
Explaining Preferences, Preferring Explanations?

Pedro Cabalar and Jorge Fandinno

Department of Computer Science
University of Corunna, Spain

{cabalar, jorge.fandino}@udc.es

Abstract. In this paper we study the possibility of providing causal explanations
for preferred answer sets, as those obtained from logic programs with ordered
disjunction (LPODs). We use a recently defined multi-valued semantics for an-
swer sets based on a causal algebra and consider its direct application to LOPDs
by several illustrating examples. We also explain the limitations of this simple
approach and enumerate some open topics to explore in the future.

1 Introduction

Although much work in problem solving has been devoted to problems with a small set
of solutions that are hard to find, there are many other situations in which the number
of solutions is astronomical, but not all of them are preferred in the same way. Think,
for instance, on the configuration of a timetable for a university school: there exists a
huge number of combinations with physically feasible timetables, but most of them do
not have a reasonable distribution.

The definition of a suitable Knowledge Representation (KR) language for speci-
fying preferences has proved to be a difficult endeavour. Apart from the long list of
features usually expected from a KR formalism (simplicity, clear semantics, flexibility,
elaboration tolerance, computability, complexity assessment, efficient inference meth-
ods, etc), the specification of preferences has an extra difficulty that has to do with their
subjective, ambiguous definition. For instance, while any student or teacher could easily
tell why a given random timetable is not reasonable, it is very difficult to formally en-
code all the preferences that capture the commonsense idea of “reasonable timetable”
in the general case – furthermore, there would not be a complete agreement among
different persons either. Even when we have a single person, she may initially declare
a list of preferences such as “A better than B.” However, when this list grows up, the
results obtained by formal systems are usually far away from the expected outcomes
that the person had in mind. To bridge the gap, several refinements can be applied, such
as adding conditional preferences or including an ordering among them. Still, while the
strict physical rules that govern a timetable assignment are objective and accurate, it is
practically impossible to guarantee that the set of preferences is working as expected
from a commonsense point of view.

Although there exist both qualitative and quantitative approaches for dealing with
preferences in Artificial Intelligence, the interest in KR has been mostly focused on

? This research was partially supported by Spanish MEC project TIN2013-42149-P

the qualitative orientation, probably because it is closer to commonsense reasoning, as
humans rarely express their preferences in numerical terms1.

As explained in [7], the relation between preferences and Non-Monotonic Reason-
ing (NMR) has been evident from the very beginning. On the one hand, the nature of
preferences is clearly non-monotonic: the addition of new preferences may drastically
change the obtained conclusions. On the other hand, we can also see a default as a kind
of preference specification: a sentence like “birds normally fly” can be read as “if X is a
bird, my preferred belief is that X flies.” Indeed, many non-monotonic formalisms are
defined in terms of a preference relation among logical models of a theory.

When one mentions research on preferences and NMR there is one researcher’s
name that immediately comes to mind: Gerhard Brewka. Being one of the pioneers in
NMR, Gerd soon became interested in the topic of preferences, proposing extensions of
Reiter’s Default Logic [21] to include priorities among defaults [1, 2]. He also got inter-
ested on an emerging problem solving paradigm, Answer Set Programming (ASP) [17,
16] whose semantics (stable models [14] or answer sets) can also be seen as a par-
ticular case of Default Logic. ASP has become nowadays [5] a de facto standard for
practical NMR and problem solving thanks to its clear semantics and the availability of
efficient solvers together with a wide spectrum of applications running in real scenar-
ios. In 1998, Gerd coauthored, together with Thomas Eiter, one of the first remarkable
approaches of preferences in ASP [4]. Four years later, he introduced a different orien-
tation called Logic Programs with Ordered Disjunction (LOPDs) [3]. In LPODs, logic
programs were extended with a new connective called ordered disjunction allowing
the representation of ranked options for problem solutions in the heads of rules. As a
result, LPODs provided a flexible and readable way for expressing (conditional) prefer-
ences combined with the expressiveness of default negation already embodied in ASP.
Originally, the semantics of LPODs relied on an adapted definition of answer sets or,
alternatively, resorted to program transformations (so-called “split programs”). How-
ever, in [8], it was shown how the ordered disjunction connective could be naturally
captured in Equilibrium Logic [18], the most general logical characterisation of ASP.
This actually allows seeing LPODs as a “regular” type of ASP programs extended with
an additional preference relation on answer sets.

As we explained before, in a practical scenario, one can expect that the specifica-
tion of preferences is obtained after several attempts and refinements, by repeatedly
observing the obtained results and comparing them to the expected behaviour. In such
a context, it seems clear that explanations play a fundamental role. There exist several
approaches in the ASP literature focused on providing explanations for debugging [13,
20, 22, 11] or obtaining justifications for the program outcome [19, 12, 24]. In a recent
proposal [9], the idea of causal justifications for ASP programs was introduced. These
causal justifications are embodied in ASP as a multi-valued extension where each true
atom in a stable model is associated an expression involving rule labels corresponding
to the alternative proofs to derive the atom.

1 An exception is, perhaps, when we consider optimization problems (minimizing cost, maxi-
mizing profit, etc) as an instance of preference specification. In any case, we mean here that,
even though we are sometimes able to assign numerical weights to preferences, this is not
usually present at our commonsense level, but a forced assignment a posteriori.

In this paper we study the possibility of providing explanations for LPODs. As a
first direct attempt, we have considered the combination of LPODs with causal justifi-
cations, showing its behaviour on several examples. We also explain how it may seem
sometimes reasonable to provide preferences, not only among program rules, but also
on the explanations obtained. Finally, we discuss the obvious limitations of this first
approach and foresee some interesting open topics to explore in the future.

2 Logic Programs with Ordered Disjunction

2.1 Preliminaries

We begin introducing some preliminary notation that will be useful later. Let A be a
(possibly empty) list of (possibly repeated) formulas. We write |A| to stand for the
length of A. For any k ∈ {1, . . . , |A|}, by A[k] we mean the k-th expression in A and
by A[1..k], the prefix of A of length k, that is, A[1] . . .A[k]. For a binary operator � ∈
{∨,∧,×}, by (�A) we mean the formula resulting from the repeated application of �
to all formulas in A in the same ordering. As an example, given the sequence of atoms
A = (a,b,c,d,e), the expression (×A[1..3]) represents the formula a×b× c. We write
not A to stand for the sequence of formulas (not A[1]) . . .(not A[k]) where k = |A|. An
empty conjunction is understood as > whereas an empty disjunction (both ordered ×
or regular ∨) is understood as ⊥. The concatenation of two lists of formulas, A and B,
is simply written as AB.

A logic program is a set of rules of the form:

(∨A)∨ (∨not A′)← (∧B)∧ (∧not B′) (1)

where A,A′,B and B′ are lists of atoms. The consequent and antecedent of the implica-
tion above are respectively called the head and the body of the rule. In the examples, we
will usually represent conjunctions in the body as commas, to follow the standard ASP
notation. A rule with an empty head ⊥ (that is, |A|+ |A′|= 0) is called a constraint. A
rule with an empty body > (that is, |B|+ |B′|= 0) is called a fact, and we usually write
the head F instead of F←>. A rule is said to be normal when |A|= 1 and |A′|= 0. A
rule is positive when |A′|= |B′|= 0. We extend the use of these adjectives to a program,
meaning that all its rules are of the same kind.

A rule head of the form p∨¬p behaves as a choice rule: we are free to include p
or not. This kind of head is usually written as {p} in ASP and we will sometimes use it
too to increase readability.

Answer sets of a program P are defined in terms of the classical Gelfond-Lifschitz’s
reduct [14], that is extended as follows for the syntactic case we are considering (dis-
junctive heads with default negation [?]). The reduct of a program P with respect to a
set of atoms I, written PI , consists of a rule of the form (∨A)← (∧B) per each rule in
P of the form (1) that satisfies I |= (∧A′)∧ (∧not B′). We say that a set of atoms I is an
answer set of a program P if I is a minimal model of PI .

Answer sets differ from stable models in that they further allow a new negation
(called classical, explicit or strong). For simplicity, we will understand strong negation

of an atom p as a new atom “¬p” and assume that each time one of these “negative”
atoms is used, we implicitly further include the constraint:

⊥ ← p,¬p

2.2 LPODs: original definition

A logic program with ordered disjunction (LPOD) is a set of rules of the form:

(×A)← (∧B)∧ (∧not B′) (2)

where A,B and B′ are lists of atoms. We say that a set of atoms I satisfies an LPOD rule
r such as (2), written I |= r, when I |= (∨A)← (∧B)∧ (∧not B′) in classical logic.

For each LPOD rule r of the form (2), we define its k-th option, written rk, with
k ∈ {1, . . . , |A|}, as the normal rule:

A[k]← (∧B)∧ (∧not B′)∧ (∧not A[1..k−1])

A normal logic program P′ is a split program of P if it is the result of replacing each
LPOD rule r ∈ P by one of its possible options rk. A set of atoms I is an answer set of
P if it is an answer set of some split program P′ of P.

Example 1 (From [6]). Let P1 be the LPOD:

a×b← not c b× c← not d

This LPOD has four split programs:

a← not c
b← not d

a← not c
c← not d,not b

b← not c,not a
b← not d

b← not c,not a
c← not d,not b

that yield three answer sets {a,b}, {c} and {b}. �

As explained in [6], answer sets of LPODs can also be described in terms of a
program reduct, instead of using split programs.

Definition 1 (×-reduct). The ×-reduct of an LPOD rule r such as (2) with respect to
a set of atoms I denoted as rI

× and defined as the set of rules:

A[i]← (∧B) (3)

for all i = 1, . . . , |A| such that I |= (∧not B′)∧ (∧not A[1..i−1])∧A[i]. �

As expected, the ×-reduct of an LPOD P with respect to I, written PI
× is the union of

all rI
× for all LPOD rules r ∈ P. For instance, for I = {b,c} and P:

a×b← c,not d (4)
d×a← not b (5)
d× e← not a (6)

the reduct PI
× would be the rule {b← c}. Notice that PI

× defined in this way is always a
positive (non-disjunctive) logic program and so it has a least model [23].

Theorem 1 (From [6]). A set of atoms I is an answer set of an LPOD P iff I |= P and
I is the least model of PI

×. �

It is important to note that I |= PI
× does not imply I |= P, and thus, the latter is also

required in the above theorem. For instance, in the last example, the interpretation /0 is
the least model of PI

× but does not satisfy the LPOD rule (6).
Three ordering relations can be used for selecting preferred answer sets. We say that

an LPOD rule r of the form (2) is satisfied to degree j ∈ {1, . . . , |A|} by a set of atoms I,
written I |= j r, when: I does not satisfy the body of r and j = 1; I satisfies the body of r
and j is the minimum index for which A[j] ∈ I. We define degI(r)

def= j when I |= j r and
define the set I j(P) def= {r ∈ P | I |= j r}. Given two answer sets I,J of a given LPOD:

1. I is cardinality-preferred to J, written I >c J, when for some truth degree k, |Ik(P)|>
|Jk(P)| whereas |Ii(P)|= |Ji(P)| for all i < k.

2. I is inclusion-preferred to J, written I >i J, when for some truth degree k, Jk(P)⊂
Ik(P) while Ii(P) = Ji(P) for all i < k.

3. I is Pareto-preferred to J, written I >p J, if for some rule r ∈ P, degI(r)< degJ(r)
whereas for no rule r′ ∈ P, degI(r′)> degJ(r′).

2.3 Ordered disjunction as an operator

As explained in the introduction, in [8] it was shown how the original definition of
answer sets for LPODs can be alternatively characterised by a logical encoding into
Equilibrium Logic [18], and in particular, into its monotonic basis called the logic of
here-and-there (HT) [15]. [8] showed that the expression A×B can be defined in HT
as A∨ (not A∧B). As a result of some simple transformations in the logic of HT, it
was possible to prove that a rule of the form (2) can be seen as an abbreviation of the
conjunction of the following rules:

A[k]∨not A[k]← (∧B)∧ (∧not B′)∧ (∧not A[1..k−1]) (7)
⊥ ← (∧B)∧ (∧not B′)∧ (∧not A) (8)

for all k = 1, . . . , |A|. For a rule r like (2) we denote each rule (7) by r[k]. As an example,
the HT translation of the LPOD rule r : a×b× c← p,not q consists of:

r[1] : a∨not a← p,not q

r[2] : b∨not b← p,not q,not a

r[3] : c∨not c← p,not q,not a,not b

⊥ ← p,not q,not a,not b,not c

Note that rule heads have the form of choice expressions: as explained before, we would
usually write a∨¬a as {a}. So, essentially, r[1] says that when p∧ not q, we have
freedom to choose a or not. In its turn, r[2] further says that if, additionally, a is false,
then we can freely choose b or not, and so on. The constraint just checks that at least
one choice is eventually chosen.

At a first sight, this definition may seem similar to the one based on split programs.
Note that, in fact, r[k] can be seen as a weaker version of the previously defined rk where
we have just added not A[k] with a disjunction in the head. However, it is important to
note that the HT translation provides a unique ASP program and that the translation of
each LPOD rule (2) is modular, so we can safely understand it as an abbreviation of all
the rules (7) and (8).

3 Causal justifications

In this section, we recall several definitions and notation from [9]. The intuitive idea
is that atoms in a stable model will be assigned algebraic expressions instead of truth
values 0,1. These algebraic expressions are built with labels for the program rules plus
three operations: a product ‘∗’ meaning conjunction or joint causation; a concatenation
‘·’ meaning ordered sequence of application of terms; and an addition ‘+’ meaning
different alternative proofs for a same atom.

A signature is a pair 〈At,Lb〉 of sets that respectively represent atoms (or proposi-
tions) and rule labels.

The syntax is defined as follows. As usual, a literal is defined as an atom p (positive
literal) or its default negation not p (negative literal). In this paper, we will concentrate
on programs without disjunction in the head (leaving its treatment for future work).

Definition 2 (Causal logic program). Given a signature 〈At,Lb〉, a (causal) logic pro-
gram P is a set of rules of the form:

t : H ∨ (∨not A′)← (∧B)∧ (∧not B′) (9)

where t ∈ Lb∪{1} where H is an atom and A,B,B′ lists of atoms as before. �

For any rule R of the form (9) we define label(R) def= t. When t ∈ Lb we say that the
rule is labelled; otherwise t = 1 and we omit both t and ‘:’. By these conventions, for
instance, an unlabelled fact p is actually an abbreviation of (1 : p←). A logic program
P is positive if it contains no default negation.

The semantics relies on assigning, to each atom, a causal term defined as follows.

Definition 3 (Causal term). A (causal) term, t, over a set of labels Lb, is recursively
defined as one of the following expressions t ::= l | ∏S | ∑S | t1 · t2 | (t1) where l ∈ Lb,
t1, t2 are in their turn causal terms and S is a (possibly empty and possible infinite) set
of causal terms. When S is finite and non-empty, S = {t1, . . . , tn} we write ∏S simply as
t1 ∗ · · · ∗ tn and ∑S as t1 + · · ·+ tn. The set of causal terms is denoted by TLb. �

We assume that ‘∗’ has higher priority than ‘+’. When S = /0, we denote ∏S by 1 and
∑S by 0. These values are the indentities for the product and the addition, respectively.

All three operations, ‘∗’, ‘+’ and ‘·’ are associative. Furthermore, ‘∗’ and ‘+’ are com-
mutative and they hold the usual absorption and distributive laws with respect to infinite
sums and products of any completely distributive lattice, as shown2 in Figure 1. The be-
haviour of the ‘·’ operator is captured by the properties shown in Figure 2. As we can
see, distributivity with respect to the product is only applicable to terms c, d, e without
sums (this means that the empty sum, 0, is not allowed either). We define the standard
order relation ≤ as follows:

t ≤ u iff (t ∗u = t) iff (t +u = u)

By the identity properties of + and ∗, this immediately means that 1 is the top element
and 0 the bottom element of this order relation.

Associativity
t + (u+w) = (t+u) + w
t ∗ (u∗w) = (t ∗u) ∗ w

Commutativity
t + u = u + t
t ∗ u = u ∗ t

Absorption
t = t + (t ∗u)
t = t ∗ (t+u)

Distributive
t + (u∗w) = (t+u) ∗ (t+w)
t ∗ (u+w) = (t ∗u) + (t ∗w)

Identity
t = t + 0
t = t ∗ 1

Idempotence
t = t + t
t = t ∗ t

Annihilator
1 = 1 + t
0 = 0 ∗ t

Fig. 1. Sum and product satisfy the properties of a completely distributive lattice.

Absorption
t = t + u · t · w

u · t · w = t ∗ u · t · w

Associativity
t · (u·w) = (t·u) · w

Identity
t = 1 · t
t = t · 1

Annihilator
0 = t · 0
0 = 0 · t

Indempotence
t · t = t

Addition distributivity
t · (u+w) = (t·u) + (t·w)
(t + u) · w = (t·w) + (u·w)

Product distributivity
c ·d · e = (c ·d)∗ (d · e) with d 6= 1

c · (d ∗ e) = (c ·d)∗ (c · e)
(c∗d) · e = (c · e)∗ (d · e)

Fig. 2. Properties of the ‘·’ operator (c,d,e are terms without ‘+’).

As proved in [9], any causal term can be equivalently reduced to a disjunctive nor-
mal form with an addition of products of pairs (l · l′) where l, l′ are labels. In fact, each
product of pairs can be seen as a syntactic representation of a graph whose nodes are
labels and with an arc (l, l′) per each pair (l · l′).

Given a signature 〈At,Lb〉 a causal interpretation is a mapping I : At → TLb as-
signing a causal term to each atom. We denote the set of causal interpretations by I.

2 For readability sake, we only show the properties for finite sums and products, but they still
hold in the infinite case.

For interpretations I and J we say that I ≤ J whether I(p)≤ J(p) for each atom p ∈ At.
Hence, there is a ≤-bottom interpretation 0 (resp. a ≤-top interpretation 1) that maps
each atom p to 0 (resp. 1). Valuation of formulas is defined as follows:

I(not p) =
{

1 if I(p) = 0
0 otherwise

I(α ∧β) = I(α)∗ I(β)
I(α ∨β) = I(α)+ I(β)

An interpretation I satisfies a positive rule t : H← (∧B) when:

I(∧B) · t ≤ I(H)

As usual, I is a model of a positive program iff it satisfies all its rules. Positive programs
have a ≤-least model that corresponds to the least fixpoint of a direct consequences
operator (see [9] for further details).

The reduct of a program P with respect to a causal interpretation I, written PI , is
defined in a similar manner as before. Program PI consists of all positive rules t : H←
(∧B) such that there is a rule (9) in P for which I

(
(∧A′)∧ (∧not B′)

)
= 1.

Definition 4 (Causal model). Given a positive causal logic program P, a causal inter-
pretation I is a causal stable model iff I is the ≤-least model of PI . �

In [9], it was also shown that there exists a one-to-one correspondence between
causal stable models of a program and its regular stable models (when labels are ig-
nored). Furthermore, given the causal stable model I and its corresponding two-valued
stable model J, the assignment I(p) for an atom p precisely captures all the (non-
redundant) proofs that can be built for deriving p in the positive program PJ .

4 Causal explanations for a preferred answer set

In this section we directly combine both approaches by extracting explanations of
LPODs expressed as causal terms. Consider the following example from [3] about how
to spend a free afternoon.

Example 2 (From [3]). You like to go to the beach, but also to the cinema. Normally
you prefer the cinema over the beach, unless it is hot (which is the exception in the area
where you live, except during the summer). If it is hot the beach is preferred over the
cinema. In summer it is normally hot, but there are exceptions. If it rains the beach is
out of question. �

This information can be captured by the following set of rules P1:

c : cinema×beach ← not hot

b : beach× cinema ← hot

h : hot ← not ¬hot,summer

r : ¬beach ← rain

This program has two choices with ordered disjunction, c and b, that respectively cor-
respond to preferring cinema or beach depending on the context. As explained before,
these rules can be unfolded into:

c[1] : {cinema} ← not hot

c[2] : {beach} ← not hot,not cinema

⊥ ← not hot,not cinema,not beach

b[1] : {beach} ← hot

b[2] : {cinema} ← hot,not beach

⊥ ← hot,not beach,not cinema

Assume now we are given the information summer. The answer sets for P1∪{summer}
are J0 = {summer,hot,beach} and J1 = {summer,hot,cinema} but only J1 is preferred
(under all preference orderings) since it satisfies rule b to degree 1 while J2 only satisfies
b to degree 2, and coincides in the rest of rules. As explained before, there exists one
causal stable model per each regular stable model for any program P. In particular, the
causal stable model I1 corresponding to J1 assigns the causal values I1(summer) = 1,
I1(hot) = h, I1(beach) = h · b[1] while all false atoms in J1 are assigned the value 0.
On the other hand, the causal stable model I2 corresponding to J2 only differs in the
assignments I(cinema) = h · b[2] and I(beach) = 0. It is interesting to note that, since
fact summer was not labelled, the truth value for that atom becomes 1 (“completely”
true), which is the top element of the lattice of causal values. A second observation is
that the causal value of atoms can also be used to find out the degree of satisfaction of
an ordered choice rule. For instance, in I1 we can see that rule b is being satisfied to
degree 1 because the head atom in that position, beach, is assigned a value in which
b[1] occurs. Similarly, in I2, we know that b is satisfied to degree 2 because I2(cinema)
contains a reference to b[2]. If a program contains no repeated labels, it can be checked
that, for any ordered choice rule r, we will never get two different occurrences r[i] and
r[k] with i 6= k in the values of atoms in a causal stable model.

Let us continue with the example as done in [3] and assume now that we add the
information ¬hot. That is, take the program P1 ∪{summer,¬hot}. Then, the new pre-
ferred answer set becomes J3 = {summer,¬hot,cinema} and its corresponding causal
version I3 makes the assignments I3(summer) = 1, I3(¬hot) = 1 and I3(cinema) = c[1].
A second, non-preferred answer set, I4, would vary in the assignments I4(cinema) = 0
and I4(beach) = c[2]. Notice that I1 and I3 are analogous in the sense that they switch
their preferences orders depending on whether we had hot or not, respectively. How-
ever, the causal values are not completely analogous: while in I1 the explanation for
cinema involves two labels, h · b[1], in I3 the explanation for beach only refers to c[1].
This is because the meaning of default negation in causal justifications is understood as
a default precondition, rather than an actual, effective cause. To generate a symmetric
with respect to I1 we should encode rule b as:

b : beach× cinema←¬hot

and, if fact ¬hot were labelled to trace its effects, say using:

g : ¬hot

then I3(beach) would become g · c[1].
It is not difficult to see that program P1∪{summer,rain} yields a unique preferred

answer set whose causal version, I5, yields the explanations I5(summer) = I5(rain) = 1,
I5(¬beach) = r, I5(hot) = h and I5(cinema) = h ·c[2]. Note how, in this case, cinema is
justified by h (the rule concluding hot) and, after that, c[2] meaning that we were forced
to select the second choice of rule c (since beach was not possible3).

In all the previous variations of the example, we never had alternative proofs for
an atom: all true atoms have had a unique possible derivation in a given answer set.
This is reflected in the fact that we did not get any addition +. To illustrate this effect,
suppose that whenever we decide making windsur f we always go to the beach whereas,
normally, when the day is windy we are in the mood for making surf (if nothing prevents
us from doing so). To capture this refinement, assume that P2 is program P1 plus rules:

s : beach ← windsur f

w : windsur f ← wind,not ¬windsur f

and that we are in a windy day in the summer. The program P2 ∪{wind,summer} has
one preferred answer set I6 whose corresponding causal explanations are I6(summer) =
I6(wind) = 1, I6(windsur f) =w, I6(hot) = h, I6(beach) = h ·b[1]+w ·s. In other words,
we get two explanations for beach: the previous one saying that, as it is hot h, we used
the first choice of rule b; plus a second one saying that, as we want to make windsurf
w, we applied rule s.

5 Preferred explanations

In [10] it was shown how the number of alternative causal explanations for an atom
in a positive program may grow exponentially in the worst case. The reason for that
is related to the application of distributivity, something we need when we want to ex-
press the final atom value in disjunctive normal form (sum of alternative causes). So,
as we explained in the introduction, this is another case in which we may have many
potential “solutions” (the causal explanations) where we may be interested in showing
preferences among them.

One straightforward manner to incorporate preferences among terms in the causal
values lattice is adding axioms involving the order relation among terms. As an elemen-
tary expression, if we add an axiom r ≤ r′ (that is r+ r′ = r′ or equivalently r ∗ r′ = r)
for a pair of rule labels r,r′ we will be able to remove some less preferred explanations
from causal terms. For instance, think about the last variation of the example, program
P2. We may be interested in preferring explanations that involve a non-preference rule
like s or w over explanations that involve a preference like b. In our case, we could add
the axioms:

b[1]≤ s b[2]≤ s b[1]≤ w b[2]≤ w

As a result, we would be able to prove that:

b[1]+w · s = (b[1]+w︸ ︷︷ ︸
=w

) · (b[1]+ s︸ ︷︷ ︸
=s

) = w · s

3 Remember that we implicitly assume the existence of constraint ⊥← beach,¬beach.

that is, b[1] ≤ w · s. Since h · b[1] ≤ b[1] by absorption, we conclude h · b[1] ≤ w · s
and, thus, I6(beach) = h · b[1] +w · s = w · s removing, in this way, the less preferred
explanation based on rule b.

Many different preference criteria can be thought for selecting the “best” explana-
tions. For instance, it makes sense preferring an explanation that uses the i-th choice
of an ordered disjunction than one that uses a j-th choice with i < j. To capture that
behaviour, we could define the degree n of a causal term without sums as the maximum
value k occurring in any label of the form r[k] (0 if no label of that form occurs), and
add axiom schemata to force that causal explanations with higher degree are smaller
under the causal order relation. As an example, consider the following LPOD:

a : p×q× r

b : t×h× p×q

c : h× t×q

⊥← p

⊥← h

⊥← t

The preferred answer set makes q true with the explanation I(q) = a[2] + b[4] +
c[3] that, under the criterion mentioned above, would collapse to the explanation with
smallest degree I(q) = a[2]. In other words, the “strongest” reason for q is that we took
the second choice of rule a.

6 Conclusions and open topics

In this paper we have presented a first exploratory attempt to provide explanations or
justifications for the preferred answer sets obtained from Logic Programs with Ordered
Disjunction (LPODs). At a same time, we have also discussed the possibility of incor-
porating preferences when there exist alternative explanations for a same atom.

The current approach is a simple first step towards the final goal of providing expla-
nations of preferred answer sets and helping the user to refine her formal representation.
There are many open topics that are interesting for future work. As a first example, when
explaining the outcome of an LPOD, the approach in this paper only provides the ex-
planation of true atoms in a given preferred answer set. This may help us to find out
where did the information contained in one preferred choice come from. However, in
many cases, the question of why a given fact or literal, that we know that may be true
in another solution to our problem (i.e., some answer set perhaps not preferred) has not
been eventually true in some preferred answer set. Answering questions of the form
“why-not” has been studied in [11] for a different algebraic approach and the incorpo-
ration of this type of queries to causal justifications is currently under study. Formally,
this will involve the incorporation of a negation operator in the algebra of causal val-
ues. Still, even if we are eventually able of answering “why-not” questions, the case
of LPODs introduces an additional difficulty since what we would probably want is to

know how the set of preferences has prevented that a literal (possible in another answer
set) became true in any preferred solution.

Regarding the topic on preferring explanations, the addition of a negation operator
to the causal algebra could also be interesting to express preferences like, for instance,
saying that any positive proof is preferred over a proof that depends on negation (a
default). In the windsurf variation of our running example, this would mean that adding
a rule of the form:

m : beach← romantic

together with the fact t : romantic should provide a stronger explanation than w · s since
t ·m has not applied any default, whereas w was actually a default rule.

References

1. Gerhard Brewka. Preferred subtheories: An extended logical framework for default reason-
ing. In Proceedings of the 11th International Joint Conference on Artificial Intelligence.
Detroit, MI, USA, August 1989, pages 1043–1048, 1989.

2. Gerhard Brewka. Reasoning about priorities in default logic. In Proceedings of the 12th
National Conference on Artificial Intelligence, Seattle, WA, USA, July 31 - August 4, 1994,
Volume 2., pages 940–945, 1994.

3. Gerhard Brewka. Logic programming with ordered disjunction. In Proceedings of the Eigh-
teenth National Conference on Artificial Intelligence and Fourteenth Conference on Inno-
vative Applications of Artificial Intelligence, July 28 - August 1, 2002, Edmonton, Alberta,
Canada., pages 100–105, 2002.

4. Gerhard Brewka and Thomas Eiter. Preferred answer sets for extended logic programs. In
Proceedings of the Sixth International Conference on Principles of Knowledge Representa-
tion and Reasoning (KR’98), Trento, Italy, June 2-5, 1998., pages 86–97, 1998.

5. Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynski. Answer set programming at a
glance. Commun. ACM, 54(12):92–103, 2011.

6. Gerhard Brewka, Ilkka Niemelä, and Tommi Syrjänen. Logic programs with ordered dis-
junction. Computational Intelligence, 20(2):335–357, 2004.

7. Gerhard Brewka, Ilkka Niemelä, and Miroslaw Truszczynski. Preferences and nonmonotonic
reasoning. AI Magazine, 29(4):69–78, 2008.

8. Pedro Cabalar. A logical characterisation of ordered disjunction. AI Communications,
24(2):165–175, 2011.

9. Pedro Cabalar, Jorge Fandinno, and Michael Fink. Causal graph justifications of logic pro-
grams. Theory and Practice of Logic Programming, 14(4–5):603–618, 2014. special issue
on ICLP’14.

10. Pedro Cabalar, Jorge Fandinno, and Michael Fink. A complexity assessment for queries in-
volving sufficient and necessary causes. In Proc. of the 14th European Conference on Logics
in Artificial Intelligence (JELIA’14), volume 8761 of Lecture Notes in Artificial Intelligence,
pages 300–310. Springer, 2014.

11. C. V. Damásio, A. Analyti, and G. Antoniou. Justifications for logic programming. In Proc.
of the 12th Intl. Conf. on Logic Programming and Nonmonotonic Reasoning, (LPNMR’13),
volume 8148 of Lecture Notes in Computer Science, pages 530–542. Springer, 2013.

12. Marc Denecker and Danny De Schreye. Justification semantics: A unifiying framework for
the semantics of logic programs. In Proc. of the Logic Programming and Nonmonotonic
Reasoning Workshop, pages 365–379, 1993.

13. M. Gebser, J. Pührer, T. Schaub, and H. Tompits. Meta-programming technique for debug-
ging answer-set programs. In Proc. of the 23rd Conf. on Artificial Inteligence (AAAI’08),
pages 448–453, 2008.

14. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In R. A.
Kowalski and K. A. Bowen, editors, Logic Programming: Proc. of the Fifth International
Conference and Symposium (Volume 2), pages 1070–1080. MIT Press, Cambridge, MA,
1988.

15. Arend Heyting. Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der
Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse, pages 42–
56, 1930.

16. V. Marek and M. Truszczyński. Stable models and an alternative logic programming
paradigm, pages 169–181. Springer-Verlag, 1999.

17. I. Niemelä. Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence, 25:241–273, 1999.

18. David Pearce. A new logical characterisation of stable models and answer sets. In Non mono-
tonic extensions of logic programming. Proc. NMELP’96. (LNAI 1216). Springer-Verlag,
1996.

19. Luı́s Moniz Pereira, Joaquim Nunes Aparı́cio, and José Júlio Alferes. Derivation procedures
for extended stable models. In John Mylopoulos and Raymond Reiter, editors, Proceedings
of the 12th International Joint Conference on Artificial Intelligence, pages 863–869. Morgan
Kaufmann, 1991.

20. E. Pontelli, T. C. Son, and O. El-Khatib. Justifications for logic programs under answer set
semantics. Theory and Practice of Logic Programming, 9(1):1–56, 2009.

21. Raymond Reiter. A logic for default reasoning. Artif. Intell., 13(1-2):81–132, 1980.
22. C. Schulz, M. Sergot, and F. Toni. Argumentation-based answer set justification. In Proc. of

the 11th Intl. Symposium on Logical Formalizations of Commonsense Reasoning (Common-
sense’13), 2013.

23. Maarten H. van Emden and Robert A. Kowalski. The semantics of predicate logic as a
programming language. J. ACM, 23(4):733–742, 1976.

24. Joost Vennekens. Actual causation in cp-logic. TPLP, 11(4-5):647–662, 2011.

