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Relational Representation

Atoms = instead of propositions, we have now predicates.
They represent relations among entities:
neighbour(france,spain).
exports(germany,france,cars).

Herbrand Domain = set of individuals, each one uniquely identified
by a (lowercase) constant name. E.g.
D = {germany,france,spain,cars, . . . }.
Unique Names Assumption (UNA) =
different terms represent different individuals.
spain 6= france, spain 6= cars, spain 6= españa
We can use unary predicates to represent types:

country(spain). country(france). country(germany).
tradegood(cars). tradegood(food).

country(spain;france;germany).
tradegood(cars;food).

CWA: no more countries exist!
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Relational Representation

A set of facts becomes the extensional database (EDB)!
neighbour(spain,france).
neighbour(france,germany).
exports(spain,germany,food).
exports(spain,france,food).
exports(germany,france,cars).
exports(france,spain,cars).

Table neighbour
C1 C2

spain france
france germany

Table exports
FROM TO GOOD
spain germany food
spain france food
germany france cars
france spain cars
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Relational Representation

A query to the EDB becomes a rule with variables.
Variable = name with upcase initial (X, Y, Country, . . . )
universally quantified and denoting arbitrary individuals.
‘_’ = anonymous variable (different each time it occurs)
exgood(G) :- exports(_,_,G). exgood(G) :- exports(X1,X2,G). % exported goods

∀X1,X2,G (exports(X1,X2,G)→ exgood(G))

Ex.: “neighbours of France and goods she imports from them”
answer(N,G) :- neighbour(france,N),exports(N,france,G).

SQL equivalent is more verbose
SELECT neighbour.C2, exports.GOOD FROM neighbour
INNER JOIN exports ON neighbour.C2=exports.FROM
WHERE neighbour.C1=france AND exports.TO=france;

Problem: we get no goods from Spain using our previous data!
We had neighbour(spain,france) but not the opposite!
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Deductive Databases

Predicate neighbour should be symmetric! We add a rule

neighbour(X,Y) :- neighbour(Y,X).

Deductive database: some predicates are intensional or (partially)
deduced from rules, rather than extensional (list of facts).

Ground atom = predicate + constants, no variables.
Grounding = replacing variables by all their possible instances.
(although it is actually more intelligent than that)
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Deductive Databases

Example: the grounding of program
neighbour(spain,france). neighbour(france,germany).
neighbour(X,Y) :- neighbour(Y,X).

would potentially yield the rules
neighbour(spain,france). neighbour(france,germany).
neighbour(spain,france) :- neighbour(france,spain).
neighbour(spain,germany) :- neighbour(germany,spain).
neighbour(france,spain) :- neighbour(spain,france).
neighbour(france,germany) :- neighbour(germany,france).
neighbour(germany,spain) :- neighbour(spain,germany).
neighbour(germany,france) :- neighbour(france,germany).
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Deductive Databases

Example: the grounding of program
neighbour(spain,france). neighbour(france,germany).
neighbour(X,Y) :- neighbour(Y,X).

would potentially yield the rules, but in practice . . .
neighbour(spain,france). neighbour(france,germany).
neighbour(spain,france) :- neighbour(france,spain).
neighbour(spain,germany) :- neighbour(germany,spain).
neighbour(france,spain) :- neighbour(spain,france).
neighbour(france,germany) :- neighbour(germany,france).
neighbour(germany,spain) :- neighbour(spain,germany).
neighbour(germany,france) :- neighbour(france,germany).
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Deductive Databases

Example: the grounding of program
neighbour(spain,france). neighbour(france,germany).
neighbour(X,Y) :- neighbour(Y,X).

would potentially yield the rules, but in practice . . .
neighbour(spain,france). neighbour(france,germany).

neighbour(france,spain).

neighbour(germany,france).
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Deductive Databases

Datalog: deductive database paradigm using normal logic
programs (under stratified negation) with predicates and variables.

� Remember: stratified implies a unique stable model.

Datalog is more expressive than SQL, but less expressive than
logic programs without the stratification limitation.

It allows, for instance, defining recursive relations, such as:
connected(X,Y) :- neighbour(X,Y).
connected(X,Z) :- neighbour(X,Y), connected(Y,Z).

so that we would get connected(spain,germany) even
though they are not neighbours.

Bodies can add conditions on variables X!=Z, X>Z*(Y+1), etc.
connected(X,Z) :- neighbour(X,Y), connected(Y,Z), X!=Z.
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Deductive Databases

Domain independence: answers shouldn’t change if we just
augment the Herbrand Domain
switch(1..3).
p(X,Y) :- X<Y. % ordered pairs of different switches

returns p(1,2), p(1,3), p(2,3) if D = {1,2,3}
but for D = {1,2,3,4} we miss p(1,4), p(2,4), p(3,4).
The set of possible pairs of integers is infinite!
p(X) :- not switch(X). % anything that is not a switch

The potential D with non-switches is even worse!
All variable occurrences in a rule must be safe

Definition (Safety: guarantees domain independence)
A variable is safe if it occurs in a non-negated predicate in the body.

p(X,Y) :- X<Y, switch(X), switch(Y).
q(X) :- object(X), not switch(X). % define valid objects!
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Answer Set Programming

Answer Set Programming (ASP) = we allow normal logic
programs (unstratified negation) with predicates and variables.

In ASP, the stable models are called answer sets.

Example:
pacifist(X) :- quaker(X), not bellicous(X).
bellicous(X) :- republican(X), not pacifist(X).
quaker(nixon). republican(nixon).
republican(reagan).

Two answer sets:
Answer: 1
... bellicous(reagan) bellicous(nixon)
Answer: 2
... bellicous(reagan) pacifist(nixon)
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An example: Hamiltonian circuits

Definition (HAMILT )
The Hamiltonian Cycle problem, HAMILT , consists in deciding whether
a graph contains a cyclic path in a graph that visits each vertex exactly
once. HAMILT is an NP-complete problem.

1 // 2

����
3

OO

(( 4hh

^^

extensional database mygraph.gph with the graph
vtx(1). vtx(2). vtx(3). vtx(4).
edge(1,2). edge(2,3). edge(2,4).
edge(3,1). edge(3,4). edge(4,3). edge(4,1).

Examples of medium sized graphs (200 nodes, 1250 edges):
http://www.cs.uky.edu/ai/benchmark-suite/

hamiltonian-cycle.html
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An example: Hamiltonian circuits

Predicate in(X,Y) points out that an edge X→ Y is in the cycle.
We generate arbitrary choices
{in(X,Y)} :- edge(X,Y).

Only one outgoing vertex, only one incoming vertex:
:- in(X,Y), in(X,Z), Y!=Z.
:- in(X,Z), in(Y,Z), X!=Y.

Disregard disconnected cycles. We use reached(X) meaning
that X can be reached from an arbitrary fixed vertex, say 1.
reached(X) :- in(1,X).
reached(Y) :- reached(X), in(X,Y).

and we forbid unreached vertices:
:- vtx(X), not reached(X).
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An example: Hamiltonian circuits

Making the call:
clingo 0 hamilt.lp
We obtain two answers:
Answer: 1
in(4,3) in(3,1) in(2,4) in(1,2)
Answer: 2
in(4,1) in(3,4) in(2,3) in(1,2)
SATISFIABLE

1 // 2

��
3 (( 4

^^ 1 // 2

��
3

OO

4hh

Answer 1 Answer 2
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An example: Hamiltonian circuits

We can split clingo in two steps:
grounder gringo + propositional solver clasp.
Download gringo from potassco.org and make the call
$ gringo hamilt.txt | clasp 0

To display the ground program, try the following
$ gringo -t hamilt.txt
...
:-in(1,2),in(1,3).
:-in(1,3),in(1,2).
:-in(2,1),in(2,3).
...
reached(2):-in(1,2).
reached(3):-in(2,3),reached(2).
reached(3):-in(1,3),reached(1).
...
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!

{in(X,Y)} 1:- edge(X,Y). 
:- in(X,Y), in(X,Z), Y!=Z. 
:- in(X,Z), in(Y,Z), X!=Y. 
reached(X) :- in(1,X). 
reached(Y) :- reached(X), in(X,Y). 
:- vtx(X), not reached(X). 

!

vtx(1). vtx(2). vtx(3). vtx(4). 
edge(1,2). edge(2,3). edge(2,4). 
edge(3,1). edge(3,4). edge(4,3). !

$ clingo 0  
mygraph.gph 
hamilt.txt 

% Answer 1 
in(4,3). 
in(3,1). 
in(2,4). 
in(1,2).!

% Answer 2 
in(4,1). 
in(3,4). 
in(2,3). 
in(1,2).!

answer!!
sets!

!.!.!.!

"Real!world"!
(combinatorial)!!
problem! solutions!

ENCODING(
!

DECODING(
!

ASP(as(a(problem(solving(paradigm(

Problem(
instance(
(EDB)(
!

Problem(
specif.(
(KB)(
!
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ASP vs Prolog

ASP Prolog

semantics
several n ≥ 0
answer sets

unique
(canonical)

model

problem
solving

1 answer set
= 1 solution

1 var. instantiation
=

1 solution
?- graph(G), hamilt(G,X).

X=[(4,3),(3,1),(2,4),(1,2)];

X=[(4,1),(3,4),(2,3),(1,2)]

computational
power

NP-complete Turing-complete

language
type

specification
((((((hhhhhexecution)

programming
(flow control: ordering, cut,...)
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8 Queens revisited

Example (8-queens problem)
Arrange 8 queens in a 8× 8 chessboard so they do not attack one
each other.
Exercise: encode the problem in ASP. (Use cardinality atoms).P. Cabalar ( Dept. Computer Science University of Corunna, SPAIN )Ch3. Relational KRR May 7, 2024 20 / 74



Explicit negation

We can sometimes be interested in a second negation, strong or
explicit negation (originally called “classical”). Example:
fill :- empty, not fire.

risky! we fill when no information on fire, but no guarantee.
We could use auxiliary atom no_fire (“I’m sure there is no fire”)
fill :- empty, no_fire.
:- fire, no_fire.
no_fire :- wet.

Explicit negation ‘-’ makes this same effect.
fill :- empty, -fire.
-fire :- wet.

and the constraint :- fire, -fire is implicit.
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Einstein’s 5 houses riddle: who keeps fishes as pets?

1 The Brit lives in the red house.
2 The Swede keeps dogs as pets.
3 The Dane drinks tea.
4 The green house is on the immediate left of the white house.
5 The green house’s owner drinks coffee.
6 The owner who smokes Pall Mall rears birds.
7 The owner of the yellow house smokes Dunhill.
8 The owner living in the center house drinks milk.
9 The Norwegian lives in the first house.

10 The Blends smoker is neighbor of the one who keeps cats.
11 The horse keeper is neighbor of the one who smokes Dunhill.
12 The owner who smokes Bluemasters drinks beer.
13 The German smokes Prince.
14 The Norwegian lives next to the blue house.
15 The Blends smoker lives next to the one who drinks water.
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New features

Pooling: abbreviate several facts in a same atom
house(1..5).
color(red;green;blue;white;yellow).

is the same than
house(1). house(2). house(3). house(4).house(5).
color(red). color(green). color(blue).
color(white). color(yellow).

Constants: can be defined in the file
#const numhouses=5.
house(1..numhouses).

or passed as arguments in command line
$ clingo -c numhouses=5 einstein.txt
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New features

Function symbols as constructors.
owner( person(bill,gates), microsoft ).
owner( person(jeff,bezos), amazon ).
owner( company(inditex), zara).
family(Y) :- owner( person(X,Y), Z).
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New features

Aggregate = function on sets of values.
We may have #sum, #max, #min, #avg, #count. Example:
income(jan,5). income(feb,3).
income(mar,-2). income(apr,10).
total(S) :- #sum{X: income(M,X)} = S.

Problem: if we have repeated values, they count once
income(may,10). income(jun,10).

the set is still {5,3,-2,10} and S=16.
We use tuples (the sum applies to the first component):
total(S) :- #sum{X,M: income(M,X)} = S.

{X,M: income(M,X)} = {(5,jan), (3,feb), (-2,mar), (10,apr),

(10,may), (10,jun)}
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Optimization

ASP problem solving: 1 answer set = 1 solution

Sometimes we are interested in preferred or optimal solutions

 Preferred/optimal answer sets
we are going to select only some answer set(s)

Depending on how we conceive the problem, two methods:

I #minimize/maximize: conceived for optimization

I Weak constraints: conceived for preferences
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Optimization

Example of optimization: Travelling Salesman Problem =
find Hamiltonian cycle with shorter distance

1 // 2

����
3

OO

(( 4hh

^^ 1 5 // 2

6
��8��

3

7

OO

5
(( 4

5
hh

10
^^

Reuse hamilt.lp†and adapt the problem instance as follows:
vtx(1..4).
edge(1,2,5). edge(2,3,10). edge(2,4,6).
edge(3,1,7). edge(3,4,5). edge(4,3,5). edge(4,1,8).
edge(X,Y) :- edge(X,Y,_).
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Optimization

Example of optimization: Travelling Salesman Problem =
find Hamiltonian cycle with shorter distance

1 5 // 2

6
��8��

3

7

OO

5
(( 4

5
hh

10
^^

In hamilt.lp we can get the total distance of the path adding:
distance(S) :- #sum{C,X,Y:in(X,Y),edge(X,Y,C)}=S.
#show distance/1.

Running clingo 0 hamilt.lp graph1.lp we get 2 solutions
Answer: 1

in(1,2) in(2,4) in(3,1) in(4,3) distance(23) � minimal
Answer: 2

in(1,2) in(2,3) in(3,4) in(4,1) distance(28)
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Optimization

Getting minimal solution by hand is unfeasible:
Easy optimization problems may have millions of (non-optimal)
solutions. To guarantee optimality, we should generate all!

#minimize declaration = works like a #sum{ ...} aggregate,
but will choose answer sets with a minimum sum

#minimize{C,X,Y:in(X,Y),edge(X,Y,C)}.

We can also use #maximize instead.

The call clingo hamilt.lp graph1.lp will start a loop:
(1) find a solution S0; (2) find Si+1 better than Si until no one found

By default, only one optimum is shown. To show all optima, use
clingo --opt-mode=optN -n0 hamilt.lp graph1.lp

Example: try changing fact edge(2,3,10) by edge(2,3,5)

P. Cabalar ( Dept. Computer Science University of Corunna, SPAIN )Ch3. Relational KRR May 7, 2024 29 / 74



Preferences as weak constraints

Weak constraints = alternative way of selecting answer sets.
Equivalent to #minimize.

Constraints that we prefer to satisfy

Example (Dinner tables)
Sit 5 people in 2 tables (with capacities 2 and 3).
Avoid sitting a person with anybody she hates
Prefer sitting a person with anybody she likes
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Preferences as weak constraints

table(t1,2). table(t2,3).
person(a;b;c;d;e).
hates(a,c). hates(d,e). likes(a,d). likes(c,e).
1 {sit(X,T): table(T,_)} 1:- person(X).
:- table(T,N), #count{X:sit(X,T)}>N.
:- hates(X,Y), sit(X,T), sit(Y,T).

clingo 0 dinner.lp = we get 4 solutions

Table t1 Table t2
a d b c e
a e b c d
c d a b e
c e a b d

Strong constraint: they must like each other
:- sit(X,T), sit(Y,T), not likes(X,Y). unsatisfiable!
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Preferences as weak constraints

table(t1,2). table(t2,3).
person(a;b;c;d;e).
hates(a,c). hates(d,e). likes(a,d). likes(c,e).
1 {sit(X,T): table(T,_)} 1:- person(X).
:- table(T,N), #count{X:sit(X,T)}>N.
:- hates(X,Y), sit(X,T), sit(Y,T).

clingo 0 dinner.lp = we get 4 solutions

Table t1 Table t2 Cost
a d b c e 3+8=11 � min
a e b c d 4+9=13
c d a b e 4+9=13
c e a b d 3+8=11 � min

Weak constraint: we prefer when they like each other
We pay a cost of 1 per each X,Y that dislikes (minimize the cost)
:~ sit(X,T), sit(Y,T), not likes(X,Y). [1,X,Y]
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Preferences as weak constraints

table(t1,2). table(t2,3).
person(a;b;c;d;e).
hates(a,c). hates(d,e). likes(a,d). likes(c,e).
1 {sit(X,T): table(T,_)} 1:- person(X).
:- table(T,N), #count{X:sit(X,T)}>N.
:- hates(X,Y), sit(X,T), sit(Y,T).

clingo 0 dinner.lp = we get 4 solutions

Table t1 Table t2 Cost
a d b c e (-1)+(-1) = -2 � min
a e b c d 0+0=0
c d a b e 0+0=0
c e a b d (-1)+(-1) = -2 � min

Weak constraint: we prefer when they like each other
Or we pay a cost of -1 per each X,Y that likes (minimize the cost)
:~ sit(X,T), sit(Y,T), likes(X,Y). [-1,X,Y]
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Preferences as weak constraints

We can always use #minimize or #maximize instead. Example:
#maximize{1,X,Y: sit(X,T), sit(Y,T), likes(X,Y)}.

Preference levels @p specifies a priority (higher = more important).
Example: add a second level to dinner problem

I Maximize the likes always
I Likes being equal, I prefer sitting c in t2

#maximize{1@2,X,Y: sit(X,T), sit(Y,T), likes(X,Y)}.
:~ sit(c,T), T!=t2. [1@1]
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ASP solvers

ASP competition: 7 editions
Last edition (2019): 4 tracks depending on language features

Most solvers were based on the ASP solver clasp/clingo by the
Potassco group (University of Potsdam, Germany)
on which professional applications were built

� Potassco branch in A Coruña!

DLV, WASP (Univ. della Calabria, Italy):
the other main solver with many professional applications.

Both clingo and DLV are two-phase (ground & solve) native ASP
solvers
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ASP solvers

Solvers using other strategies:
Lazy grounding:
ASPeRIX (Univ. of Angers, France);
Alpha (TUWien, Austria)

Top-down evaluation (a la Prolog):
s(ASP) (Univ. of Texas at Dallas, USA)

Translation to SAT:
ASSAT (Univ. of Science and Tech., Hong Kong, China);
Cmodels (Univ. of Texas at Austin, USA);
Univ. of Tampere, Finland [Rankooh, Janhunen 2022]
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Outstanding ASP applications (Potassco)

Multi-robot path finding in automated warehouses

The store is actually a discrete grid. ASP computes planning solutions
minimizing movements. (see https://potassco.org/asprilo/)
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Outstanding ASP applications (Potassco)

SBB (Swiss Federal Railways). Solving train scheduling problems

Uses clingo[dl] = clingo + difference logic (integer constraints)

P. Cabalar ( Dept. Computer Science University of Corunna, SPAIN )Ch3. Relational KRR May 7, 2024 39 / 74



ASP applications: other examples

Workforce and resource management. Many examples:
Swiss Railway SBB, Cargo Ship Port, Hospitals (nurse shifts,
room assignment, . . . )
Telecom Italy: Intelligent phone call routing (DLV)
Phylogenetic networks, Haplotype inference
Repairing Large Scale Biological Networks
Explaining and reasoning on natural language, Facebook bAbI
challenge (Univ. of Nebraska at Omaha)
Music composition
Diagnosis for the Space Shuttle (NASA + Univ. of Lubbock, TX)
Data integration: INFOMIX (DLV)
Videogame scenario generation
Robotics (combination with Robot Operating System, ROS)
Product Configuration . . .
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ASP applications: other examples

See more at
E. Erdem, M. Gelfond and N. Leone:
Applications of Answer Set Programming
AI Magazine 37(3): 53-68 (2016)

And who knows what else soon . . .

We want you!
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Back to our simple example

Lamp and switches revisited

Fluents: up1,up2,up3, light (Boolean).

Actions: toggle1, toggle2, toggle3.

State: a possible configuration of fluent values. Example:
{up1,up2,up3, light}.

Situation: a moment in time. We can just use 0,1,2, . . .

up1 up2 up3 up1 up2 up3 up1 up2 up3

light light light

toggle1 toggle3
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Reasoning about actions with ASP

Download system telingo (temporal clingo)
We can make groups of rules
#program initial. % At timepoint t=0
...
#program dynamic. % Transition from t-1 to t
...
#program always. % Any timepoint t=0..n-1
...
#program final. % Last timepoint t=n-1
...

Predicate names preceded by ’ refer to timepoint t-1
Predicate names preceded by _ refer to timepoint t=0
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Reasoning about actions with ASP

% File: switches.lp (domain description)
switch(1..3).
action(tog(X)) :- switch(X).

#program dynamic.
% Effect axioms
h(sw(X),up) :- ’h(sw(X),down), o(tog(X)).
h(sw(X),down) :- ’h(sw(X),up), o(tog(X)).
h(light,off) :- ’h(light,on), o(tog(_)).
h(light,on) :- ’h(light,off), o(tog(_)).

% Executability constraints: none in this case
% Inertia: c(F)= fluent F has changed
h(F,V) :- ’h(F,V), not c(F).
c(F) :- ’h(F,V), h(F,W), V!=W.

% Action generation
1 { o(A): _action(A) } 1.

P. Cabalar ( Dept. Computer Science University of Corunna, SPAIN )Ch3. Relational KRR May 7, 2024 45 / 74



RAC goals

We want to solve some typical reasoning problems.

The most usual ones:
Simulation (aka prediction, aka temporal projection):
run a sequence of actions on an initial state

Temporal explanation (aka postdiction):
fill gaps from partial observations

Planning: obtain sequence of actions to reach some goal

Diagnosis: explain unexpected observed results

Verification: check system properties
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Prediction (simulation, or temporal projection)

Knowing: initial state + sequence of actions

Find out: final state (alternatively sequence of intermediate
states)

up1 up2 up3

light

toggle1 toggle3

? ?
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Reasoning about actions with ASP

Prediction example
% File: switches-predict.lp (instance of prediction problem)
#program initial.
h(light,off).
h(sw(X),up) :- switch(X).

We assert a sequence of facts using:
% Sequence of performed actions
&tel{

&true
;> o(tog(3))
;> o(tog(1))
;> o(tog(2))
;> o(tog(2))

}.
#show h/2.
#show o/1.

where ;> is a sequence operator
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Reasoning about actions with ASP

Prediction example
Calling telingo switches.txt switches-predict.txt

Answer: 1
State 0:
h(light,off) h(sw(1),up) h(sw(2),up) h(sw(3),up)

State 1:
o(tog(3))
h(light,on) h(sw(1),up) h(sw(2),up) h(sw(3),down)

State 2:
o(tog(1))
h(light,off) h(sw(1),down) h(sw(2),up) h(sw(3),down)

State 3:
o(tog(2))
h(light,on) h(sw(1),down) h(sw(2),down) h(sw(3),down)

State 4:
o(tog(2))
h(light,off) h(sw(1),down) h(sw(2),up) h(sw(3),down)
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Postdiction (or temporal explanation)

Knowing: partial observations of states and performed actions

Find out: complete information on states and performed actions

up3 up1 up3 up1 up2 up3

light light light

toggle3

?

?

??
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Reasoning about actions with ASP

Postdiction example:
% switches-postdict.lp
#program initial.
% Completing unknown facts
1 {h(sw(X),up); h(sw(X),down)} 1 :- switch(X).
1 {h(light,on); h(light,off)} 1.

% Observations: we use a constraint!
:- not &tel{

h(sw(3),up) & h(light,on)
;> h(light,off) & h(sw(1),down) & h(sw(3),up)
;> o(tog(3))

}.

Calling telingo 0 switches.txt switches-postdict.txt we
get 4 possible explanations
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Planning

Knowing: initial state + goal (partial description of final state)

Find out: plan (sequence of actions) that guarantees reaching the
goal

up1 up2 up3 up1 up2 up3

light light

? ??

? ? ?

P. Cabalar ( Dept. Computer Science University of Corunna, SPAIN )Ch3. Relational KRR May 7, 2024 52 / 74



Reasoning about actions with ASP

Planning example
% File: switches-plan.lp
#program initial.
h(light,on).
h(sw(X),up) :- switch(X).

#program final.
goal :- h(light,on),h(sw(1),down),

h(sw(2),up),h(sw(3),down).
:- not goal.

Calling telingo 0 switches.txt switches-plan.txt we get
two minimal plans of length 2 toggling 1 and 3 or vice versa.
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Planning vs Postdiction

Note that planning seems a type of postdiction. For deterministic
systems, this is true, but . . .

Nondeterministic transition system: fixing current state +
performed action −→ several possible successor states.

For instance, switch 1 up may fail to turn the light on...

up1 up2 up3

up1 up2 up3

light

light

toggle1

up1 up2 up3

light

toggle1

Switch 1 "failed"
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Planning vs Postdiction

up1 up2 up3

light light

?

? ? ?

For postdiction, one valid explanation is: we performed toggle1,
and it succeeded to turn the light on.

For planning, toggle1 is not a valid plan: it does not guarantee
reaching the goal light . Possible plans are toggle2 or toggle3.
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Diagnosis

Knowing: a model distinguishing between normal and abnormal
transitions + a partial set of observations (usually implying
abnormal behavior).

Find out: the minimal set of abnormal transitions that explains the
observations.

We will see an ASP example later on.

Similar to postdiction, but we are additionally interested in
minimality of explanations.
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Exercise

“Elaborating Missionaries and Cannibals Problem” [J. McCarthy]
3 missionaries and 3 cannibals come to a river and find a boat
that holds two. If the cannibals ever outnumber the missionar-
ies on either bank, the missionaries will be eaten. How shall
they cross?

We will use the following fluents:
1 n(G,B) = is the number of persons of group G at bank B.

Ex.: h(n(mis,l),3) = “there are 3 missionaries in the left bank”

2 boat points out the boat bank. Ex. h(boat,l) = “the boat is at
left bank”
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Exercise: missionaries and cannibals

We will use action:
move(M,C) = move M missionaries and C cannibals.

For simplicity, we include two action attributes moved(mis,N)
and moved(can,N) that point out separatedly how many persons
of each group are moved.
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Exercise: missionaries and cannibals

We begin with types and initial state
#program initial.
% Some types
group(mis;can).
bank(l;r).
opposite(l,r). opposite(r,l).
action(move(M,C)) :- M=0..2, C=0..2, M+C<3, M+C>0.

% Initial state
h(n(G,l),3) :- group(G).
h(n(G,r),0) :- group(G).
h(boat,l).
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Exercise: missionaries and cannibals

Rules for transitions
#program dynamic.
% Action generation
1 {o(A) : _action(A) } 1.

% Auxiliary (action attributes)
moved(mis,M) :- o(move(M,C)).
moved(can,C) :- o(move(M,C)).

% Executability axioms
:- moved(G,N), ’h(boat,B), ’h(n(G,B),M), N>M.

% Effect axioms (no inertia needed)
h(n(G,B),M+N) :- ’h(n(G,B),M), h(boat,B), moved(G,N).
h(n(G,B),M-N) :- ’h(n(G,B),M), ’h(boat,B), moved(G,N).
h(boat,B1) :- ’h(boat,B), _opposite(B,B1).

Inertia not needed because all fluents are changed
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Exercise: missionaries and cannibals

Rules for transitions
#program always.
% Missionaries not outnumbered by cannibals
:- h(n(mis,B),M), h(n(can,B),C), C>M, M>0.

#program final.
:- not goal.
goal :- h(n(mis,r),3), h(n(can,r),3).

#show o/1. % We only show performed actions

We execute telingo 0 mc.txt and it will try length
t = 1,2, . . . until a solution is found.
Four solutions of length t = 11 are eventually found.
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Diagnosis

An agent acts in a dynamic environment and observes the results
of her actions.
Sometimes she gets discrepancies: observations 6= expected
result
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Diagnosis

Example [Balduccini & Gelfond 03]
We have a circuit with lightbulb b and a relay r . The agent can
close s1 causing s2 to close (if r is not damaged). The bulb
emits light if s2 is closed and b is not damaged.
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Diagnosis example

Example [Balduccini & Gelfond 03]
Exogenous action break damages the relay. Action power-
surge damages r , and b too, if the latter is not protected (prot).
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Diagnosis example

Example [Balduccini & Gelfond 03]
We close s1 but b does not emit light: what has happened?
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Diagnosis example

Types and domains
#program initial.
switch(s1;s2).
component(relay;bulb).
fluent(relay;light;b_prot).
fluent(S):-switch(S).
fluent(ab(C)) :- component(C).

value(relay,(on;off)).
value(light,(on;off)).
value(S,(open;closed)) :- switch(S).
hasvalue(F) :- value(F,V).
% Fluents are boolean by default
domain(F,(true;false)) :- fluent(F),not hasvalue(F).
% otherwise, they take the specified values
domain(F,V) :- value(F,V).

Fluents ab(C) point out that a component is damaged
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Diagnosis example

Actions are exogenous exog or agent’s agent :
agent(close(s1)).
exog(break;surge).
action(Y):-exog(Y).
action(Y):-agent(Y).
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Diagnosis example

#program dynamic.
% Inertia
h(F,V) :- ’h(F,V), not c(F).
c(F) :- ’h(F,V), h(F,W), V!=W.

% Direct effects
h(s1,closed) :- o(close(s1)).

#program always.
% Indirect effects
h(relay,on) :- h(s1,closed), h(ab(relay),false).
h(relay,off) :- h(s1,open).
h(relay,off) :- h(ab(relay),true).

h(s2,closed) :- h(relay,on).

h(light,on) :- h(s2,closed), h(ab(bulb),false).
h(light,off) :- h(s2,open).
h(light,off) :- h(ab(bulb),true).
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Diagnosis example
#program dynamic.
% Executability
:- o(close(S)), ’h(S,closed).

% Malfunctioning
h(ab(bulb),true) :- o(break).
h(ab(relay),true) :- o(surge).
h(ab(bulb),true) :- o(surge), not ’h(b_prot,true).

We use predicates obso and obsh to denote observations
% Observed actions actually occur
o(A) :- obs_o(A).

#program always.
% Check that observations hold
:- obs_h(F,V), not h(F,V).

#program initial.
% Completing the initial state
1 {h(F,V):_domain(F,V)} 1 :- _fluent(F).
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Diagnosis example

These are the observations:
% A history
&tel {

obs_h(s1,open) & obs_h(s2,open) &
obs_h(b_prot,true) &
obs_h(ab(bulb),false) &
obs_h(ab(relay),false)

;> obs_o(close(s1)) &
obs_h(light,off)

}.

#program dynamic.
% Generate exogenous actions
{ o(Z): _exog(Z) }.

cause(X) :- o(X), _exog(X).
#show cause/1.
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Diagnosis example

This will provide all possible explanations, but not minimal
diagnoses.
$ telingo 0 diag.lp
Answer: 1
State 0:
State 1:
cause(break)

Answer: 2
State 0:
State 1:
cause(break) cause(surge)

Answer: 3
State 0:
State 1:
cause(surge)

SATISFIABLE
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Diagnosis example

Optimization problems: we can use maximize/minimize

One possible notation is:
#minimize <numerical_expr>: <condition>.

Example
numcauses(N) :- #count{X:cause(X)}=N.
#minimize {N:numcauses(N)}.

means “get minimal number of exogenous actions”
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Diagnosis example

To obtain all minimal solutions we use the options:
$ telingo --opt-mode=optN -n0 diag.lp

Two minimal solutions are found:
Answer: 1
State 0:
State 1:
cause(surge)

Optimization: 1
Answer: 2
State 0:
State 1:
cause(break)

Optimization: 1
OPTIMUM FOUND
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