
Loop Formulas for Splitable
Temporal Logic Programs?

Felicidad Aguado, Pedro Cabalar,
Gilberto Pérez and Concepción Vidal

Department of Computing,
University of Corunna (Spain)

{aguado,cabalar,gperez,eicovima}@udc.es

Abstract. In this paper, we study a method for computing temporal
equilibrium models, a generalisation of stable models for logic programs
with temporal operators, as in Linear Temporal Logic (LTL). To this
aim, we focus on a syntactic subclass of these temporal logic programs
called splitable and whose main property is satisfying a kind of “fu-
ture projected” dependence present in most dynamic scenarios in An-
swer Set Programming (ASP). Informally speaking, this property can be
expressed as “past does not depend on the future.” We show that for this
syntactic class, temporal equilibrium models can be captured by an LTL
formula, that results from the combination of two well-known techniques
in ASP: splitting and loop formulas. As a result, an LTL model checker
can be used to obtain the temporal equilibrium models of the program.

1 Introduction

Although transition systems frequently appear in scenarios and applications of
Non-Monotonic Reasoning (NMR), most NMR formalisms are not particularly
thought for temporal reasoning. Instead, NMR approaches are typically “static,”
in the sense that time instants are treated as one more argument for predicates
representing actions and fluents. This has been usual, for instance, when repre-
senting temporal scenarios in Answer Set Programming (ASP) [1, 2], a successful
NMR paradigm based on the stable model semantics [3] for logic programs. In
this case, it is frequent that program rules depend on a parameter T , the previ-
ous situation, and the value T+1 representing its successor state. For instance, if
t represents the action of toggling a switch that can take two positions, d (down)
and u (up), the corresponding effect axioms would be encoded as:

u(T+1)← t(T), d(T) (1)
d(T+1)← t(T), u(T) (2)

Similarly, the inertia law would typically look like the pair of rules:

u(T+1)← u(T),not d(T+1) (3)
d(T+1)← d(T),not u(T+1) (4)

? This research was partially supported by Spanish MEC project TIN2009-14562-C05-
04 and Xunta de Galicia project INCITE08-PXIB105159PR.

Since ASP tools are constrained to finite domains, a finite bound n for the
number of transitions is usually fixed, so that the above rules are grounded for
T = 0, . . . , n − 1. To solve a planning problem, for instance, we would iterate
multiple calls to some ASP solver and go increasing the value of n = 1, 2, 3, . . .
in each call, until a (minimal length) plan is found.

Of course, this strategy falls short for many temporal reasoning problems,
like proving the non-existence of a plan, or checking whether two NMR system
representations are strongly equivalent, that is, whether they always have the
same behaviour, even after adding some common piece of knowledge, and for
any narrative length we consider.

To overcome these limitations, [4] introduced an extension of ASP to deal
with modal temporal operators. Such an extension was the result of mixing two
logical formalisms: (1) Equilibrium Logic [5, 6] that widens the concept of stable
models to the general syntax of arbitrary theories (propositional and even first
order); and (2) the well-known Linear Temporal Logic [7] (LTL) dealing with
operators like � (read as “always”), ♦ (“eventually”), © (“next”), U (“until”)
and R (“release”). The result of this combination received the name of Temporal
Equilibrium Logic (TEL). As happens with Equilibrium Logic, TEL is defined
in terms of a monotonic formalism, in this case called Temporal Here-and-There
(THT), plus an ordering relation among models, so that only the minimal ones
are selected (inducing a non-monotonic consequence relation). These minimal
models receive the name of Temporal Equilibrium Models and can be seen as
the analogous of stable models for the temporal case. As an example, the rules
(1)-(4) can be respectively encoded in TEL as:

�(d ∧ t→©u) (5)
�(u ∧ t→©d) (6)

�(u ∧ ¬©d→©u) (7)
�(d ∧ ¬©u→©d) (8)

In [8] it was shown how to use equivalence in the logic of THT as a suffi-
cient condition for strong equivalence of two arbitrary TEL theories. The THT-
equivalence test was performed by translating THT into LTL and using a model
checker afterwards. This technique was applied on several examples to com-
pare different alternative ASP representations of the same temporal scenario.
Paradoxically, although this allowed an automated test to know whether two
representations had the same behaviour, computing such a behaviour, that is,
automatically obtaining the temporal equilibrium models of a given theory was
still an open topic.

When compared to the ASP case, part of the difficulties for computing tem-
poral equilibrium models came from the fact that the general syntax of TEL
allows complete arbitrary nesting of connectives (that is, it coincides with gen-
eral LTL), whereas ASP syntax is constrained to disjunctive logic programs,
that is, rules with a body (the antecedent) with a conjunction of literals, and a
head (the consequent) with a disjunction of atoms. In a recent work [9], it was
shown that TEL could be reduced to a normal form closer to logic programs

where, roughly speaking, in place of an atom p we can also use©p, and any rule
can be embraced by �. This normal form received the name of Temporal Logic
Programs (TLPs) – for instance, (5)-(8) are TLP rules.

In this work we show how to compute the temporal equilibrium models for
a subclass of TLPs called splitable. This subclass has a property we can call
future projected dependence and that informally speaking can be described as
“past does not depend on the future.” Formally, this means that we cannot have
rules where a head atom without © depends on a body atom with ©. In our
example, (5)-(8) are also splitable TLP rules whereas, for instance, the following
TLP rules are not in splitable form:

�(¬©p→ p) (9)
�(©p→ p) (10)

since the truth of p “now” depends on p in the next situation©p. This syntactic
feature of splitable TLPs allows us to apply the so-called splitting technique [10]
(hence the name of splitable) to our temporal programs. Informally speaking,
splitting is applicable when we can divide an ASP program Π into a bottom Π0

and a top Π1 part, where Π0 never depends on predicates defined in Π1. If so,
the stable models of Π can be computed by first obtaining the stable models of
Π0, and then using them to simplify Π1 and compute the rest of information in
a constructive way.

In the case of splitable TLPs, however, we cannot apply splitting by rely-
ing of multiple calls to an ASP solver since, rather than a single split between
bottom and top part, we would actually have an infinite sequence of program
“slices” Π0, Π1, Π2, . . . where each Πi depends on the previous ones. To solve
this problem, we adopt a second ASP technique called Loop Formulas [11, 12],
a set of formulas LF (Π) for some program Π so that the stable models of the
latter coincide with the classical models of Π ∪LF (Π). In our case, LF (Π) will
contain formulas preceded by a � operator, so that they affect to all program
slices. As a result, the temporal equilibrium models of Π will correspond to the
LTL models of Π∪LF (Π), which can be computed using an LTL model checker
as a back-end.

The rest of the paper is organised as follows. In the next section, we recall
the syntax and semantics of TEL. Section 3 describes the syntax of splitable
TLPs and their relation to stable models. Next, in Section ??, we explain how
to construct the set of loop formulas LF (Π) for any splitable TLP Π, proving
also that the LTL models of Π ∪ LF (Π) are the temporal equilibrium models
of Π. In Section ?? we comment a pair of examples and finally, Section ??
concludes the paper.

2 Preliminaries

Given a set of atoms At, a formula F is defined as in LTL following the grammar:

F ::= p | ⊥ | F1 ∧ F2 | F1 ∨ F2 | F1 → F2 | ©F | �F | ♦F

where p ∈ At. A theory is a finite set of formulas. We use the following derived
operators1 and notation:

¬F def= F → ⊥
> def= ¬⊥

F ↔ G
def= (F → G) ∧ (G→ F)

©iF
def= ©(©i−1F) (with i > 1)

©0F
def= F

The semantics of the logic of Temporal Here-and-There (THT) is defined in
terms of sequences of pairs of propositional interpretations. A (temporal) inter-
pretation M is an infinite sequence of pairs mi = 〈Hi, Ti〉 with i = 0, 1, 2, . . .
where Hi ⊆ Ti are sets of atoms standing for here and there respectively. For
simplicity, given a temporal interpretation, we write H (resp. T) to denote the
sequence of pair components H0, H1, . . . (resp. T0, T1, . . .). Using this notation,
we will sometimes abbreviate the interpretation as M = 〈H,T〉. An interpreta-
tion M = 〈H,T〉 is said to be total when H = T.

Given an interpretation M and an integer number k > 0, by (M, k) we denote
a new interpretation that results from “shifting” M in k positions, that is, the
sequence of pairs 〈Hk, Tk〉, 〈Hk+1, Tk+1〉, 〈Hk+2, Tk+2〉, . . . Note that (M, 0) =
M.

Definition 1 (satisfaction). An interpretation M = 〈H,T〉 satisfies a formula
ϕ, written M |= ϕ, when:

1. M |= p if p ∈ H0, for any atom p.
2. M |= ϕ ∧ ψ if M |= ϕ and M |= ψ.
3. M |= ϕ ∨ ψ if M |= ϕ or M |= ψ.
4. 〈H,T〉 |= ϕ→ ψ if 〈x,T〉 6|= ϕ or 〈x,T〉 |= ψ for all x ∈ {H,T}.
5. M |=©ϕ if (M, 1) |= ϕ.
6. M |= �ϕ if ∀j ≥ 0, (M, j) |= ϕ
7. M |= ♦ϕ if ∃j ≥ 0, (M, j) |= ϕ

A formula ϕ is valid if M |= ϕ for any M. An interpretation M is a model
of a theory Γ , written M |= Γ , if M |= α, for all formula α ∈ Γ .

We will make use of the following THT-valid equivalences:

¬(F ∧G)↔ ¬F ∨ ¬G (11)
¬(F ∨G)↔ ¬F ∧ ¬G (12)
©(F ⊕G)↔©F ⊕©G (13)
©⊗ F ↔ ⊗© F (14)

for any binary connective ⊕ and any unary connective ⊗. This means that De
Morgan laws (11),(12) are valid, and that we can always shift the © operator
to all the operands of any connective.

1 As shown in [9], the LTL binary operators U (“until”) and R (“release”) can be
removed by introducing auxiliary atoms.

The logic of THT is an orthogonal combination of the logic of Here-and-There
(HT) [13] and the (standard) linear temporal logic (LTL) [7]. On the one hand,
HT is obtained by disregarding temporal operators, so that only the pair of sets
of atoms 〈H0, T0〉 is actually relevant and we use conditions 1-3 in Definition 1
for satisfaction of propositional theories. On the other hand, if we restrict the
semantics to total interpretations, 〈T,T〉 |= ϕ corresponds to satisfaction of
formulas T |= ϕ in LTL. This last correspondence allows rephrasing item 4 of
Definition 1 as:

4’. 〈H,T〉 |= ϕ → ψ if both (1) 〈H,T〉 |= ϕ implies 〈H,T〉 |= ψ; and (2)
T |= ϕ→ ψ in LTL.

Similarly 〈H,T〉 |= ϕ ↔ ψ if both (1) 〈H,T〉 |= ϕ iff 〈H,T〉 |= ψ; and (2)
T |= ϕ↔ ψ in LTL. The following proposition can also be easily checked.

Proposition 1. For any Γ and any M = 〈H,T〉, if M |= Γ then T |= Γ . �

We proceed now to define an ordering relation among THT models of a
temporal theory, so that only the minimal ones will be selected. Given two in-
terpretations M = 〈H,T〉 and M′ = 〈H′,T′〉 we say that M′ is lower or equal
than M, written M′ ≤M, when T′ = T and for all i ≥ 0, H ′i ⊆ Hi. As usual,
M′ < M stands for M′ ≤M but M′ 6= M.

Definition 2 (Temporal Equilibrium Model). An interpretation M is a
temporal equilibrium model of a theory Γ if M is a total model of Γ and there
is no other M′ < M, M′ |= Γ . �

Note that any temporal equilibrium model is total, that is, it has the form
〈T,T〉 and so can be actually seen as an interpretation T in the standard LTL.
Temporal Equilibrium Logic (TEL) is the logic induced by temporal equilibrium
models.

When we restrict the syntax to ASP programs and HT interpretations 〈H0, T0〉
we talk about (non-temporal) equilibrium models, which coincide with stable
models in their most general definition [14].

3 Temporal Logic Programs

As we said in the introduction, in [9] it was shown that, by introducing auxiliary
atoms, any temporal theory could be reduced to a normal form we proceed to
describe. Given a signature At, we define a temporal literal as any expression in
the set {p,¬p,©p,¬©p | p ∈ At}.

Definition 3 (Temporal rule). A temporal rule is either:

1. an initial rule of the form

B1 ∧ · · · ∧Bn → C1 ∨ · · · ∨ Cm (15)

where all the Bi and Cj are temporal literals, n ≥ 0 and m ≥ 0.

2. a dynamic rule of the form �r, where r is an initial rule.
3. a fulfillment rule like �(�p→ q) or like �(p→ ♦q) with p, q atoms. �

In the three cases, we respectively call rule body and rule head to the antecedent
and consequent of the (unique) rule implication. In initial (resp.) dynamic rules,
we may have an empty head m = 0 corresponding to ⊥ – if so, we talk about an
initial (resp. dynamic) constraint. A temporal logic program2 (TLP for short) is
a finite set of temporal rules. A TLP without temporal operators, that is, a set
of initial rules without ©, is said to be an ASP program3.

As an example of TLP take the program Π1 consisting of:

¬a ∧©b→©a (16)
�(a→ b) (17)

�(¬b→©a) (18)

where (16) is an initial rule and (17),(18) are dynamic rules.
Looking at the semantics of � it seems clear that we can understand a dy-

namic rule �r as an infinite sequence of expressions like©ir, one for each i ≥ 0.
Using (13),(14) we can shift ©i inside all connectives in r so that ©ir is equiv-
alent to an initial rule resulting from prefixing any atom in r with ©i. To put
an example, if r = (18) then ©2r would correspond to (¬©2b→©3a).

Definition 4 (i-expansion of a rule). Given i ≥ 0, the i-expansion of a
dynamic rule �r, written (�r)i, is a set of rules defined as:

(�r)i

∅ if i = 0 and r contains some ‘©’
{©jr | 0 ≤ j ≤ i− 1} if i > 0 and r contains some ‘©’
{©jr | 0 ≤ j ≤ i} otherwise

If r is an initial rule, its i-expansion is defined as:

ri
def=
{
∅ if i = 0 and r contains some ‘©’
r otherwise �

In this way, the superindex i refers to the longest sequence of ©’s used in the
rule. For instance, (18)3 would be:

{ (¬b→©a), (¬©b→©2a), (¬©2b→©3a) }

We extend this notation to programs, so that given a TLP Π its i-expansion
Πi results from replacing each initial or dynamic rule r in Π by ri. An inter-
esting observation is that we can understand each Πi as a (non-temporal) ASP
program for signature Ati def= {“©j p” | p ∈ At, 0 ≤ j ≤ i} where we understand
each “©j p” as a different propositional atom. This same notation can be applied
2 In fact, as shown in [9], this normal form can be even more restrictive: initial rules

can be replaced by atoms, and we can avoid the use of literals of the form ¬©p.
3 In ASP literature, this is called a a disjunctive program with negation in the head.

to interpretations. If T is an LTL interpretation (an infinite sequence of sets of
atoms) for signature At its i-expansion would be the corresponding proposi-
tional interpretation for signature Ati defined as Ti def= {©ip | p ∈ Ti} and if
M = 〈H,T〉 is a THT interpretation then its i-expansion is defined as the HT
interpretation Mi def= 〈Hi,Ti〉. In all these cases, we also define the ω-expansion
(or simply, expansion) as the infinite union of all i-expansions for all i ≥ 0. Thus,
for instance (�r)ω def=

⋃
i≥0(�r)i and similarly for Πω, Atω, Tω and Mω. It is

interesting to note that, for any classical interpretation T′ for signature Atω,
we can always build a corresponding LTL interpretation T in signature At such
that Tω = T′. The following theorem establishes the correspondence between a
temporal program and its expansion.

Theorem 1. Let Π be a TLP without fulfillment rules. Then 〈T,T〉 is a tem-
poral equilibrium model of Π under signature At iff Tω is a stable model of Πω

under signature Atω. �

The above theorem allows us reading a TLP with initial and dynamic rules
as an ASP program with infinite “copies” of the same rule schemata. In many
cases, this allows us to foresee the temporal equilibrium models of a TLP. For
instance, if we look at our example TLP Π2, it is easy to see that we should
get T0 = ∅ as the only rule affecting the situation i = 0 is (17)0 = (a→ b). For
situation i = 1 we would have rules (©a→©b) ∈ (17)1 and (¬b→©a) ∈ (18)1

so that, given T0 we obtain©a∧©b, that is, T1 = {a, b}. For i = 2, the involved
rules are (©2a → ©2b) ∈ (17)2 and (¬©b → ©2a) ∈ (18)2 so that, given T1

we obtain T2 = ∅. In a similar way, for i = 3 we have rules (©2a → ©2b) and
(¬©2b → ©3a) leading to T3 = {a, b} and then this behaviour is repeated. To
sum up, we get a unique temporal equilibrium model 〈T,T〉 for Π2 where T can
be captured by the regular expression (∅ {a, b})+.

In some cases, however, we may face new situations that are not common
in standard ASP. For instance, consider the TLP Π2 consisting of the two rules
(9), (10). This program has no temporal equilibrium models. To see why, note
that Π2 is equivalent to �(¬© p∨©p→ p) that, in its turn, is LTL-equivalent
to �p. Thus, the only LTL-model T of Π2 has the form Ti = {p} for any i ≥ 0.
However, it is easy to see that the interpretation 〈H,T〉 with Hi = ∅ for all i ≥ 0
is also a THT model, whereas H < T. Note that, by Theorem 1, this means that
the ASP program Πω

2 has no stable models, although it is an acyclic program
and (finite) acyclic programs always have a stable model. The intuitive reason
for this is that atoms©ip infinitely depend on the future, and there is no way to
build a founded reasoning starting from facts or the absence of them at a given
end point4.

4 In fact, this example was extracted from a first-order counterpart, the pair of rules
¬p(s(X)) → p(X) and p(s(X)) → p(X), that were used in [15] to show that an
acyclic program without a well-founded dependence ordering relation may have no
stable models.

4 Splitting a Temporal Logic Program

Fortunately, most ASP programs dealing with transition systems represent rules
so that past does not depend on the future. This is what we called future projected
dependence and can be captured by the following subclass of TLPs.

Definition 5 (Splitable TLP). A TLP Π for signature At is said to be splitable
if Π consists of rules of any of the forms:

B ∧N → H (19)
B ∧©B′ ∧N ∧©N ′ →©H ′ (20)

�(B ∧©B′ ∧N ∧©N ′ →©H ′) (21)

where B and B′ are conjunctions of atoms, N and N ′ are conjunctions of neg-
ative literals like ¬p with p ∈ At, and H and H ′ are disjunctions of atoms.
�

The set of rules of form (19) in Π will be denoted ini0(Π) and correspond
to initial rules for situation 0. The rules of form (20) in Π will be represented
as ini1(Π) and are initial rules for the transition between situations 0 and 1.
Finally, the set of rules of form (21) is written dyn(Π) and contains dynamic
rules. Both in (20) and (21), we understand that operator © is actually shifted
until it only affects to atoms – this is always possible due to equivalences (13),
(14). We will also use the formulas B,B′, N,N ′, H and H ′ as sets, denoting the
atoms that occur in each respective formula.

Notice that a rule of the form �(B ∧N → H) (i.e., without © operator) is
not splitable but can be transformed into the equivalent pair of rules B∧N → H
and �(©B ∧©N →©H) which are both splitable. For instance, (17) becomes
the pair of rules:

a→ b (22)
�(©a→©b) (23)

As an example, Π2=(9)-(10) is not splitable, whereas Π1=(16),(18),(22),(23)
is splitable being ini0(Π1)=(22), ini1(Π1)=(16) and dyn(Π1)=(22),(18). In par-
ticular, in (16) we have the non-empty sets B′ = {b}, N = {a} and H ′ = {a},
whereas for (18) the sets are N = {b}, H ′ = {a}. It can be easily seen that the
rules (5)-(8) are also in splitable form.

As we explained in the introduction, the most interesting feature of splitable
TLPs is that we can apply the so-called splitting technique [10] to obtain their
temporal equilibrium models in an incremental way. Let us briefly recall this
technique for the case of ASP programs. Following [10] we define:

Definition 6 (Splitting set). Let Π be an ASP program consisting of (non-
temporal) rules like (19). Then a set of atoms U is a splitting set for Π if, for
any rule like (19) in Π: if H ∩ U 6= ∅ then (B ∪N ∪H) ⊆ U . The set of rules
satisfying (B ∪N ∪H) ⊆ U are denoted as bU (Π) and called the bottom of Π
with respect to U . �

Consider the program:

a→ c (24)
b→ d (25)
¬b→ a (26)
¬a→ b (27)

The set U = {a, b} is a splitting set for Π being bU (Π) = {(26), (27)}. The idea
of splitting is that we can compute first each stable model X of bU (Π) and then
use the truth values in X for simplifying the program Π \ bU (Π) from which
the rest of truth values for atoms not in U can be obtained. Formally, given
X ⊆ U ⊆ At and an ASP program Π, for each rule r like (19) in Π such that
H ∩ U ⊆ X and N ∩ U is disjoint from X, take the rule r̂ : B̂ ∧ N̂ → H where
B̂ = (B \ U) and N̂ = (N \ U). The program consisting of all rules r̂ obtained
in this way is denoted as eU (Π,X). Note that this program is equivalent to
replacing in all rules in Π each atom p ∈ U by ⊥ if p 6∈ X and by > if p ∈ X.

In the previous example, the stable models of Π are {a} and {b}. For the
first stable model X = {a}, we get eU (Π \ bU (Π), {a}) = {> → c} so that
X∪{c} = {a, c} should be a stable model for the complete program Π. Similarly,
for X = {b} we get eU (Π \ bU (Π), {b}) = {> → d} and a “completed” stable
model X ∪ {d} = {b, d}. The following result guarantees the correctness of this
method in the general case.

Theorem 2 (from [10]). Let U be a splitting set for a set of rules Π like (19).
A set of atoms X is an stable model of Π if, and only if both

– X ∩ U is a stable model of bU (Π)
– X \ U is a stable model of eU (Π \ bU (Π), X ∩ U). �

In [10] this result was generalised for an infinite sequence of splitting sets,
showing an example of a logic program with variables and a function symbol,
so that the ground program was infinite. We adapt next this splitting sequence
result for the case of splitable TLPs in TEL.

From Definition 4 we can easily conclude that, when Π is a splitable TLP,
its programs expansions have the form:

Π0 = ini0(Π)
Πi = ini0(Π) ∪ ini1(Π) ∪ dyn(Π)i (for i > 0)

Proposition 2. Given a splitable TLP Π for signature At and any i ≥ 0:

(i) Ati is a splitting set for Πω;
(ii) and bAti(Πω) = Πi. �

Given any rule like r like (20) of (21) and a set of atoms X, we define its
simplification simp(r,X) as:

simp(r,X) def=
{
©B′ ∧©N ′ →©H ′ if B ⊆ X and N ∩X = ∅
> otherwise

Given some LTL interpretation T, let us define now the sequence of programs:

Π[T, i] def= eAti
(
Πω \Πi , Ti

)
that is, Π[T, i] is the “simplification” of Πω by replacing atoms in Ati by their
truth value with respect to Ti. Then, we have:

Proposition 3.

Π[T, 0] = (dyn(Π)ω \ dyn(Π)1) ∪ {simp(r, T0) | r ∈ ini1(Π) ∪ dyn(Π)} (28)

and, for any, i ≥ 1

Π[T, i] = (dyn(Π)ω \ dyn(Π)i+1) ∪ {©isimp(r, Ti) | r ∈ dyn(Π)} (29)

�

As we can see, programs Π[T, i] maintain most part of dyn(Π)ω and only
differ in simplified rules. Let us call these sets of simplified rules:

slice(Π,T, 0) def= Π0 = ini0(Π)

slice(Π,T, 1) def= {simp(r, T0) | r ∈ ini1(Π) ∪ dyn(Π)}

slice(Π,T, i+ 1) def= {©isimp(r, Ti) | r ∈ dyn(Π)} for i ≥ 1

Theorem 3 (Splitting Sequence Theorem). Let 〈T,T〉 be a model of a
splitable TLP Π. 〈T,T〉 is a temporal equilibrium model of Π iff

(i) T0 = T0 is a stable model of slice(Π,T, 0) = Π0 = ini0(Π) and
(ii) (T1 \At0) is a stable model of slice(Π,T, 1) and

(iii) (Ti \Ati−1) is a stable model of slice(Π,T, i) for i ≥ 2. �

As an example, let us take again program Π1 = (16), (22), (23), (18). The pro-
gram Π0

1 = ini0(Π1) = (22) has the stable model T0 = ∅ = T0. Then we take
slice(Π,T, 1) = {simp(r, T0) | r ∈ ini1(Π) ∪ dyn(Π)} that corresponds to:

©b→©a ©a→©b > →©a

whose stable model is {©a,©b} = (T1 \ At0) so that T1 = {a, b}. In the next
step, slice(Π,T, 2) = {©simp(r, T1) | r ∈ dyn(Π)} =

©2a→©2b >

whose stable model is ∅ = (T2 \At1) so that T2 = ∅. Then, we would go on with
slice(Π,T, 3) = {©2simp(r, T2) | r ∈ dyn(Π)} =

©3a→©3b > →©3a

leading to {©3a,©3b} that is T3 = {a, b} and so on.

5 Loop formulas

Theorem 3 allows us building the temporal equilibrium models by considering
an infinite sequence of finite ASP programs slice(Π,T, i). If we consider each
program Π ′ = slice(Π,T, i + 1) for signature Ati+1 \ Ati then, since it is a
standard disjunctive ASP program, we can use the main result in [12] to compute
its stable models by obtaining the classical models of a theory Π ′∪LF (Π ′) where
LF stands for loop formulas. To make the paper self-contained, we recall next
some definitions and results from [12].

Given an ASP program Π we define its (positive) dependency graph G(Π)
where its vertices are At (the atoms in Π) and its edges are E ⊆ At × At so
that (p, p) ∈ E for any atom5 p, and (p, q) ∈ E if there is an ASP rule in Π
like (19) with p ∈ H and q ∈ B. A nonempty set L of atoms is called a loop of
a program Π if, for every pair p, q of atoms in L, there exists a path from p to
q in G(Π) such that all vertices in the path belong to L. In other words, L is
a loop of iff the subgraph of G(Π) induced by L is strongly connected. Notice
that reflexivity of G(Π) implies that for any atom p, the singleton {p} is also a
loop.

Definition 7 (external support). Given an ASP program Π for signature
At, the external support formula of a set of atoms Y ⊆ At with respect to Π,
written ESΠ(Y) is defined by:

∨
r∈R(Y)

(
B ∧N ∧

∧
p∈H\Y

¬p
)

where R(Y) = {r ∈ Π like (19) | H ∩ Y 6= ∅ and B ∩ Y = ∅}. �

Theorem 4 (from [12]). Given a program Π for signature At, and a (classical)
model X ⊆ At of Π then X is a stable model of Π iff for every loop Y of Π, X
satisfies

∨
p∈Y p→ ESΠ(Y) �

If we apply this result to each si = slice(Π,T, i) we obtain an infinite se-
quence of classical theories. Fortunately, these theories have a repetitive pattern
and can be captured by a single, finite LTL theory.

Given a splitable TLP Π we will consider the dependency graph G(Π) gen-
erated from the expanded (ASP) program Π2, so that its nodes are atoms in the
signature At2 = {p,©p,©2p | p ∈ At}. We define the concept of loop Y ⊆ At2

using this graph and signature. For instance, looking at G(Π1) in Figure 1 it is
easy to see that loops for Π1 are {©a,©b} plus {A} for any A ∈ At2.

Theorem 5. Let Π be a splitable TLP and T an LTL model of Π. Then 〈T,T〉
is a temporal equilibrium model of Π iff T is an LTL model of the union of

5 The original formulation in [12] did not consider reflexive edges, dealing instead with
the idea of paths of length 0.

a ©a

��

©2a

b

OO

©b

UU

©2b

OO

Fig. 1. Graph G(Π1) (reflexive arcs are not displayed).

formulas LF (Y) defined as:∨
p∈Y p→ ESini0(Π)(Y) for any loop Y ⊆ At0 = At∨
p∈Y p→ ESini1(Π)∪dyn(Π)1(Y) for any loop Y ⊆ (At1 \At0)

�

(∨
p∈Y p→ ESdyn(Π)2\dyn(Π)2(Y)

)
for any loop Y ⊆ (At2 \At1) �

In our running example Π1 we have At0 = {a, b} and ini0(Π) = (22) with
two loops {a}, {b} where LF ({a}) = (a → ⊥) and LF ({b}) = (b → a). For
(At1 \At0) = {©a,©b} we take the program ini1(Π1)∪dyn(Π)1), that is, rules
(16), (23), (18) ignoring �. We get three loops leading to the corresponding loop
formulas (©a → (¬a ∧©b) ∨ ¬b), (©b → ©a) and (©a ∨©b → ¬b). Finally,
for At2 \At1 we have two loop formulas �(©2b→©2a) and �(©2a→ ¬© b).
It is not difficult to see that Π1 ∪ LF (Π1) is equivalent to the LTL theory:
¬a ∧ ¬b ∧�(©a↔ ¬b) ∧�(©b↔ ¬b).

6 Conclusions

We have presented a class of temporal logic programs (that is ASP programs with
temporal operators) for which their temporal equilibrium models (the analogous
to stable models) can be computed by translation to LTL. To this aim, we have
combined two well-known techniques in the ASP literature called splitting and
loop formulas. This syntactic class has as restriction so that rule heads never
refer to a temporally previous situation than those referred in the body. Still, it is
expressive enough to cover most ASP examples dealing with dynamic scenarios.

We have implemented a system, called STeLP that uses this technique to
translate a program and calls an LTL model checker to obtain its temporal
equilibrium models, in the form of a Büchi automaton. This tool allows some
practical features like dealing with variables or specifying fluents and actions6.

References

1. Niemelä, I.: Logic programs with stable model semantics as a constraint pro-
gramming paradigm. Annals of Mathematics and Artificial Intelligence 25 (1999)
241–273

6 More examples and information can be obtained in
http://www.dc.fi.udc.es/~cabalar/stelp.pdf

2. Marek, V., Truszczyński, M. In: Stable models and an alternative logic program-
ming paradigm. Springer-Verlag (1999) 169–181

3. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In
Kowalski, R.A., Bowen, K.A., eds.: Logic Programming: Proc. of the Fifth Interna-
tional Conference and Symposium (Volume 2). MIT Press, Cambridge, MA (1988)
1070–1080

4. Cabalar, P., Vega, G.P.: Temporal equilibrium logic: a first approach. In: Proc. of
the 11th International Conference on Computer Aided Systems Theory, (EURO-
CAST’07). LNCS (4739). (2007) 241–248

5. Pearce, D.: A new logical characterisation of stable models and answer sets. In:
Non monotonic extensions of logic programming. Proc. NMELP’96. (LNAI 1216).
Springer-Verlag (1996)

6. Pearce, D.: Equilibrium logic. Annals of Mathematics and Artificial Intelligence
47(1-2) (2006) 3–41

7. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag (1991)

8. Aguado, F., Cabalar, P., Pérez, G., Vidal, C.: Strongly equivalent temporal logic
programs. In: Proc. of the 11th European Conference on Logics in Artificial Intel-
ligence (JELIA’08). LNCS (vol. 5293). (2008) 8–20

9. Cabalar, P.: A normal form for linear temporal equilibrium logic. In: Proc. of the
12th European Conference on Logics in Artificial Intelligence (JELIA’10). Lecture
Notes in Computer Science. Volume 2258. Springer-Verlag (2010) 64–76

10. Lifschitz, V., Turner, H.: Splitting a logic program. In: Proceedings of the 11th
International Conference on Logic programming (ICLP’94). (1994) 23–37

11. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT
solvers. In: Artificial Intelligence. (2002) 112–117

12. Ferraris, P., Lee, J., Lifschitz, V.: A generalization of the Lin-Zhao theorem. Annals
of Mathematics and Artificial Intelligence 47 (2006) 79–101

13. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der
Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse
(1930) 42–56

14. Ferraris, P.: Answer sets for propositional theories. In: Proc. of the 8th Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning (LP-
NMR’05). LNCS (vol. 3662). (2005) 119–131

15. Fages, F.: Consistency of Clark’s completion and existence of stable models. Meth-
ods of Logic in Computer Science 1 (1994) 51–60

Appendix. Proofs

Lemma 1. Let r be an initial rule like (15), and M a THT interpretation. Then
(M, i) |= r iff Mω |=©ir.

Proof. It directly follows from construction of Mω and simple inspection of the
THT satisfaction relation. �

Lemma 2. Let Π be a TLP without fulfillment rules. Then 〈H,T〉 |= Π in
THT iff 〈Hω,Tω〉 |= Πω in HT.

Proof. We prove that for any rule r in Π, M = 〈H,T〉 |= r iff Mω = 〈Hω,Tω〉 |=
rω. We have two cases:

1. Let r be an initial rule r. The condition M |= r can be expressed as (M, 0) |=
r and, from Lemma 1, this is equivalent to Mω |=©0r that is Mω |= r.

2. Let r be a dynamic rule r = �s. The condition M |= �s is equivalent to:
∀i ≥ 0, (M, i) |= s. From Lemma 1, this is equivalent to ∀i ≥ 0,Mω |=©is,
that is, Mω |= (�s)ω. �

Proof of Theorem 1.. For the left to right direction, suppose 〈T,T〉 is a
temporal equilibrium model of Π. This implies 〈T,T〉 |= Π and, by Lemma 2,
we get 〈Tω,Tω〉 |= Π∗. Assume Tω is not a stable model of Πω. This means
that 〈Tω,Tω〉 is not an equilibrium model of that program, that is, there exists
some smaller Hω ⊂ Tω such that 〈Hω,Tω〉 |= Πω. But by Lemma 2 again we
would have 〈H,T〉 |= Π and as H < T (since Hω ⊂ Tω) we conclude that
〈T,T〉 cannot be a temporal equilibrium model of Π, reaching a contradiction.

For the right to left direction, take any stable model Tω of Πω. Since Tω |=
Πω or equivalently 〈Tω,Tω〉 |= Πω in HT, from Lemma 2, we get 〈T,T〉 |= Π.
Suppose that for some H ⊂ T, 〈H,T〉 |= Π. By Lemma 2 we obtain 〈Hω,Tω〉 |=
Πω and as Hω ⊂ Tω (since H ⊂ T) we obtain that 〈Tω,Tω〉 cannot be an
equilibrium model for Πω, reaching a contradiction. �

Proof of Proposition 2. (i) If a rule in Πω has some head atom in Ati it will
have the form ©jp for some 0 ≤ j ≤ i. By construction, in any of the three rule
types (19),(20),(21) the whole head will consist of (expanded) atoms of the form
©jq whereas the body may contain atoms of the form ©jq or ©j−1q. All these
expanded atoms have a sequence of ©’s of length smaller than or equal to i, so
they also belong to Ati.
(ii) By Definition 4 the longest sequence of ©’s occurring in any ri (and so, in
Πi) will have length i. This implies that Πi ⊆ bAti(Πω). To prove the opposite
bAti(Πω) ⊆ Πi suppose we had r ∈ bAti(Πω) but r 6∈ Πi. Since bAti(Πω) ⊆ Πω,
we get r ∈ Πω \Πi. Then, for some j > i, r ∈ Πj \Πi. Let us take the smallest
j satisfying this. Then, r ∈ Πj but r 6∈ Πj−1. But then, by construction of
the program expansion, r must contain some atom of the form ©jp. Finally, as
j > i, ©jp 6∈ Ati and so r 6∈ bAti(Πω) reaching a contradiction. �

Proof of Proposition 3. First note that Πω \Π0 = ini1(Π) ∪ dyn(Π)ω. We
obtain (28) by calculating eAt0

(
Πω \Π0 , T0

)
, since T0 = T0. Now take i ≥ 1

and suppose that (29) is true. Then

Π[T, i+ 1] = eAti+1

(
Πω \Πi+1 , Ti+1

)
= (Πω \Πi+2)

⋃
eAti+1

(
Πi+2 \Πi+1 , Ti+1

)
and since i+ 2 > 1 this is the same than:

=(dyn(Π)ω \ dyn(Π)i+2)
⋃

eAti+1

(
Πi+2 \Πi+1 , Ti+1

)
=(dyn(Π)ω \ dyn(Π)i+1)⋃

{©i+2B′ ∧©i+2N ′ →©i+2H ′

| rule like (21) ∈ dyn(Π) and B ⊆ Ti+1, N ∩ Ti+1 = ∅}

�

Proof of Theorem 3. Using Theorem 1, we have to prove that Tω is a stable
model of Πω iff the two above conditions are satisfied. As At0 is a splitting set
of Πω, Tω is an stable model of Pω iff

– Tω ∩At0 = T0 is a stable model of bAt0(Πω) = Π0, which is (i), plus
– Tω \At0 is a stable model of eAt0(Πω \Π0,T0) = Π[T, 0].

Since, At1 is again a splitting set of Π[T, 0], the last condition is equivalent to:

– (Tω \At0) ∩At1 = (T1 \At0) is a stable model of bAt1(Π[T, 0]) that corre-
sponds to {simp(r, T0) | r ∈ ini1(Π) ∪ dyn(Π)}, so this is (ii),

– and (Tω \At0) \At1 = (Tω \At1) is a stable model of eAt1(Πω \Π1,T1) =
Π[T, 1].

As At2 is a splitting set for Π[T, 1] we can apply a similar reasoning to conclude
that the last item above is equivalent to:

– (Tω \At1) ∩At2 = (T2 \At1) is a stable model of bAt2(Π[T, 1]) that corre-
sponds to {©simp(r, T1) | r ∈ dyn(Π)}, so this is (iii) with i = 2, the base
case,

– and (Tω \At1) \At2 = (Tω \At2) is a stable model of eAt2(Πω \Π2,T2) =
Π[T, 2].

and the induction step for (iii) follows by replacing in the two conditions above
1, 2 respectively by i and i+ 1. �

Proof of Theorem 5. For a proof sketch, notice that there cannot be loops
between two different situations since this would require that some past situation
depended on the future. So, each loop is always inside some slice(Π,T, i) and
all atoms for Ati−1 are external to the loop. Since the first two slices are affected
by initial rules, they are specified in a separate case, whereas from slice 2 on we
get a repetitive pattern using �. �

