
MiniLang: assignment instructions

Grao en Intelixencia Artificia, Lógica

February 27, 2024

Introduction

In this assignment, we will build a Prolog program that accepts an imperative
program and executes it. To that aim, we will define the following predicate,

run(PrevState, Program, PosState)

where PosState is the state of the program after running Program starting from
a previous state PrevState. The state of a program is a list of pairs (Variable,
Value), recording the values of the variables used in the program. For instance,
the following state,

[(x, 5), (y, 7)]

means that we have two variables x and y, which have values of 5 and 7 respec-
tively. The goal of the run/3 predicate is to update the variables in PrevState

according to the sentences in Program, producing a new state PosState. During
this execution, variable values may change and new variables may be created.

The rest of this document defines the syntax of MiniLang, the programming
language we will interpret, and provides examples of running programs.

Programming Language

The accepted programs will be written in the MiniLang language, a simplified
programming language that allows variable assignments, arithmetic ex-
pressions (including its evaluation) and a printing operation that outputs
messages through default output, as well as flow control via “if then else” and
“while do” constructs.

A MiniLang program is a sequence of sentences of different types,
separated by ‘;’. Next, we define the different types of sentences.

Variable assignment

A variable assignment is an expression of the form

<variable> = <arithmetic-expression>

where <variable> is a term starting with a lowercase letter that acts as the
identifier of a variable, whereas <arithmetic-expression> is a (Prolog-like)
arithmetic expression that may include variables or constants, as those de-
fined in the class. This is a variable, a constant, or any subsequent application
of operators, constants and variables. Below we provide some examples of valid
variable assignments:

x = 3 ;
y = x + 2 ;
varz = ((x + 2)∗2 // y) ∗∗ 4 ;

1

Note that the value being assigned to the variable in an assignment is the result
of evaluating the expression and not the expression itself.

After calling run/3 for executing an assignment var = exp, the value of the
variable var is updated in PosState according to PrevState and expression
exp. If the var does not exist in PrevState, then it is created in PosState. As
examples, take the results after running the following queries:

?- run([], x=3, S). → S = [(x, 3)]
?- run([(x,2), (y,3)], x=3; y=y-1, S). → S = [(x, 3), (y, 2)]
?- run([(varz,6)], x=3; y=x+2; varz=((x+2)*2 // y) ** 4, S). → S = [(y, 5), (x, 3), (varz, 16)]

Note that interpreting any expression including a variable that was not men-
tioned before in the program should lead to an execution error.

print operation

The language admits a print operation for printing strings or the result of
evaluating expressions through default output. Syntactically, it will be used
by writing the reserved keyword ’print’ followed by a single argument within
parentheses as below

print([<string>|<arithmetic-expression>])

where <string> represents a text string enclosed in double quotation marks (as
in Prolog), and <arithmetic-expression> represents any arithmetic expres-
sion including operators, variables and constants as discussed in the previous
section.

The execution of a print operation does not update the state of the program
but writes values in the terminal. Consider the following examples:

?- run([(x,2),(y,3)], print(x), S).
2
S = [(x, 2), (y, 3)]

?- run([(x,2),(y,3)], print("The result of (x+y)**2 is: "); print((x+y)**2), S).
The result of (x+y)**2 is: 25
S = [(x, 2), (y, 3)]

Flow control: “if then else” and “while do”

The syntax of MiniLang includes the use of “if then else” and “while do”
constructs to control the flow of the program depending on the evaluation of
boolean comparison expressions. A boolean comparison expression involves the
use of a (Prolog-accepted) comparison operator such as

comparison-op := > | < | >= | =< | =:= | =\=

and it is an expression of the form:

condition := <arithmetic-expression> <comparison-op> <arithmetic-expression>

2

where <comparison-op> is one of the operators defined above, and <arithmetic-expression>
follows its correspondent definition given in the previous sections

The syntax of an “if then else” construct is as follows:

if <condition> then (<block>) [else (<block>)]

where <block> is a sequence of MiniLang sentences separated by ‘;’ enclosed
between parentheses and both the word else and its corresponding block are
optional. If the condition is evaluated as true the flow of the program must
follow the then block. In contrast, the flow must follow the else block if it is
provided and the condition is evaluated as false. As an illustration, consider
the following examples:

?- run([(e, 19)],
if e>=18 then (print("Es mayor de edad. Edad = ");
print(e)), S).

Es mayor de edad. Edad = 19
S = [(e, 19)]

?- run([(n, 33)],
if n mod 2 = 0 then (print ("n es par "))
else (print ("n es impar ")),
S).

n es impar
S = [(n, 33)]

?- run([(d, 0), (t, 65)],
if t > 50 then (d = 0.2; print(" Descuento del 20%\n"));
print(" Precio final: ");
print(t - (t*d)),
S).

Descuento del 20%
Precio final: 52.0
S = [(d, 0.2), (t, 65)]

Similarly, the syntax of a “while do” construct is as follows:

while <condition> do (<block>)

where the both the syntax of <condition> and <block> is it was previously
explained. In the case of “while do” constructs, the block of code must be
executed in a loop while the condition is evaluated as true. Take the following
queries as examples:

?- run([],(x=1; while x<11 do (print(x); print(" ");x=x+1)),S).
1 2 3 4 5 6 7 8 9 10
S = [(x, 11)]

?- run([(n, 5)],
result = 1;
count = n;
while count > 1 do

(result = result*count; count = count -1);
print(" factorial (5)=");
print(result),
S).

factorial (5)=120
S = [(count , 1), (result , 120), (n, 5)]

3

Executing programs from files

For convenience, we will provide you with a predicate for reading programs from
files. The programs must be written as a Prolog term, this is they must follow
the syntax described above and end with a dot ‘.’. We will use the following
predicate and its correspondent definition below:

run_from_file(InitialState , FileName , FinalState) :-

open(FileName , read , Stream),

read_term(Stream , Prog , []),

close(Stream),

run(InitialState , Prog , FinalState).

For instance, assuming that we have the following contents in a file named
factorial.minilang :

Listing 1: factorial.minilang

result = 1;

count = n;

while count > 1 do (

result = result*count;

count = count -1

);

print (" factorial ("); print(n); print (")= ");

print(result).

Then this is the result for the following query:

?- run_from_file ([(n,5)], ’factorial.minilang ’, S).

factorial (5)= 120

S = [(count , 1), (result , 120), (n, 5)]

Important Notes

• Arithmetic and comparison operators are defined by Prolog by default, we
do not need to define new operators for this. The ‘;’ operator is defined
in Prolog as well, please do not provide any new definition for this
operator as it could lead to a priority clash error.

• When including more than one sentence in a then, else or do block, we
must enclose them parentheses. Otherwise, it will cause a priority clash
error.

• If an undefined variable (is not present in the current state) is used in an
expression, the run/3 predicate must say false.

4

