
ai inside C). As m − 1 satisfies k − 1 ≤ m − 1 ≤ n
(in fact m− 1 < n), we can apply induction on k− 1
to conclude that the number of causal proofs of that
form is g(m− 1, k − 1). Now, since we want to com-
pute all the possible sets of causal subproofs C of
that class, we get 2g(m−1,k−1) possible non-redundant
causal proofs ai · C of length k or smaller, fixing ai.
Finally, if we sum all these causal proofs for the m
labels {a1, . . . , am} we get m 2g(m−1,k−1). �

Proof of Proposition 1. We just need to consider
causal proofs of height smaller or equal to n, since any
causal proof of height n+ 1 or greater will mandatorily
contain repeated labels in its longest path, at least. Us-
ing Lemma 1, we can form g(n, n) non-redundant causal
subproofs for n labels and height smaller or equal to n.
We show next that for any k, 1 ≤ k ≤ n, g(k, k) = f(k).

• For k = 1, it is trivial, since by definition g(1, 1) = 1.

• Assume proved for some k − 1, 1 < k ≤ n and
we want to prove it for k. By definition, g(k, k) =
k 2g(k−1,k−1). Applying induction on k − 1 we ob-
tain g(k, k) = k 2f(k−1) which is the expression for
f(k). �

Proof of Proposition 2. We prove first that it con-
stitutes a partial order:
1. Reflexivity: we must prove S v S. If S 6= {∅} it

follows from set inclusion reflexivity S ⊆ S. If S =
{∅} it holds by definition, since S v {∅} for any S.

2. Transitivity: let S v S′ and S′ v S′′. If S′′ = {∅},
then S v S′′ by definition. If, on the contrary, S′′ 6=
{∅}, as S′ v S′′ we conclude S′ 6= {∅}. But again, as
S v S′ we also get S 6= {∅}. As the three sets are not
{∅}, we obtain S ⊆ S′ and S′ ⊆ S′′. By reflexivity of
set inclusion, we conclude S ⊆ S′′.

3. Antisymmetry: let S v S′ and S′ v S. If S′ = {∅},
as S′ v S the only possibility is S = {∅} = S′. The
reasoning is dual for S = {∅}. Finally, if both S, S′

are not {∅}, we obtain S ⊆ S′ and S′ ⊆ S which, by
antysymmetry of the set inclusion relation, implies
S = S′.

Element {∅} is a top element by definition: for any
causal value S, S v {∅}. On the other hand, for any S,
∅ v S since, if S = {∅} this holds by definition, whereas
if S 6= {∅}, we have ∅ ⊆ S.

Finally, it is easy to see StS′ is a least upper bound.
If S = {∅}, S t S′ = {∅} which is obviously an upper
bound for any element including S and S′. Any smaller
S′′ v {∅} upper bound should satisfy S′′ w S = {∅} and
so S′′ = {∅}. A dual reasoning applies for S′ = {∅}. If
both S, S′ are not {∅}, then v collapses to ⊆ whereas
S t S′ = S ∪ S′ which is the least upper bound for ⊆.
�

Proof of Proposition 3. By structural induction on
α. The only non-trivial case is α = ϕ ∧ ψ. Suppose
that S = I(ϕ ∧ ψ) 6∈ V. As S is a set of causes, this
means that {∅, E} ⊆ S for some cause E 6= ∅. By
construction, ∅ ∈ S implies that for some C ∈ I(ϕ)
and D ∈ I(ψ), ∅ = C ∪ D, that is, C = D = ∅. By
induction hypothesis, I(ϕ) and I(ψ) are causal values,
so the only possibility is I(ϕ) = I(ψ) = {∅}. But then,
S = I(ϕ∧ψ) = {∅} by definition, contradicting the fact
E ∈ S, E 6= ∅. �


