
COMPUTER SCIENCE DEPARTMENT

Temporal Answer Set Programming

PHD THESIS

Martín Diéguez Lodeiro

2015

COMPUTER SCIENCE DEPARTMENT

Temporal Answer Set Programming

PHD THESIS

Martín Diéguez Lodeiro

PhD Supervisor:
Dr. Pedro Cabalar Fernández

2015

PHD THESIS

Temporal Answer Set Programming

Martín Diéguez Lodeiro
PhD Supervisor:

Dr. Pedro Cabalar Fernández

Thesis committee: Dr. David Pearce (chair)

Dr. Philippe Balbiani

Dr. Stéphane Demri

Dr. Agustín Valverde Ramos

Dr. Concepción Vidal Martín

Substitute members: Dr. Stefania Costantini

Dr. Manuel Ojeda Aciego

D. Pedro Cabalar Fernández, Profesor Titular de Universidade na área de
Ciencias da Computación e Intelixencia Artificial da Universidade da Coruña

CERTIFICA

Que a presente memoria titulada Temporal Answer Set Programming foi
realizada baixo a súa dirección e constitúe a Tese que presenta Martín Dié-
guez Lodeiro para optar ao grao de Doutor pola Universidade da Coruña.

Asina: Dr. Pedro Cabalar Fernández
Director da Tese

To my parents

Logic is the beginning of wisdom, not the end.
Leonard Nimoy.

Logic, like whisky, loses its beneficial effect when taken in
too large quantities.

Lord Dunsany.

Acknowledgments

Even though my name appears on the cover of this book, this thesis would not
have been possible without the contributions of many people who deserve my
infinite gratitude.

First of all, I would like to express my gratitude to my friend and supervisor
Pedro Cabalar. Without his patience, direction, support and constant dedica-
tion this work would not have seen the light. You started TEL, you helped
me to develop it and, moreover, we both shared great moments during these
years. I owe you more than a thesis.

I would like to make a special mention to my colleagues Conchi, Feli and
Gilberto. One guy started this thesis but it is another one who is writing it
and this is because of your help, motivation and, of course, the lessons of life
Gilberto taught me. I owe you more than a thesis, too.

I am also very thankful to those people with whom I shared the lab, laughter
and memorable moments: Dani, Javi, Edu, Xose, Isma, Álvaro, Santos and
Ana. Thank you for your support, advice and encouragement. I am also very
grateful to Luis Fariñas, Philippe Balbiani, Andreas Herzig and, of course, my
good friend Naji Obeid for their kindly hospitality and help during my stay at
the IRIT in Toulouse.

From the academical point of view, this work would not exist without
the contributions and suggestions of many researchers. Among others, David
Peace, if he had not discovered Equilibrium Logic, this thesis would not make
any sense. Stéphane Demri, the automata-based method he defined, led to im-
portant contributions in this thesis. Finally, Philippe Balbiani and Luis Fariñas,
who showed me that, with the appropriate axioms, we can build great things.

Last but not least, I would like to say thanks to my parents and brother
for their unconditional support (and patience) and also to my friends Roberto,
Luis and Diego.

Abstract

Commonsense temporal reasoning is full of situations that require drawing
default conclusions, since we rarely have all the information available. Unfor-
tunately, most modal temporal logics cannot accommodate default reasoning,
since they typically deal with a monotonic inference relation. On the other
hand, non-monotonic approaches are very expensive and their treatment of
time is not so well delimited and studied as in modal logic.

Temporal Equilibrium Logic (TEL) is the first non-monotonic temporal lo-
gic which fully covers the syntax of some standard modal temporal approach
without requiring further constructions. TEL shares the syntax of Linear-time
Temporal Logic (LTL) (first proposed by Arthur Prior and later extended by
Hans Kamp) which has become one of the simplest, most used and best known
temporal logics in Theoretical Computer Science.

Although TEL had been already defined, few results were known about its
fundamental properties and nothing at all on potential computational methods
that could be applied for practical purposes. This situation unfavourably con-
trasted with the huge body of knowledge available for LTL, both in well-known
formal properties and in computing methods with practical implementations.
In this thesis we have mostly filled this gap, following a research program that
has systematically analysed different essential properties of TEL and, simultan-
eously, built computational tools for its practical application. As an overall, this
thesis collects a corpus of results that constitutes a significant breakthrough in
the knowledge about TEL.

Resumen

El razonamiento temporal del sentido común está lleno de situaciones que
requieren suponer conclusiones por defecto, puesto que raramente contamos
con toda la información disponible. Lamentablemente, la mayoría de lógicas
modales temporales no permiten modelar este tipo de razonamiento por defec-
to debido a que, típicamente, se definen por medio de relaciones de inferencia
monótonas. Por el contrario, las aproximaciones no monótonas existentes son
típicamente muy costosas pero su manejo del tiempo no está tan bien delimi-
tado como en lógica modal.

Temporal Equilibrium Logic (TEL) es la primera lógica temporal no monó-
tona que cubre totalmente la sintaxis de alguna de las lógicas modales tradi-
cionales sin requerir el uso de más construcciones. TEL comparte la sintaxis
de Linear-time Temporal Logic (LTL) (formalismo propuesto por Arthur Prior
y posteriormente extendido por Hans Kamp), que es una de las lógicas más
simples, utilizadas y mejor conocidas en Teoría de la Computación.

Aunque TEL había sido definido, muy pocas propiedades eran conocidas,
lo que contrastaba con el vasto conocimiento de LTL que está presente en
el estado del arte. En esta tesis hemos estudiado diferentes aspectos de TEL,
una novedosa combinación de lógica modal temporal y un formalismo no mo-
nótono. A grandes rasgos, esta tesis recoge un conjunto de resultados, tanto
desde el punto de vista teórico como práctico, que constituye un gran avance
en lo relativo al conocimiento sobre TEL.

Resumo

O razoamento do sentido común aplicado ao caso temporal está cheo de si-
tuacións que requiren supoñer conclusións por defecto, posto que raramente
contamos con toda a información dispoñible. Lamentablemente a maioría de
lóxicas modais temporáis non permiten modelar este tipo de razoamento por
defecto debido a que, típicamente, están definidas por medio de relacións de
inferencia monótonas. Pola contra, as aproximacións non monótonas existen-
tes son moi costosos e o seu tratamento do tempo non está ben tan delimitado
nin estudiado como nas lóxicas modais.

Temporal Equilibrium Logic (TEL) é a primeira aproximación non monóto-
na que cubre totalmente a sintaxe dalgunha das lóxicas modais traidicionáis
sen requerir o uso de máis construccións. TEL comparte a sintaxe de Linear-
time Temporal Logic (LTL) (formalismo proposto por Arthur Prior e extendido
posteriormente por Hans Kamp), que é considerada unha das lóxicas modais
máis simples, utilizadas e coñecidas dentro da Teoría da Computación.

Aínda que TEL xa fora definido previamente, moi poucas das súas propie-
dades eran coñecidas, dato que contrasta co vasto coñecemento de LTL exis-
tente no estado da arte. Nesta tese, estudiamos diferentes aspectos de TEL,
unha novidosa combinación de lóxica modal temporal e un formalimo non
monótono. A grandes rasgos, esta tese recolle un conxunto de resultados, tan-
to dende o punto de vista teórico como práctico, que constitúe un gran avance
no relativo ó coñecemento sobre o formalismo TEL.

Table of Contents

Chapter 1: Introduction . 1
1.1 Approaches for temporal reasoning 3

1.1.1 Modal Temporal Logics 3
1.1.2 Reasoning about Actions and Change 4
1.1.3 Answer Set Programming 6

1.2 Goals and structure of this thesis 8

Chapter 2: Background . 11
2.1 Answer Set Programming . 11

2.1.1 ASP logic programs . 11
2.1.2 Stable model semantics 12
2.1.3 Splitting a logic program 14
2.1.4 Completion . 15
2.1.5 Disjunctive logic programs 17
2.1.6 Loop formulas for disjunctive logic programs 17
2.1.7 ASP programs with variables 19
2.1.8 General stable models 23
2.1.9 Computational complexity 26

2.2 Equilibrium logic . 27
2.2.1 Syntax and semantics 27
2.2.2 Normal forms for Here and There 29
2.2.3 Translating equilibrium logic into propositional logic . . 30
2.2.4 Strong equivalence . 31
2.2.5 Quantified equilibrium logic 31
2.2.6 Infinitary equilibrium logic 33

2.3 Linear temporal logic . 35
2.3.1 LTL as a fragment of first-order logic 36
2.3.2 Büchi automata and LTL 38
2.3.3 ω-languages . 39

Chapter 3: Temporal Equilibrium Logic 41
3.1 Temporal Here-and-There . 41

3.1.1 A Three-valued characterisation of THT 42
3.1.2 Encoding THT in LTL . 43

3.2 Temporal Equilibrium Models 45
3.2.1 Examples . 46

3.3 Relation between THT and First-order HT 48

18 Table of Contents

3.4 TEL and Infinitary Formulas . 50

Chapter 4: Towards an axiomatisation of THT 53
4.1 HT axiomatisation . 54

4.1.1 Background on tableaux 56
4.1.2 Completeness of here and there 59

4.2 A partial axiomatisation of temporal here and there 62
4.2.1 Canonical model: definition and properties 63
4.2.2 Canonical model: an example 65
4.2.3 Back to THT, properties of R�c and R©c 67
4.2.4 Ancestral lemma and filtration 69
4.2.5 Properties of filtration 78

4.3 Conclusions . 80

Chapter 5: Computing Temporal Equilibrium Models 81
5.1 Splittable Temporal Logic Programs 81

5.1.1 Splitting a temporal logic program 83
5.1.2 Loop formulas for splittable temporal logic programs . . 84

5.2 Temporal Quantified Equilibrium Logic 86
5.2.1 Safe Variables and Domain Independence 88
5.2.2 Derivable ground facts 93
5.2.3 STeLP . 97

5.3 Arbitrary temporal theories . 100
5.3.1 Automata-based Computation of Temporal Equilibrium

Models . 100
5.3.2 ABSTEM . 103

Chapter 6: Temporal Strong Equivalence 107
6.1 Temporal Strong Equivalence 108
6.2 Implementation and a practical example 111

Chapter 7: Related Work . 115
7.1 Relation between TEL and TEMPLOG 115
7.2 Relation to Temporal Answer Sets 119

7.2.1 Temporal Answer Sets 119
7.2.2 Dynamic Temporal Equilibrium Logic 122
7.2.3 A normal form for DTEL 125

7.3 Relation to works on planning 131
7.4 Relation to approaches of model checking in ASP 131
7.5 Relation to ER-LTL . 136
7.6 Relation to LAP . 137

Chapter 8: Conclusions . 139

Bibliography . 143

Appendix . 152

Table of Contents 19

Appendix A: Proofs of auxiliary lemmas of Chapter 4 153
A.1 System properties . 153
A.2 Consistency of tableaux . 154
A.3 Soundness . 155
A.4 Properties of the canonical model 161

Appendix B: The STeLP system . 163
B.1 Syntax . 163
B.2 Implementation . 164
B.3 Use of variables, actions and fluents 165
B.4 Using STeLP for Model Checking 165

Appendix C: The ABSTEM system . 171
C.1 Input Syntax . 171
C.2 Computing Temporal Equilibrium Models 172
C.3 Strong Equivalence . 173

Apéndice D: Resumen . 175
D.1 Metodología . 177
D.2 Resultados obtenidos . 178
D.3 Conclusiones y trabajo futuro 179

List of Tables

2.1 Loop formulas obtained from program Π′ of the Figure 2.2 . . . 19

4.1 Set of axioms and inference rules 55

5.1 Commands that are necessary to compute every intermediate
automaton in ABSTEM. 104

C.1 ABSTEM input syntax. 172

List of Figures

2.1 A logic program Π and its completion. 16
2.2 A disjunctive logic program Π and its corresponding G(Π). . . . 18
2.3 ASP encoding of Example 2.2 21
2.4 Ground instances of rule (2.25) generated by Algorithm 1. . . . 23
2.5 Two Büchi automata. 39

5.1 Graph G(Π1) (reflexive arcs are not displayed) corresponding
to Π2

1. 85
5.2 Wolf-goat-cabbage puzzle in STeLP. 98
5.3 Automaton for the wolf-goat-cabbage example. 99
5.4 All possible solutions of the wolf-goat-cabbage example. 101
5.5 Example of a non-splittable theory Γ1 and its set of temporal

equilibrium models. 104
5.6 Intermediate automata generated in the example ϕ = ¬p→ ♦q. 105

6.1 TS-models of theory (6.12)-(6.15). 113
6.2 Temporal stable models related to α1 and β1. 114

7.1 Temporal answer sets of program consisting of rules (7.3)-(7.7) 122
7.2 DTEL models of theory (7.8)-(7.13) plus γ′ 129
7.3 Example of a P/T-net . 132
7.4 Büchi automaton which corresponds to the behaviour of the

P/T-net of Figure 7.3 . 135
7.5 All possible executions of the P/T net of Figure 7.3 that lead the

net to a deadlock. 136

B.1 Structure of STeLP system. 166
B.2 Büchi automaton that represents the protocol specified in Ex-

ample B.1 . 168
B.3 Büchi automaton resulting from adding the formula ¬ϕ. 169

C.1 THT and LTL models of ¬ ((p ∧ q)Ur) 173
C.2 TEM models of ♦p ∧ γ but not of ¬�¬p ∧ γ. 173

Chapter 1

Introduction

Hans Kamp began his famous PhD thesis [63] on temporal logic with the fol-
lowing sentence:

“Greece is a kingdom, is true now (May 10, 1968); but it has been
false before and who knows if it will be true tomorrow?”

With this sentence, Kamp was emphasizing that the truth of a sentence may
depend on the moment at which it is asserted. He was probably suspect-
ing that King Constantine II of Greece, already reigning in the exile in 1968,
would eventually cease, as it actually happened on June 1st, 1973 with the
end of the Greek monarchy. If we were asked about the Greek regime at any
time point between Kamp’s thesis and June 1973 we would obviously conclude
that it was a monarchy because we have no further evidence on the contrary.
This is an example of default conclusion that can be retracted on the light of
new facts. Consider now, for instance, the case of King Baudouin of Belgium,
who officially reigned from July 17th, 1951 to July 31st 1993. Without fur-
ther information we can assume that he was ruling at any date in that period.
However, it is known that on April 4th, 1990, he abdicated1 one day, in agree-
ment with the Belgian Government, to avoid signing an abortion law. After
adding this fact, we can retract the previous conclusion to derive that he was
not ruling on that exceptional date.

Commonsense temporal reasoning is full of situations that require drawing
default conclusions, since we rarely have all the information available. Unfor-
tunately, neither Kamp’s nor most modal temporal logics can accommodate
default reasoning, since they typically deal with a monotonic inference rela-
tion (as happens in classical logic too). Formally, this means that if a formula
ϕ is derived from a theory Γ, then ϕ will be still derivable from any theory
of the form Γ ∪∆. In other words, a conclusion ϕ obtained from Γ cannot be
retracted after adding new evidence ∆.

Computational logic has been applied to temporal reasoning under two
different perspectives: Theoretical Computer Science (TCS) and Knowledge Rep-
resentation (KR). Since the goals from these two areas are quite different, the
results obtained in both cases have traditionally diverged. In TCS, temporal

1To be precise, he was declared “unable to reign” for one day.

2 Chapter 1. Introduction

reasoning is mostly focused on studying properties about algorithms and their
related problems such as computability, complexity assessment, formal verific-
ation and connection to other frameworks such as automata theory, algebra
or formal languages. In all these cases, the use of different types of modal
temporal logics has proved to be extremely useful, since they provide special-
ised temporal constructions to talk about time while they usually restrict the
expressiveness of full predicate calculus to achieve decidability. In KR, on the
contrary, research has been traditionally guided by commonsense reasoning
problems where defaults and Non-Monotonic Reasoning (NMR) played a cru-
cial role. In particular, this was the main focus in the KR area of Reasoning
about Actions and Change (RAC) where the most prominent formal languages
are actually dialects of (many-sorted) first-order logic, since they seek a rich
expressive capability.

While non-monotonicity has been practically out of the discourse in TCS,
its combination with modal logics in KR is not rare. For instance, there exists
a whole family of modal non-monotonic logics (see for instance [87]) that are
obtained by imposing a fixpoint condition on the inference relation of stand-
ard monotonic modal frameworks. However, modalities in this context have
mostly had an epistemic usage, representing concepts such as knowledge, be-
lief or obligation and exclusively handling the standard operators of necessity
and possibility. Combinations of NMR with modal logics specifically designed
for temporal reasoning is much more infrequent in the literature. The few ex-
ceptions are typically modal action languages with a non-monotonic semantics
defined under some syntactic limitations.

To the best of our knowledge, the only case of non-monotonic logic that
fully covers the syntax of some standard modal temporal approach without re-
quiring further constructions is Temporal Equilibrium Logic (TEL), introduced
by Cabalar and Pérez in [23]. TEL shares the syntax of Linear-time Tem-
poral Logic (LTL) (first proposed by Arthur Prior [103] and later extended
by Hans Kamp [63]) which has become one of the simplest, most used and
best known temporal logics in TCS. The main difference of TEL with respect
to LTL lies in its non-monotonic entailment relation (obtained by a models
selection criterion) and in its semantic interpretation of implication and nega-
tion, closer to intuitionistic logic. These two properties are actually inherited
from the fact that TEL is a temporal extension of Equilibrium Logic [98], a
non-monotonic formalism that actually provides a generalisation of the well-
known stable models semantics [48] from logic programming to the case of
arbitrary propositional formulas. This semantic choice is a valuable feature
for different reasons. First, stable models constitute the basis of a successful
NMR paradigm for practical problem solving, Answer Set Programming (ASP),
with several efficient solvers available and many application domains. Second,
unlike the original definition of stable models, the semantics of Equilibrium Lo-
gic does not depend on syntactic transformations but, on the contrary, is just
a simple minimisation criterion for an intermediate logic (the logic of Here-
and-There [57]). This purely logical definition provides an easier and more
homogeneous way to extend the formalism, using standard techniques from
other hybrid logical approaches. Thus, for instance, the temporal extension
in TEL can practically be seen as the “obvious” way to introduce linear-time

1.1. Approaches for temporal reasoning 3

temporal operators in Equilibrium Logic.
The first pair of works on TEL explored its use to translate action lan-

guages [23] or its potential application for checking (strong) equivalence bet-
ween alternative representations of some action domain [2]. However, apart
from TEL definition itself, few results were known about its fundamental prop-
erties [17] and nothing at all on potential computational methods that could
be applied for practical purposes. This situation unfavourably contrasted with
the huge body of knowledge available for LTL, both in well-known formal
properties and in computing methods with practical implementations.

In this thesis we have mostly filled this gap, following a research program
that has systematically analysed different essential properties of TEL and, sim-
ultaneously, building computational tools for its practical application. In this
way, we have provided different translations of TEL into other formalisms and
formally compared to other related approaches, we have partially axiomatised
its monotonic basis (the logic of Temporal Here-and-There), we have proved
that the latter is an adequate monotonic basis (by showing a result on so-
called strong equivalence) and we have proved that the set of TEL models of a
theory can be captured by standard models of some LTL formula. On the other
hand, all these fundamental results have also allowed us to develop a pair of
computational tools: one, called STeLP, that allows obtaining temporal equi-
librium models of a syntactic subset of TEL (a kind of temporal logic programs
allowing variables), and a second one, called ABSTEM, that is applicable to any
arbitrary (propositional) syntax and further allows checking different types
of equivalence between a pair of theories. In both cases, the tools combine
different backends coming from LTL, automata theory and ASP.

One of the main difficulties of this work has been dealing with concepts
and theories coming, on the one hand, from LTL and automata theory in TCS,
and on the other hand, from ASP logical encodings and NMR in KR. For a
better understanding of the context, let us provide a brief overview on the
general related literature in these areas.

1.1 Approaches for temporal reasoning

1.1.1 Modal Temporal Logics

The first definition of a modal logic for dealing with time is Arthur Prior’s [103]
Tense Logic, that introduced two new modal operators for respectively referring
to past and future events. In Prior’s system, time can be mathematically repres-
ented as a structure 〈T,<〉 where T is a set of time points and < a binary rela-
tion among them that can be linear and dense, but not branching. Kamp [63]
incorporated to Tense Logic two new temporal operators, until and since, and
was able to prove that this extended system, we call nowadays Linear Time
Temporal Logic (LTL), is expressively complete with respect to a fragment of
First Order Logic called Monadic First Order Logic of Linear Order, or MFO(<)
for short. Later on, several alternative proofs of this result have been pub-
lished, using different approaches such as separation property [43, 42], game
theory [58] and more recently by means of a syntactic subclass of first-order
formulas [104].

4 Chapter 1. Introduction

The application of LTL in Computer Science was first proposed by Amir
Pnueli [102], who exploited this formalism as a suitable framework for reas-
oning about reactive systems. After that, temporal logic became more popular
in Computer Science causing an extensive research for the last 30 years. Sev-
eral approaches oriented to program and protocol verification were proposed,
being perhaps the most popular frameworks the already mentioned LTL, Com-
putational Tree Logic (CTL) [28] and Propositional Dynamic Logic (PDL) [39].
While LTL deals with linear time, CTL represents the future as a tree with
different alternative paths. These two logics have differences in their express-
ive power (we cannot capture one on the other) but they are both fragments
of CTL∗ [33] which can be in its turn embedded into the more general µ-
calculus [67] dealing with fixpoint constructs. On the other hand, the main
feature of PDL is that its modal connectives allow representing not only differ-
ent elementary actions, but also any arbitrary program containing sequential,
alternative and iterative constructs. Different extensions of PDL have been
studied and axiomatised [114, 9], whereas it is known that this logic can be
also encoded in µ-calculus.

Modal temporal logics have the important advantage of providing, in most
cases, associated computation methods that are decidable. Furthermore, these
methods usually rely on automata construction or manipulation of formal lan-
guages, showing in this way a clear connection to other well-known mathem-
atical formalisms. The choice of LTL for the purpose of this thesis has some
clear advantages. The first of them is its simplicity, as it deals with a simple
structure for time points (a linear order) while it provides a small set of modal
connectives with a quite natural reading. Another advantage is that it is one
of the oldest modal temporal approaches, with a large body of knowledge on
fundamental properties and computation methods, and being in many cases
the first modal logic on which some well-established techniques in the area
have actually been tried out. For instance, its expressiveness is well delimited:
as said before, it is known to be as expressive as the fragment MFO(<) of
First Order Logic, but strictly less expressive than the second order version of
this fragment, called MSO(<). Its axiomatisation was tackled in [121, 53],
its satisfiability is known to be a PSPACE-complete problem [111], and there
exist well-known automata construction methods [120] that have allowed
nowadays its extensive use for model checking [59] and verification of react-
ive systems such as software, communication protocols or hardware circuits.
Besides, it has been successfully used or combined with formalisms from KR
and Artificial Intelligence such as languages for Multi-Agent Systems [40],
Ontologies and Description Logics [6, 86] or as a language for constraint spe-
cification in planning systems [7, 69, 8]. However, in none of these cases, LTL
was actually combined with NMR, even though the latter has played a central
role in KR research, as we explain next.

1.1.2 Reasoning about Actions and Change

One of the main goals of Artificial Intelligence (AI) is providing computer pro-
grams that perform high-level reasoning tasks such as planning, explanation
or diagnosis. Quoting John McCarthy, while humans may learn these abilities,

1.1. Approaches for temporal reasoning 5

“In order for a program to be capable of learning something it must
first be capable of being told it.” [89].

This means that an artificial “mind” should be equipped with an abstract
representation of the different entities involved in its environment and the
commonsense rules that govern them. The AI area that studies this problem
receives the name of Knowledge Representation (KR). Following [113], KR
constitutes a “multidisciplinary subject that applies theories and techniques
from three other fields: (1) Logic provides the formal structure and rules
of inference; (2) Ontology defines the kinds of things that exist in the ap-
plication domain; (3) Computation supports the applications that distinguish
knowledge representation from pure philosophy.” The use of Logic as a pre-
dominant tool in KR, is not surprising since it fulfills many of the requirements
of the field that other languages satisfy to a less degree or in some cases simply
do not accomplish: accuracy, lack of ambiguity, clear semantics, simplicity and
readability, coverage/expressiveness, flexibility, together with inference meth-
ods and their associated algorithms.

The early attempts of formalisations of commonsense reasoning soon un-
veiled that Classical Logic had an important limitation in one of the criteria
previously mentioned: flexibility or, using a more specific term, what John
McCarthy called elaboration tolerance. In McCarthy’s words:

“A formalism is elaboration tolerant to the extent that it is conveni-
ent to modify a set of facts expressed in the formalism to take into
account new phenomena or changed circumstances.” [92]

Historically, the KR area of Reasoning about Actions and Change (RAC) has
gradually analysed different representational problems related to a lack of
elaboration tolerance, being the so-called frame problem [93] the first one in
being detected and probably one of the most influential ones. The frame prob-
lem consists in the difficulty of explicitly representing all the facts that should
remain unchanged after the execution of an action. Its solution requires some
form of NMR that allows encoding the so-called default rule of inertia: things
remain unchanged along time unless there is evidence on the contrary. During
RAC evolution, other representational issues have been studied and solved us-
ing NMR such as the qualification problem (that has to do with exceptions to
actions executability) or the ramification problem (related to the treatment of
indirect effects).

The central role of NMR in the solutions to these representational problems
from the area of RAC boosted the interest on the definition and properties of
different NMR techniques. In 1980, a special issue on the topic of the Artificial
Intelligence journal introduced three well-known NMR formalisms that were
extensively studied afterwards: Circumscription [90], Default Logic [105] and
Non-monotonic modal logics [106]. These NMR approaches were then used in
the semantics of action languages. In particular, for instance, different forms
of predicate Circumscription were applied in Situation Calculus [93], Event
Calculus [66] and Features and Fluents [108]. It is perhaps interesting to note
that most approaches in RAC have traditionally represented time as one more
sort inside a many-sorted First Order Logic formalization. For instance, in the
case of Situation Calculus, we find a sort for situations, formally represented

6 Chapter 1. Introduction

by syntactic terms of the form do(a, s) where a is some action and s, in its
turn, a situation term or the constant S0 (the initial situation). In order to rep-
resent a time-dependent predicate P (x) (called fluent in RAC terminology) it
becomes reified as an argument of a temporal “metapredicate” Holds(P (x), s)
where s is a situation term. In this way, we get a very expressive formalism
without limitations on the quantification of situations or the construction of
arbitrary expressions involving them. However, in the general case, we inherit
the undecidability of First Order Logic and a great part of modern research re-
lated to Situation Calculus has actually involved the delimitation of different
kinds of decidable subclasses or reasoning problems for that formalism (see,
for instance, [50]). The case of Event Calculus replaces the use of situations
by a sort of events and a richer family of temporal metapredicates that can
assert properties about the truth of fluents (Initiaties, Terminates, etc) but
is formally similar in the use of First Order Logic.

This predominance of First Order Logic in RAC is not surprising, given the
general goals of KR and its search for expressive languages. On the contrary,
the use of modal logics2 for representing time in such an area has been much
more unfrequent. As a pair of exceptions (we will comment in Chapter 7) we
can mention [24] and [51], based on variants of Dynamic Logic.

1.1.3 Answer Set Programming

An important breakthrough in the area of NMR was the discovery of a strong
connection [12] between Default Logic and Logic Programming (LP) that al-
lowed reading the Prolog operator of negation-as-failure as an NMR formal-
isation of default negation. This opened the possibility of reinterpreting logic
programs as KR formalisms with embodied NMR, leading to a cross fertiliz-
ation between both areas. Among the different LP semantics proposed for
negation-as-failure, one of them has eventually had a striking impact for prac-
tical application of NMR. In [48], Michael Gelfond and Vladimir Lifschitz intro-
duced the so-called stable model semantics that subsumed many of the existing
LP alternatives but, very importantly, without the syntactic restrictions made
by previous approaches. The model-based orientation of this semantics even-
tually led to a paradigm suitable for constraint-satisfaction problems that is
known nowadays as Answer Set Programming (ASP) [96, 88] and that became
one of the most prominent and successful approaches for practical KR. Great
part of this success is due to the impressive advances in implementation of
efficient solvers [73, 45] and development of applications. In this aspect, ASP
shows some similarities to SAT (propositional satisfiability), since it is also tar-
geted for solving problems in the NP complexity class (at least when we restrict
to non-disjunctive ASP) and there already exists a regular ASP solver competi-
tion [5]. However, unlike SAT, a crucial factor in ASP which is also responsible
for its success is its versatility for knowledge representation. While most ap-
plications of SAT involve an external translation of the problem to solve into
clauses in propositional logic, ASP provides a powerful language based on lo-

2John McCarthy, the founder of logical KR and research on formal commonsense reasoning,
showed in several occasions an explicit disapproval of modal logics. See for instance his position
paper with the self-explanatory title “Modality, si! Modal logic, no!” [91].

1.1. Approaches for temporal reasoning 7

gic program rules with variables, allowing non-monotonicity through default
negation and offering additional expressive features such as disjunction in the
head, aggregates, constraints on numeric variables, functions, etc. As a pair
of ASP applications especially remarkable from the KR perspective we can
mention the decision support system for the Space Shuttle [97] and the in-
formation integration project INFOMIX (see [14] for an updated overview of
the area and more application examples).

But the success of ASP does not just amount to its practical applications:
during its evolution many hints have pointed out its relevance inside the the-
oretical foundations of NMR. For instance, in [76] Lifschitz enumerates up
to 12 known alternative definitions of a stable model (and there exist more)
coming from different areas such as NMR (including translations into Default
Logic, Autoepistemic Logic and Circumscription), logic programming and non-
classical logics. Inside the last category, one approach has had a particular
success in the study of foundations of ASP: the logical characterisation based
on Equilibrium Logic introduced by David Pearce [99]. This characterisation
has shown interesting features. For instance, it has naturally covered the syn-
tactic extensions that had been proposed for stable models and, going fur-
ther, allowed defining stable models for any arbitrary theory in the syntax of
First Order Logic [38, 101]. Second, it has been shown to be crucial [78] in
fully capturing the important property of strong equivalence, an NMR prop-
erty that means that two theories not only yield the same models, but also will
keep doing so when new information is added. Third, as Equilibrium Logic
provides a purely logical definition, it has allowed the application of logical
techniques and results to ASP including the possibility of defining hybrid lo-
gical approaches (like the one we study in this thesis).

Despite of all these features, there exists one important aspect in know-
ledge representation that had not been included among the usual ASP lan-
guage extensions: logical constructs for temporal reasoning. Temporal scen-
arios are very frequent in ASP applications and benchmarks. The use of ASP
for action domains was already proposed by Gelfond and Lifschitz in [49],
which established a methodology later followed by other action languages
defined as front-ends for ASP [32, 47, 44]. In fact, ASP offers essential fea-
tures for a suitable formal representation of temporal scenarios. For instance,
it allows a simple and natural solution to the frame, ramification and qual-
ification problems by a suitable use of logic programming rules plus default
negation. Another interesting feature is that it allows a uniform treatment of
different kinds of reasoning problems such as prediction, postdiction, plan-
ning, diagnosis or verification. However, since ASP is not a temporal form-
alism, it also involves some difficulties for dealing with temporal problems.
The methodology mostly adopted in ASP has been inherited from that first
proposed in [49] based on transition systems. Time is represented as an ex-
tra argument (normally, an integer variable3) for predicates whose truth may
vary in each transition. A simple example of a dynamic scenario in ASP can
be found in Section 2.1.7. Since most ASP tools must deal with finite domains,

3As an exception, it is worth perhaps to mention the implementation of Situation Calculus
presented in [72] that uses the first order ASP tool F2LP [71].

8 Chapter 1. Introduction

this requires fixing a finite plan length4 with an obvious impossibility for solv-
ing problems such as proving the non-existence of a plan for a given planning
scenario or verifying temporal properties of the transition system behaviour.

From the previous discussion, it seems that a reasonable choice would be
keeping all the nice knowledge representation features from ASP while taking
benefit from the advances in the area of modal temporal logic. There exists a
pair of approaches that combine ASP with temporal logic: the already men-
tioned Temporal Equilibrium Logic (TEL), that uses LTL as modal approach
and is the main focus of this thesis, and Temporal Answer Sets (TAS) [51], that
uses Dynamic Linear Temporal Logic (DLTL) [51] instead. An important dif-
ference between these two approaches is that while the latter’s semantics is
defined in terms of a syntactic transformation on a restricted syntactic class of
formulas, the former provides a non-monotonic semantics exclusively based
on a model selection criterion that covers any arbitrary theory in the syntax of
LTL. A deeper discussion on the relation between TEL and TAS is included in
Section 7.2, which even includes a formal comparison. We provide now the
main goals of this work and explain the structure of this document.

1.2 Goals and structure of this thesis

In this thesis we will develop several important aspects of the TEL formal-
ism that were previously unknown or unexplored, covering both fundamental
properties and implementation topics. The goals of this work can be enumer-
ated as follows:

• Fixing relevant theoretical properties of TEL. We will study, among others,
the following topics:

– We will provide different translations of TEL into other logics, such
as regular LTL, Quantified Equilibrium Logic [101] or Infinitary Equi-
librium Logic [55].

– We will axiomatise (a relevant fragment) of the monotonic basis of
TEL (the logic of Temporal Here-and-There, THT).

– We will prove the adequacy of THT as a monotonic basis by proving
that the equivalence in this logic is a necessary and sufficient con-
dition for proving the strong equivalence of two theories in TEL, i.e.,
that the two theories are interchangeable regardless of the context.

• Defining and implementing procedures that allow computing temporal
equilibrium models as well as checking several desired properties of a
given temporal specification. In particular, we study the construction of
tools for:

– obtaining temporal equilibrium models of a syntactic subset of TEL
(a kind of temporal logic programs allowing variables);

– studying grounding algorithms for removing variables in temporal
programs;

4In a similar technique to planning as propositional satisfiability [65].

1.2. Goals and structure of this thesis 9

– obtaining temporal equilibrium models for arbitrary theories in the
syntax of (propositional) LTL;

– checking different types of equivalence between a pair of theories
and showing information (countermodels) when the theories are
not equivalent.

• Compare TEL with other non-monotonic approaches for representing
temporal scenarios, including formalisms from temporal logic program-
ming, modal approaches from RAC and the related temporal ASP ap-
proach Temporal Answer Sets [51], for which we tackle a formal compar-
ison.

The general methodology of this proposal will be the standard in research
in Computer Science, a cyclic sequence including: review of the state-of-the-
art, problem definition, posing hypotheses, deriving their formal proof or re-
buttal, testing experiments on benchmarks (in case of implementation topics)
and finally evaluation and publication. Many results have been accompan-
ied by software prototypes to test their behavior and practical feasibility. For
the development of these prototypes (especially in the cases of STeLP and
ABSTEM), we have applied a spiral life-cycle passing through different cycles
of analysis, design, implementation and evaluation. Regarding to publication,
this thesis has yielded the following published results:

• P. Cabalar and M. Diéguez. STeLP - A Tool for Temporal Answer Set Pro-
gramming, in Proc. of the 11th International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR’11), pages 370–375,
Vancouver, Canada, 2011.

• P. Cabalar and M. Diéguez. Strong equivalence of non-monotonic tem-
poral theories, in Proceedings of the 14th International Conference on
Principles of Knowledge Representation and Reasoning (KR’14), Vienna,
Austria, 2014.

• F. Aguado, P. Cabalar, M. Diéguez, G. Pérez, C. Vidal, Temporal equilib-
rium logic: a survey. Journal of Applied Non-Classical Logics 23(1-2):
2-24 (2013).

• F. Aguado, P. Cabalar, M. Diéguez, G. Pérez and C. Vidal, Paving the Way
for Temporal Grounding, in Proc. of the 28th International Conference on
Logic Programming (ICLP’12), Budapest, Hungary, 2012.

The structure of this thesis will be the following: in Chapter 2 we introduce
some background about Answer Set Programming, Equilibrium Logic and Lin-
ear Temporal Logic as well as several well-known results that will be used
along this thesis. In Chapter 3 we present Temporal Equilibrium Logic, some
known properties and its connection with both Quantified Equilibrium Logic
and Infinitary Formulas. In Chapter 4 we set the bases for the axiomatisation of
Temporal Here and There by adapting several classical methods to prove com-
pleteness of classical modal logics to deal with this kind of hybrid approaches.
In Chapter 5 we present two tools, STeLP and ABSTEM for computing temporal

10 Chapter 1. Introduction

equilibrium models of temporal theories. In Chapter 6 we prove that THT is
a suitable monotonic base to check strong equivalence, which leads to extend
the functionalities of ABSTEM with the possibility of checking several kinds
of temporal equivalence. Finally, in Chapter 7, we compare TEL to other ap-
proaches of nonmonotonic reasoning that are present in the literature and we
finish this thesis with some conclusions and future work in Chapter 8.

Chapter 2

Background

2.1 Answer Set Programming

In [12] an important connection was discovered: if we momentarily forget the
control strategy of Prolog, we may essentially understand that a program with
negation as failure like, let us say:

p :- not q.
r :- p, not s.

tries to solve the same problem as the theory in Default Logic

: ¬q
p

p : ¬s
r

This relation opened the cross research between the fields of nonmono-
tonic reasoning and logic programming. On the one hand, nonmonotonic ap-
proaches are used to study declarative semantics for logic programming and
its generalizations. On the other hand, logic programs provide an excellent
tool for obtaining practical applications of nonmonotonic reasoning.

Answer Set Programming [14] (ASP), probably the most successful semantics
for logic programming, has emerged as a powerful paradigm for knowledge
representation and reasoning. Based on Non-monotonic Reasoning and Stable
Models Semantics [48] this language has become a suitable framework for
modelling knowledge intensive applications like for example, diagnosis, com-
monsense reasoning or temporal reasoning. In this section we study this
paradigm beginning with a description of normal ASP logic programs.

2.1.1 ASP logic programs

A normal logic program consists of a set of implications of the form

a← b1, · · · , bm, not bm+1, · · · , not bn (2.1)

where a is either an atom or⊥ and and each bi is an atom from some signature
At. If a = ⊥ the rule is called constraint while if both m = 0 and n = 0, the

12 Chapter 2. Background

rule can be seen as the implication

a← >

and it is called fact. Both > and ⊥ are the constants true and false of classical
logic. Usually, the antecedent of the implication is known as body whereas the
consequent is called head. We will often represent a rule r of the form

head(r)← body+(r), body−(r)

where head(r) = {a}, body+(r) = {b1 ∧ · · · ∧ bm} and body−(r) = {¬bm+1 ∧
· · · ∧ ¬bn}, obtained from replacing the operator ‘,’ by ∧ and default negation,
‘not’, by ¬. We usually identify head(r), body+(r) and body−(r) with their
corresponding sets of atoms. Finally, the set of atoms that occur in a rule r is
denoted by atoms(r).

A normal logic program is said to be positive (or definite) when it does not
contain any default literal. Note that, if we interpret ‘,’ and ‘←’ as classical
conjunction and implication, then a positive logic program just corresponds
to a set of Horn clauses. As an example of positive program, we present the
following program, which will be analysed in greater detail during this section.

Example 2.1 (from [14]).

high_salary ← employed, educated. (2.2)

educated ← high_salary. (2.3)

employed ← motivated. (2.4)

motivated. (2.5)

�

Regarding this program as a set of rules in logic programming, it would mean
that motivation is a precondition to be employed as well as high_salary is ne-
cessary to derive educated. Moreover, both employed and educated are needed
to derive hight_salary .

Definition 2.1 (model). We say that an interpretation I satisfies a positive rule

c← a1, · · · , an
iff when ai ∈ I for i = 1 · · ·n. then c ∈ I too. We say that I is a model of a
positive program Π, written I |= Π, iff I satisfies all the rules in Π. �

2.1.2 Stable model semantics

The definition of stable models [48] semantics naturally arises from the already
explained connection between default logic and logic programming. For a pos-
itive program Kowalski and van Emden [117] proved that there exists a unique
minimal model called Least Herbrand Model and, furthermore, they showed
that it can be computed by means of TΠ operator, defined below, starting with
I = ∅ and applying it iteratively until reaching a fixpoint:

TΠ(I) = {c | (c← a1, · · · , an) ∈ Π and ai ∈ I for all i ∈ [1, n]}

2.1. Answer Set Programming 13

Proposition 2.1 (from [117]). Given a positive logic program Π, the least fix-
point of TΠ is the least model of Π denoted by LM(Π). �

For instance, the minimal model of program (2.2)-(2.5) corresponds to the set
{motivated, employed}.
However, when we introduce default negation we cannot guarantee the ex-
istence of a unique minimal model and, moreover, the techniques described
before are not directly applicable. For instance let us consider the program
(2.2)-(2.5) plus the following pair of rules with default negation:

educated ← not illiterate. (2.6)

illiterate ← not educated. (2.7)

The information we had derived before adding these rules is still valid, so we
can still determine that both motivated and employed have to be true. How-
ever, we cannot conclude anything about the literals educated and illiterate
since we do not know which atoms cannot be derived and, therefore, we can-
not verify the conditions for applying any of the rules. A way out of the prob-
lem is to start by assuming which atoms will not be derived. For instance, let us
assume that illiterate will not be derived. Then, the first rule can be used and
we can establish educated and, as a consequence, high_salary as true. Once
educated is stablished, the rule (2.7) cannot be used and illiterate will not be
stablished, verifying our assumption. On the other hand, if we assume that
educated cannot be derived, then rule (2.7) can be used to derive illiterate,
which makes that rule (2.6) cannot be used to derive illiterate, justifying our
assumption. It should be noticed that the assumption of both illiterate and
educated will not be derived cannot be justified by the program, as done in the
previous cases. We provide next a formal definition that captures this idea.

Definition 2.2 (program reduct from [48]). Given a set of atoms I and a logic
program Π, the program reduct with respect to I, denoted by ΠI , is a set of
positive rules of the form

head(r)← body+(r)

such that there is a rule

head(r)← body+(r), body−(r)

in Π satisfying body−(r) ∩ I = ∅. �

As an example, consider the program consisting of rules (2.2)-(2.7) and the
interpretation I = {educated}. ΠI would correspond to the following positive
program:

high_salary ← employed, educated. (2.8)

educated ← high_salary. (2.9)

employed ← motivated. (2.10)

motivated. (2.11)

educated. (2.12)

14 Chapter 2. Background

Note that, since ΠI is positive, it has a unique model that corresponds to
the Least Model, denoted by LM(ΠI), and can be computed by means of TΠ

operator.

Definition 2.3 (stable model). Let I be an interpretation for a normal logic
program (possibly with negation) Π. I is a stable model of Π if I = LM(ΠI).

�

By applying this definition it easy to check that the stable models of the pro-
gram (2.2)-(2.7) are

{motivated, employed, educated, high_salary}

and
{motivated, employed, illiterate}.

2.1.3 Splitting a logic program

When we gave the informal explanation of how to compute the stable mod-
els of the program (2.2)-(2.7) we said that the true atoms concluded from the
evaluation of (2.2)-(2.5) were still valid. By this first line of reasoning we
somehow isolated a subprogram that was evaluated and used afterwards in
order to simplify the rest of the rules. This process is formally known as split-
ting [82] and it can be used to simplify the computation of the stable models
of a program.

Sometimes, a logic program Π can be divided into two parts, called top and
bottom, such that there is no reference from the bottom part to the top one.

Definition 2.4 (splitting set from [82]). A splitting set for a program Π is
any set U of atoms such that, for every rule r ∈ Π, if head(r) ∩ U 6= ∅ then
atoms(r) ⊂ U . If U is a splitting set for Π we also say that U splits Π. The set of
rules r ∈ Π such that lit(r) ⊂ U is called the bottom of Π relative to the splitting
set U and denoted by bU (Π). Consequently, the set Π \ bU (Π) is the top of Π
relative to U . �

To give an example, let us consider the program below:

c ← a (2.13)

d ← b (2.14)

a ← not b (2.15)

b ← not a (2.16)

The set U = {a, b} is a splitting set for Π being bU (Π) = {(2.15), (2.16)}. The
idea of splitting is that we can compute first each stable model X of bU (Π)
and then use the truth values in X for simplifying the program Π\ bU (Π) from
which the rest of truth values for atoms not in U can be obtained. Formally,
given X ⊆ U ⊆ At and an ASP program Π, for each rule r like (2.1) in Π such
that (body+(r) ∩ U) ⊆ X and body−(r) ∩ U is disjoint from X, take the rule

r• : head(r)← body+(r)• ∧ body−(r)•

2.1. Answer Set Programming 15

where body+(r)• = (body+(r) \ U) and body−(r)• = (body−(r) \ U). The
program consisting of all rules r• obtained in this way is denoted as eU (Π, X).
Note that this program is equivalent to replace, in all rules of Π, each atom
p ∈ U by ⊥ if p 6∈ X and by > if p ∈ X.

In the previous example, the stable models of bU (Π) are {a} and {b}. For
the first stable model X = {a}, we get eU (Π \ bU (Π), {a}) = {c ← >} so
that X ∪ {c} = {a, c} should be a stable model for the complete program Π.
Similarly, forX = {b}we get eU (Π\bU (Π), {b}) = {d← >} and a “completed”
stable model X∪{d} = {b, d}. The following result guarantees the correctness
of this method in the general case.

Theorem 2.1 (from [82]). Let U be a splitting set for a program Π consisting
of a set of rules like (2.1). A set of atoms X is a stable model of Π if, and only if
both conditions hold:

(i) X ∩ U is a stable model of bU (Π),

(ii) X \ U is a stable model of eU (Π \ bU (Π), X ∩ U). �

In [82], this result was generalised for an infinite sequence of splitting sets,
showing an example of a logic program with variables and a function symbol,
so that the ground program was infinite.

2.1.4 Completion

Apart from the Stable Models semantics, several other logic programming se-
mantics have been proposed. For normal logic programs, Clark [27] intro-
duced the concept of completion, which consists in capturing the behaviour
of default negation by a translation into classical logic. In order to show the
intuitive idea about completion let us consider the following normal logic pro-
gram:

p ← q, s.

p ← t.

r.

Althought from the point of view of classical logic, the truth value of p is
free, that is it can be true or false depending on the model we consider, in logic
programming the truth value of p can be only derived by applying the rules
provided. Therefeore p will be true only iff the expression (q ∧ s) ∨ t holds.
By extending this intuitive idea to all of the logic program, we can define its
completion as the following classical theory:

Definition 2.5 (completion from [27]). Let At be a set of atoms and Π a nor-
mal logic program built from atoms of At. The operator COMP [Π] is formally
defined as:

COMP [Π]
def
= {p↔ B1∨· · ·∨Bn | p ∈ At and Bi are all the bodies for head p}.

Some conventions must be considered

16 Chapter 2. Background

1. The empty body is considered as the constant >

2. An empty disjunction corresponds to ⊥

3. Logic programming operators such as “not” and “,” are replaced by their
classical correspondences “¬” and ∧ respectively.

�

Following the rules above, the previous example can be translated into the
following classical theory:

p ↔ (q ∧ s) ∨ t. (2.17)

q ↔ ⊥. (2.18)

r ↔ >. (2.19)

s ↔ ⊥. (2.20)

t ↔ ⊥. (2.21)

whose only classical model is {r} (which, in fact, coincides with its unique
stable model). However, for the program p ← p, whose stable model is ∅, its
corresponding completion theory would be p ⇔ p, which has two models: ∅
and {p}. From this example we can conclude that the completion of a logic
program can lead to different models. For instance, let us consider the pro-
gram, with default negation, of the Figure 2.1(a) and its completion 2.1(b).
Although the program 2.1(a) has as stable model {a}, its completion is satis-
fied by {a, c, d} and {a}. Models of completion are known as supported models
and correspond to all fixpoints of the operator TΠ. It is easy to prove that any
stable model of a normal logic program is also a supported model, but the
opposite (as we have seen) does not hold.

a ← not b, not c.

a ← d.

c ← d.

d ← c.

(a) Logic program Π.

a ↔ (¬b ∧ ¬c) ∨ d
b ↔ ⊥
c ↔ d

d ↔ c

(b) completion of Π.

Figure 2.1: A logic program Π and its completion.

The reader might wonder about a more accurate relation between stable
models of a logic program and its completion. The answer was given by
Fages [35], who showed that if a logic program satisfies certain syntactic con-
dition its stable models coincide with the models of its completion. Such con-
dition, called tightness, was generalised in [34].

2.1. Answer Set Programming 17

2.1.5 Disjunctive logic programs

A disjunctive logic program is a finite set of (disjunctive) rules of the form

a1 ∨ · · · ∨ ak ← ak+1, · · · , am, not am+1, · · · , not an

where n ≥ m ≥ k ≥ 0 and a1, · · · , an are atoms. If k = 0, then this rule is
called a constraint. As before, if k 6= 0, it is a proper rule, and if k = 1, it is a
normal rule. A disjunctive rule can also be written as

head(r)← body+(r), body−(r).

where head(r) stands for the disjunction a1 ∨ · · · ∨ ak and both body+(r) and
body−(r) as before. The definition of reduct for normal programs can be ex-
tended to the disjunctive case in an straightforward way:

Definition 2.6 (disjunctive reduct from [81]). The reduct of a formula, rule or
program relative to an interpretation X is defined recursively, as follows:

• FX = F for a literal F.

• (F ∧G)
X

= FX ∧GX

• (F ∨G)
X

= FX ∨GX

• (not F)
X

=

{
⊥ if X |= FX

> otherwise

• (F ← G)
X

= FX ∧GX

• ΠX = {(F ← G)
X | F ← G ∈ Π}.

�

Lemma 2.1 (from [81]). An interpretation X is an answer set of a disjunctive
program Π if X is an answer set of the reduct ΠX �

2.1.6 Loop formulas for disjunctive logic programs

As we pointed out in Section 2.1.4, the operator COMP captures the se-
mantics of default negation as a propositional formula but, as we showed in
such section, it is not always applicable to obtain the stable models. However,
Lin and Zhao [84] showed how to turn a logic program Π into a proposi-
tional formula Γ such that its classical models coincide with the answer sets
of Π. To achieve this result, known as the Lin-Zhao theorem, they define the
concept of “loop formulas”, an specific set of propositional formulas such that,
in conjunction with COMP [Π], they capture exactly the answer sets of Π as a
propositional formula. In [37] the Lin-Zhao theorem was simplified, avoiding
the step of computing COMP [Π] and, furthermore, generalised to the case of
the disjunctive logic programs as well as the more general definition of stable
models from [36]. Since the definition in [37] is more general we will follow
this work, which starts by defining the concepts of dependency graph and loop
respectively.

18 Chapter 2. Background

Definition 2.7 (loop from [37]). Given a disjunctive logic program Π, its (pos-
itive) dependency graph G(Π) is the directed graph whose vertices are the atoms
occurring in Π. Every edge (ai, aj) in the graph represents a positive dependency
in a rule r of Π if ai occurs in its positive body and aj in its head. Given the
dependency graph of a program Π, denoted by G(Π), a set of literals L is a called
loop iff the subgraph of G(Π) restricted to L is Strongly Connected.

�

The main difference of the approach in [37] with respect to [84] is the
consideration of unary loops (we assume that any atom is always connected to
itself) in order to avoid computing the completion of Π. As an example, let us
consider the program (from [37]) and its (positive) dependency graph shown
in Figure 2.2.

p ← q.

q ← p.

p ← ¬r.
r ← ¬p.

r ∨ q ← s.

s ← p.

(a) Π

p q

r s

(b) G(Π)

Figure 2.2: A disjunctive logic program Π and its corresponding G(Π).

It is easy to see that the loops of Π are {p}, {q}, {r}, {s}, {p, q} and {p, q, s}.
Each loop will lead to a loop formula, which is an implication whose ante-
cedent is the disjunction of the atoms in the loop and the consequent is called
external support and defined next:

Definition 2.8 (external support from [37]). Let Π be a disjunctive logic pro-
gram and L a loop in G(Π). The external support of L, ESΠ(L), is the expression

ESΠ(L)
def
=

∨
r∈Π and head(r)∩L 6=∅

 ∧
p∈body+(r)

p ∧
∧

q∈body−(r)

q ∧
∧

a∈(head(r)\L)

¬a

�

By following Definition 2.8, we can compute the set of loop formulas of Π
(shown in Table 2.1) and obtain a final propositional theory consisting of Π ∪
LF (Π).

2.1. Answer Set Programming 19

Loop Loop Formula
{p} p→ q ∨ ¬r
{q} q → p ∨ (¬r ∧ s)
{r} r → ¬p
{s} s→ p
{p, q} p ∧ q → q ∨ p ∨ ¬r ∨ (s ∧ ¬r)
{p, q, s} p ∧ q ∧ s→ q ∨ p ∨ ¬r ∨ (s ∧ ¬r) ∨ p

Table 2.1: Loop formulas obtained from program Π′ of the Figure 2.2

Theorem 2.2 (from [37]). Given a program Π for a signature At and a (clas-
sical) model X ⊆ At of Π then X is a stable model of Π iff for every loop L of
G(Π), X satisfies

∨
l∈L l→ ESΠ(L). �

2.1.7 ASP programs with variables

ASP tools [46, 73] admit the use of variables in the specifications. Typically a
first order disjunctive logic program consists of a set of first-order rules of the
form

∀x1, ..., xs (a1 ∨ · · · ak ← b1, · · · , bm, not bm+1, · · · , not bn) (2.22)

where every ai and bi are predicates whose variables belong to the list x1,· · ·,xs.
We assume that the use of function symbols is not allowed. ASP tools use a
different notation where universal quantifiers are omitted and the ← symbol
is replaced by the Prolog if, “:-”. Following this notation, the rule1

a(x) ∨ b(x)← p(x)

is equivalent to the ASP rule

a(X) v b(X) :- p(X).

As an example of ASP program, Figure 2.3 shows a first-order representation
of the well-known cabbage, goat and wolf puzzle, which is presented next:

Example 2.2 (Cabbage, goat and wolf puzzle). Once upon a time a farmer
went to market and purchased a wolf, a goat, and a cabbage. On his way home,
the farmer came to the bank of a river and rented a boat. But in crossing the river
by boat, the farmer could carry only himself and a single one of his purchases -
the wolf, the goat, or the cabbage. If left together, the wolf would eat the goat, or
the goat would eat the cabbage. The farmer’s challenge was to carry himself and
his purchases to the far bank of the river. �

The ASP representation in Figure 2.3 contains four different constants rep-
resenting the wolf w, the goat g and the cabbage c as well as the boat b. Action
m(X,T) means that we move some item w,g,c, at time T, from one bank to the
other (represented by the constants r and l respectively). We assume that the

1The usual notation in ASP, like in Prolog, represents variables by capital letters.

20 Chapter 2. Background

boat is always switching between both banks of the river, so when no action
is executed, this means we moved the boat without carrying anything. We use
a unique predicate fluent at(Y,B,T) meaning that Y is at bank B at a time T,
being Y an item or the boat b.

Every first-order ASP program has associated a Herbrand domain (or simply
domain), concept that is defined below:

Definition 2.9 (Herbrand domain). Given a first-order logic program Π, the
Herbrand domain of Π (denoted by D) is the set of all terms that can be formed
from constants and function symbols in Π. �

Since we do not allow the use of function symbols, the Herbrand domain is
finite and corresponds to the set of constants of the program. For example, the
domain of the ASP program of Figure 2.3 is the set {0, · · · ,max, l, r, w, g, c, b}.

Definition 2.10 (Ground instance). A ground instance of a rule r, which is of
the form (2.22), is any rule r′ obtained from r by applying a substitution

θ : var(r)→ D

to the variables in r, denoted as var(r). For any rule r, we denote by GrD(r) the
set of all possible ground instances of r, and for any program Π let

GrD(Π)
def
=
⋃
r∈Π

GrD(r)

the so called grounding of program Π �

Intuitively, GrD(r) allows for the materialisation of the universal quantific-
ation of variables appearing in r. Roughtly speaking, r is a shortcut denoting
a set of rules GrD(r). The range of each variable occurring in r is given by the
set of terms appearing in D. Since D is finite, GrD(Π) consists of a finite set
of rules.

ASP tools usually compute the stable models of a first-order program Π as
the stable models of its corresponding GrD(Π) but this process is sound only
if Π is domain independent.

Definition 2.11 (Domain independence). Let Π be a first-order ASP program
and D its Herbrand domain. Π is said to be domain independent if given D′ =
D ∪ {w}, where w is a fresh constant, it holds that GrD(Π) has the same stable
models as GrD′(Π). �

This property guarantees that the stable models of a program with variables
Π can be computed as the stable models of GrD(Π) regardless of any domain
D′ ⊇ D. As an example, let us consider the program Π

q(1). (2.23)

p ← not q(X). (2.24)

This program is not domain independent. If we fix D = {1}, GrD(Π) has
{q(1)} as the unique stable model. However, with D = {1, 2} the stable model

2.1. Answer Set Programming 21

1. time(0..max). opp(l,r). opp(r,l).
2. item(w). item(g). item(c).
3. eats(w,g). eats(g,c). object(b).
4. object(Z) :- item(Z).

5. % Effect axiom for moving
6. at(X,A,T+1):- at(X,B,T), m(X,T), opp(A,B).

7. % The boat is always moving
8. at(b,A,T+1):- at(b,B,T), opp(A,B).

9. % Inertia
10. at(Y,A,T+1) :- at(Y,A,T), not at(Y,B,T+1), opp(A,B).

11. % State constraint
12. :- eats(X,Y), at(X,A,T), at(Y,A,T), at(b,B,T), opp(A,B).

13. % Unique value constraint
14. :- at(Y,A,T), at(Y,B,T), opp(A,B).

15. % Choice rules for action execution
16. m(X,T) :- not a(X,T), time(T), item(X).
17. a(X,T) :- not m(X,T), time(T), item(X).

18. % Action executability
19. :- m(X,T), at(b,A,T), at(X,B,T), opp(A,B).

20. % Non-concurrent actions
21. :- m(X,T), m(Z,T), X != Z.

22. % Initial state: everything at
23. % left bank
24. at(Y,l,0):- object(Y).

Figure 2.3: ASP encoding of Example 2.2

22 Chapter 2. Background

becomes {q(1), p}. Usually ASP tools impose a syntactic restriction, called
safety condition, on the rules which guarantees domain independence. The
must common (and the weakest known) safety condition for disjunctive pro-
grams is defined below:

Definition 2.12 (Safety condition from [15]). An ASP rule is safe iff every
variable that occurs in a rule (either in its head or in its body) also occurs in its
positive body. A logic program Π is safe if all its rules are safe. �

An ASP Grounder is a program that transforms a safe ASP program Π with
variables into its corresponding GrD(Π). Unfortunately, GrD(Π) may contain
an extremely large number of ground rules. For instance, let us consider the
program of Figure 2.3. If we fix the value of max to 2, D would correspond to
the set {0, 1, 2, l, r, c, g, w, b} and, therefore, a brute-force grounder would
ground the rule of inertia

at(Y,A,T+1) :- at(Y,A,T), not at(Y,B,T+1),opp(A,B). (2.25)

into 59049 ground rules2. Most of these ground rules, like

at(c,a,1) :- at(c,a,0), not at(c,a,1),opp(a,a). (2.26)

can be omitted since their bodies are false in every stable model. Of course
the smaller the ground program, the higher performance is obtained. Ground-
ers [46, 73] implement sophisticated algorithms (see Algorithm 1) that keep
track of a set of ground atoms, DE, whose elements can potentially be true in
at least one stable model. This set is used to restrict all the possible mappings
of variables to constants of D to those, θ, that satisfy body+(rθ) ⊆ DE, that is
when the positive body of the rule rθ, which comes from applying the mapping
θ applied to a first-order rule r, is a subset of DE. This operation is performed
until no ground rules are obtained. As an example of this improvement, if
we feed Algorithm 1 with the program of Figure 2.3, it would translate the
rule (2.25) into the 9 ground instances shown in Figure 2.4. Note that rules

2If we suppose that T and T + 1 are two different variables with no relation between them,
we can compute 95 possible substitutions.

2.1. Answer Set Programming 23

like (2.26) are note generated by Algorithm 1.

Algorithm 1: Naive grounding algorithm
Require: An input (safe) logic program Π with variables
Ensure: A propositional ASP program GrD(Π)

that preserves the stable models
DE := ∅ {DE is the set of derivable facts}
GrD(Π) := ∅
repeat
DE′ := DE
for all r ∈ Π do
B := body+(r)
M = compute_mappings(B,DE) {M are all possible mappings
from predicates of body+(r) into derivable facts of DE}
for all θ ∈M do
DE := DE ∪ head(r)
GrD(Π) := GrD(Π) ∪ {rθ}

end for
end for

until DE = DE′

return GrD(Π)

at(c,l,1):-not at(c,r,1).
at(g,l,1):-not at(g,r,1).
at(w,l,1):-not at(w,r,1).
at(w,r,2):-at(w,r,1),not at(w,l,2).
at(g,r,2):-at(g,r,1),not at(g,l,2).
at(c,r,2):-at(c,r,1),not at(c,l,2).
at(w,l,2):-at(w,l,1),not at(w,r,2).
at(g,l,2):-at(g,l,1),not at(g,r,2).
at(c,l,2):-at(c,l,1),not at(c,r,2).

Figure 2.4: Ground instances of rule (2.25) generated by Algorithm 1.

Algorithm 1 can even be improved by using information from the depend-
ency graph of the input program (see Section 2.1.1) to rearrange the order of
evaluation of the rules in order to do less iterations.

2.1.8 General stable models

Apart from the classical definition of stable models, many other definitions
have been proposed (thirteen different definitions of stable models are men-
tioned, for instance, in [77]). Any of them provides us with a different view of
logic programs and such diversity allows us to choose among different altern-
atives depending on our convenience. One definition that we will conveniently
use in this thesis is the so called General Stable Models [38], abbreviated as SM
operator. It is a modification of the Circumscription (CIRC) operator defined

24 Chapter 2. Background

by John McCarthy [90], which is one of the most popular non-monotonic tech-
niques that are present in the literature, deeply studied, extended and applied
as well. The idea behind CIRC consists in, given some classical theory Γ,
circumscribing the extension of some predicate p exclusively to those facts ex-
plicitly asserted in Γ.

Given two predicates p and p′, we define the following relations between
them.

p′ ≤ p def
= ∀X. (p′(X)→ p(X))

p′ = p
def
= ∀X. (p′(X)↔ p(X))

p′ < p
def
= p′ ≤ p ∧ p′ 6= p

where X is a vector of variables. Those relations are used in the following
definition of the operator CIRC.

Definition 2.13 (circumscription). Let Γ be a first-order theory and p a tuple
of predicates. CIRC [Γ;p] is defined as the following second order formula:

CIRC [Γ;p]
def
= Γ(p) ∧ ¬∃p′. (p′ < p ∧ Γ(p′)) .

�

Note that circumscription is a method to obtain non-monotonic consequences
from a classical theory but it is not a non-monotonic logic by itself. By defining
CIRC as a second order formula, the idea behind becomes clear: fixing the
minimal extent for p among all the possible predicates p′ that satisfy Γ.

An alternative semantics was defined in [75]. Given two interpretations for
a theory, M1 and M2, by M1 ≤p M2 we mean that both M1 and M2 coincide
in their universes and valuations for all constants and predicates with the only
exception of pwhich satisfiesM1[p] ⊆M2[p]. Broadly speaking, circumscribing
p in Γ would mean selecting the models with the minimal extension of p while
leaving the rest fixed.

In a similar way to this definition of Circumscription, Ferraris, Lee and Lif-
schitz defined [38] the SM operator which captures exactly the stable models
of an arbitrary first-order theory. This definition uses the translation from here
and there to propositional logic defined in [100] and shown in 2.2.3 and ex-
tended to obtain a second order formula which captures the stable models of
a theory Γ.

Definition 2.14 (SM operator from [38]). Let Γ be a first-order theory. SM [Γ]
is defined as the following second-order formula:

SM [Γ]
def
= Γ ∧ ¬∃p′ s.t. (p′ < p ∧ Γ∗(p′))

where p stands for the list of all predicates occurring in Γ, p′ is a list of fresh
predicate variables (with the same length as p) which do not occur in Γ and Γ∗

is the next recursive translation3:
3In fact, F ∗ is an extension of the star-transformation defined in [100].

2.1. Answer Set Programming 25

• pi(t) = p′i(t), for any tuple t of terms with the same arity as pi;

• F ∗ = F , for any atomic formula F that does not contain members4 of p;

• (F ∧G)
∗

= F ∗ ∧G∗;
• (F ∨G)

∗
= F ∗ ∨G∗;

• (F → G)
∗

= (F → G) ∧ (F ∗ → G∗);

• (∀xF)
∗

= ∀xF ∗;
• (∃xF)

∗
= ∃xF ∗.

�

As stated below, when the syntax is restricted to the case of normal logic
programs, this operator becomes a generalisation of the traditional definition
of stable models [48] to non-Herbrand models. It is shown in the following
proposition.

Proposition 2.2 (from [38]). Let At be a propositional signature containing at
least one object constant, and Π a finite set of rules of the form

A0 ← A1, · · · , Am, not Am+1, . . . , An, (2.27)

where A1, · · ·An are atomic formulas of At not containing equality. For any set
X of ground terms of At, the following conditions are equivalent.

1. X is a stable model of Π in the sense of [48];

2. the Herbrand interpretation of At that makes the elements of X true and
all other ground atoms false is a stable model of the formula corresponding
to Π.

�

Moreover, a more general result has been proven:

Theorem 2.3 (from [38]). A model of a first order theory F is stable if it satisfies
SM [F]. �

SM operator has been studied in detail proving several useful properties like
the one we present next, which will be used later.

Proposition 2.3 (from [38]). If a formula γ starts with ¬ then the formula

p′ ≤ p→ (γ∗(p′)↔ γ)

is logically valid. �

In order to show how the SM operator can be applied, let us consider the
following logic program Π from [38]:

4It includes the case when F = ⊥.

26 Chapter 2. Background

p(a).

q(b).

r(x) ← p(x) ∧ not q(x).

whose unique stable model is {p(a), q(b)}. Before applying the SM operator
we must rewrite Π as a theory Γ in logical notation as follows:

Γ = p(a) ∧ q(b) ∧ ∀x (p(x) ∧ ¬q(x)→ r(x))

Now, if we use the SM operator we obtain the following second order formula

SM [Γ] ≡ p(a) ∧ q(b) ∧ ∀x (p(x),¬q(x)→ r(x))

∧ ¬∃ (p′, q,′ r′)

(
(p′, q′, r′) < (p, q, r)

∧ p′(a) ∧ p′(b) ∧ ∀x (p(x) ∧ ¬q(x)→ r(x))︸ ︷︷ ︸
(A)

∧ ∀x(p′(x) ∧ ¬q(x) ∧ ¬q′(x)︸ ︷︷ ︸
(B)

→ r′(x))

)

Note that the subformula (A) can be taken out of the scope of the existen-
tial quantifier and then simplified by means of several laws of classical logic.
On the other hand, because of Proposition 2.3, the subformula (B) is equival-
ent to ¬q(x). The simplified formula would be:

SM [Γ] ≡ p(a) ∧ q(b) ∧ ∀x (p(x),¬q(x)→ r(x))

∧ ¬∃ (p′, q,′ r′)

(
(p′, q′, r′) < (p, q, r)

∧ p′(a) ∧ p′(b) ∧ ∀x (p′(x) ∧ ¬q(x)→ r′(x))

)
Although this example of second order formula can be reduced to a first-

order sentence removing the second order quantifiers, in the general case,
however, this is not always possible. For instance, it is well-known that the
problem of graph reachability can be expressed in terms of a logic program
with variables (and so, by using the SM operator) but not with a first-order
theory (the proof can be found in [74]).

2.1.9 Computational complexity

In this section, we briefly summarise complexity results for the basic decision
problems in ASP. In what follows, let a be an atom and X be a set of atoms.

• For a positive normal logic program Π

2.2. Equilibrium logic 27

– Deciding whether X is the stable model of Π is P-COMPLETE.

– Deciding whether a belongs to a stable model of Π is P-COMPLETE.

• For a normal logic program Π

– Deciding whether X is a stable model of Π is P-COMPLETE.

– Deciding whether a belongs to a stable model of Π is NP-COMPLETE.

• For a positive disjunctive logic program Π

– Deciding whether X is an stable model of Π is CONP-COMPLETE.

– Deciding whether a belongs to a stable model of Π is Σp2-COMPLETE.

• For a propositional theory Γ

– Deciding whether X is an stable model of Γ is CONP-COMPLETE.

– Deciding whether a belongs to a stable model of Γ is Σp2-COMPLETE.

The above complexity results apply to propositional programs only. For
capturing the complexity of the first-order case, we note that GrD(Π) of a first
order program Π is exponential in the size of Π. Hence, roughly speaking,
we obtain the analogous results by replacing the base NP by NEXPTIME for
capturing programs with variables.

2.2 Equilibrium logic

The original definition of stable models was restricted to the logic program-
ming syntax and could not be applied to arbitrary logical theories. Further-
more, as we have seen, semantics depended on a syntactic transformation
(the program reduct).

Based on a characterisation of the monotonic logic of HT [57] and a model
selection criterion, Equilibrium Logic [98, 99] has become the most success-
ful logical characterisation of stable models and ASP. We recall now its basic
definitions and results.

2.2.1 Syntax and semantics

Given a set of atoms At, an HT interpretation is defined as the structure 〈H,T 〉,
composed by two sets of atoms, H and T , respectively standing for two worlds
“here” and “there” such that H ⊆ T ⊆ At (interpertations in which H = T are
called total interpretations).

Definition 2.15 (HT satisfaction from [99]). Given an HT interpretation 〈H,T 〉
and a formula ϕwith signatureAt, the satisfaction rules are defined in a recursive
way as follows:

• 〈H,T 〉 6|= ⊥

• 〈H,T 〉 |= p iff p ∈ H, for any atom p ∈ At

28 Chapter 2. Background

• 〈H,T 〉 |= ϕ ∨ ψ iff 〈H,T 〉 |= ϕ or 〈H,T 〉 |= ψ

• 〈H,T 〉 |= ϕ ∧ ψ iff 〈H,T 〉 |= ϕ and 〈H,T 〉 |= ψ

• 〈H,T 〉 |= ϕ→ ψ iff (〈H,T 〉 6|= ϕ or 〈H,T 〉 |= ψ) and (〈T, T 〉 |= ϕ→ ψ).

�

Other usual connectives can be defined in terms of the previous ones.
For instance, default negation can be regarded as a shorthand of implication,
¬ϕ def

= ϕ→ ⊥.
The logic of HT is actually equivalent to the so-called Gödels logic G3 [52].

G3 is defined by a multivalued function M in terms of the values {0,1,2}. The
intuition behind this correspondence is that, given an HT interpretation 〈H,T 〉
with H ⊆ T , we can have three possible situations for any atom p: p ∈ H (the
atom is true or 2), p 6∈ T (the atom is false or 0) or p ∈ T \ H (the atom is
undefined or 1).

Definition 2.16 (valuation of formulas from [99]). Given an HT formula ϕ
and an HT interpretation 〈H,T 〉, we define the corresponding valuation M as a
function

M : L → {0, 1, 2}

from the set of formulas L to {0, 1, 2} and specified as follows:

1. M(p)
def
=

 2 if p ∈ H
0 if p 6∈ T
1 if p ∈ T rH

2. M(ϕ ∧ ψ)
def
= min(M(ϕ),M(ψ));

3. M(ϕ ∨ ψ)
def
= max(M(ϕ),M(ψ))

4. M(ϕ→ ψ)
def
=

{
2 if M(ϕ) ≤M(ψ)
M(ψ) otherwise

�

Several useful properties of HT are described next:

Proposition 2.4 (properties of HT). Given an HT formula ϕ with signature At
and an HT interpretation 〈H,T 〉, then the following properties hold:

i) If 〈H,T 〉 |= ϕ then 〈T, T 〉 |= ϕ;

ii) 〈T, T 〉 |= ϕ iff T |= ϕ in classical logic;

iii) 〈H,T 〉 |= ¬ϕ iff T 6|= ϕ.

�

2.2. Equilibrium logic 29

Property i) is known as persistence in intuitionistic terminology and allows
showing that every formula valid in HT is also valid in classical logic. Prop-
erties ii) and iii) respectively state that every total model is also a classical
model and that default negation can be evaluated in classical logic using the
T-component.

The model selection criterion that induces the nonmonotonic behaviour is
defined as follows:

Definition 2.17 (equilibrium model from [99]). Every HT total interpretation
M = 〈T, T 〉 is an equilibrium model of a formula ϕ iff M |= ϕ and there is no
interpretation 〈H,T 〉, with H ⊂ T such that 〈H,T 〉 |= ϕ. �

The definition of equilibrium model generalises the concept of stable model.

Theorem 2.4 (from [99]). A total HT interpretation 〈T, T 〉 is an equilibrium
model of a theory Γ iff T is a stable model of Γ. �

2.2.2 Normal forms for Here and There

Cabalar and Ferraris [22] proposed a conjunctive normal form (CNF) and a
disjunctive normal form (DNF) for here and there theories. Similarly to the
CNF for classical logic, a here and there theory Γ can be translated into CNF,
which consists of a set of implications that are defined next, starting from its
set of countermodels.

Definition 2.18 (from [22]). Given an HT interpretation 〈H,T 〉 under some
propositional signature At, we define ψ〈H,T 〉 as the (nonnested) rule:

ψ〈H,T 〉
def
=

(∧
a∈H

a

)
∧

 ∧
b∈At\T

¬b

→
 ∨
c∈T\H

(c ∨ ¬c)

 .

�

For instance, if At = {p, q, r}, H = {q} and T = {p, q}, ψ〈H,T 〉 corresponds
to the rule

q ∧ ¬r → p ∨ ¬p.

Note that, in case we deal with total interpretations, the consequent of the
implication would be equal to ⊥. The following result shows that an arbitrary
HT theory Γ can be translated into a conjunction of implications, one for each
countermodel of Γ:

Theorem 2.5 (Conjunctive normal form from [22]). Let Γ be an HT theory
over a finite signature At and let F (Γ) denote a formula constructed from the
countermodels of Γ:

F (Γ)
def
=

∧
〈H,T 〉:〈H,T 〉6|=Γ

ψ〈H,T 〉.

Then Γ is equivalent to F (Γ) under the logic of here and there. �

30 Chapter 2. Background

Analogously to the CNF, the DNF of a theory Γ comes from its set of models.
Every disjunct has the following form:

Definition 2.19 (from [22]). Given an HT interpretation 〈H,T 〉, for a finite
signature At, let ϕ〈H,T 〉 be the formula

ϕ〈H,T 〉
def
=

(∧
a∈H

a

)
∧

 ∧
b∈At\T

¬b

 ∧
 ∧
c∈T\H

¬¬c

 ∧
 ∧
d,e∈T\H

(d→ e)

 .

�

For instance, if At = {p, q, r}, H = {q} and T = {p, q}, then ϕ〈H,T 〉 corres-
ponds to

q ∧ ¬r ∧ ¬¬p ∧ (p→ p) .

The interesting properties of ϕ〈H,T 〉 are stated in the next proposition and
theorem:

Proposition 2.5 (from [22]). The only interpretations that satisfy ϕ〈H,T 〉 are
〈H,T 〉 and also 〈T, T 〉. �

Theorem 2.6 (Disjunctive normal form from [22]). Let Γ be an HT theory over
a finite signature At and let F (Γ) denote a formula constructed from the models
of Γ:

F (Γ)
def
=

∨
〈H,T 〉:〈H,T 〉|=Γ

ϕ〈H,T 〉.

Then Γ is equivalent to F (Γ) under the logic of here and there. �

2.2.3 Translating equilibrium logic into propositional logic

Every HT formula ϕ built over a signature At can be translated into classical
propositional logic by introducing a new atom p′ for each original atom p ∈ At.
Every original atom p represents its truth value in the T world whereas the new
introduced atom p′ will play the role of p at H. Furthermore, the condition
H ⊆ T is captured by the inclusion of the following expression:∧

p∈At
p′ → p.

The translation into propositional logic is defined as follows:

Definition 2.20 (from [100]). Given an HT formula ϕ, the propositional for-
mula ϕ∗ is defined as follows:

• (⊥)∗
def
= ⊥

• (p)∗
def
= p′

2.2. Equilibrium logic 31

• (ϕ ∧ ψ)∗
def
= (ϕ)∗ ∧ (ψ)∗

• (ϕ ∨ ψ)∗
def
= (ϕ)∗ ∨ (ψ)∗

• (ϕ→ ψ)∗
def
= (ϕ→ ψ) ∧ (ϕ∗ → ψ∗)

�

2.2.4 Strong equivalence

In NMR, the regular equivalence, understood as a mere coincidence of selec-
ted models, is too weak to consider that one theory Γ1 can be safely replaced
by a second one Γ2 since the addition of a context Γ may make them behave
in a different way due to non-monotonicity. Therefore, we need to consider a
stronger notion of equivalence, which is called strong equivalence and is form-
ally defined next:

Definition 2.21 (Strong Equivalence from [78]). We say that two theories Γ1

and Γ2 are strongly equivalent when, for any arbitrary theory Γ, both Γ1 ∪ Γ
and Γ2 ∪ Γ have the same selected models (in this case, stable models). �

Later, in [78], authors proved that checking equivalence in the logic of
Here-and-There is a necessary and sufficient condition for strong equivalence
in Equilibrium Logic, that is:

Lemma 2.2 (strong squivalence from [78]). Two theories Γ1 and Γ2 are strongly
equivalent iff Γ1 ≡HT Γ2. �

The notion of strong equivalence has been deeply studied in the proposi-
tional case (in fact, some strong equivalence checkers are, for instance, [116]
and [26] respectively based on HT-tableaux and the translation into SAT pro-
posed in [83]) and then this result for propositional HT was further extended
to arbitrary first-order theories in [79]. It must be noticed that one direction
of this result, the sufficient condition, is actually trivial. As HT is monotonic,
Γ1 ≡HT Γ2 implies Γ1 ∪ Γ ≡HT Γ2 ∪ Γ and so, their selected models will also
coincide. The real significant result is the opposite direction, namely, that HT-
equivalence is also a necessary condition for strong equivalence, as it shows
that HT is strong enough as a monotonic basis for Equilibrium Logic.

2.2.5 Quantified equilibrium logic

Having been Equilibrium Logic conceived as a propositional formalism, it has
been extended to first order theories [101], becoming an important framework
to prove properties of logic programs with variables [79].

The new formalism, called Quantified Equilibrium Logic (QEL), allows ASP
first-order programs to be simplified and, sometimes, partially simplified be-
fore grounding. Moreover, its monotic basis, Quantified Here and There (QHT),
can be used to check the property of strong equivalence, as happens with HT
in the propositional case.

The definition of QHT is based on a first order language denoted by L =
〈C,F, P 〉, where C, F and P are three disjoint sets that represent constants,

32 Chapter 2. Background

functions and predicates respectively. Given a domain D the sets AtD(C,P)
and AtD(C,F) are defined as follows:

• AtD(C,P) stands for all atomic instances that can be formed from 〈C ∪
D,F, P 〉.

• TD(C,F) all ground terms that can be obtained from 〈C ∪D,F, P 〉.

A QHT interpretation is a tupleM = 〈(Dh, Dt, σ) , Ih, It〉 such that

• Dh is the domain for here and Dt the expanded domain for there. It
holds that Dh ⊆ Dt.

• σ : TDt(C,F) → Dt is a mapping from ground terms into elements of
the expanded domain satisfying that σ(d) = d if d ∈ Dt and σ(τ) ∈ Dh

if τ ∈ Dh(C,F),

• Ih ⊆ AtDh(∅, ∅, P), Ih ⊆ AtDt(∅, ∅, P) are two sets of ground atoms such
that Ih ⊆ It

Along this section, we deal with static domains and decidable equality,
which means that Dh = Dt and that equality predicate is interpreted with
the same condition in both worlds. Therefore our QHT structures are of the
form 〈(Dt, σ) , Ih, It〉 which, intuitively, means thatM can be seen as a first or-
der interpretation with two components: here and there in the sense of Kripke
semantics for Intuitionistic Logic [30], where worlds are ordered by h ≤ t.

Definition 2.22 (QHT semantics from [101]). The satisfaction relation for a
QHT interpretationM = 〈(D,σ), Ih, It〉 is defined as follows:

• M |= >, M 6|= ⊥

• M |= p(τ1, · · · , τn) iff p(σ(τ1), · · · , σ(τn)) ∈ Ih

• M |= τ = τ ′ iff σ(τ) = σ(τ ′).

• M |= ϕ ∧ ψ iffM |= ϕ andM |= ψ

• M |= ϕ ∨ ψ iffM |= ϕ orM |= ψ

• M |= ϕ→ ψ iffM 6|= ϕ orM |= ψ, and 〈(D,σ), It, It〉 |= ϕ→ ψ

• M |= ∀ x, ϕ(x) iffM |= ϕ(d), for all d ∈ D

• M |= ∃ x, ϕ(x) iffM |= ϕ(d), for some d ∈ D

�

Given two QHT interpretations,M = 〈(D,σ), Ih, It〉 andM′ = 〈(D′, σ′), I ′h, I ′t〉,
we say thatM≤M′ iff D = D′, σ = σ′, T = T ′ and H ⊆ H ′. If, additionally,
H ⊂ H ′ we say that the relation is strict (denoted byM <M′).

Definition 2.23 (quantified equilibrium model from [101]). Let ϕ be a QHT
formula. A QHT total interpretationM is a first-order equilibrium model of ϕ if
M |= ϕ and there is no modelM′ <M of ϕ. �

2.2. Equilibrium logic 33

Several interesting properties arise from the study of Quantified Equilib-
rium Logic. For instance, QHT is a suitable monotonic basis for checking the
property of strong equivalence presented, for the propositional case, in Sec-
tion 2.2.4. If we consider first-order theories we get the following result:

Theorem 2.7 (first-order strong equivalence (from [79])). A set Γ of first-
order sentences is strongly equivalent to a set ∆ if both theories are equivalent in
SQHT=. �

Another interesting property, proved by Ferraris, Lee and Lifschitz in [38], is
the relation between Quantified Equilibrium Logic and the General Theory of
Stable Models (see Section 2.1.8):

Theorem 2.8 (from [38]). Given a first-order formula ϕ and a tuple of predic-
ates p, any interpretationM is a model of SM[ϕ;p] iffM is a stable model (in
the sense of Quantified Equilibrium Logic) of ϕ. �

2.2.6 Infinitary equilibrium logic

The use of Infinitary Formulas [109, 64] has been firstly adapted to Logic
Programming by Mirosław Truszczyński [115]. This formalism is able to deal
with infinite domains, like the case of temporal programs, using only three
different connectives. Those connectives are {}∧, which stands for an infinite
conjunction, {}∨, which is a shorthand of an infinite disjunction and, finally,
→ which is equivalent to the implication used in logic programming.

Definition 2.24 (syntax from [115]). Let At be a propositional signature (we
assume the existence of a constant ⊥, different for all symbols in At that plays
the role of falsity). We define the sets F0,F1, · · · by induction as follows:

1. FAt0 = At ∪ {⊥}

2. FAti+1 is obtained from FAti by adding expressionsH∧ andH∨ for all subsets
H of FAti , and expressions F → G for all F,G ∈ FAti .

The elements of
⋃∞
i=0 FAti are called (infinitary) formulas over At. �

The rest of the connectives can be easily defined in terms of these ones. For
instance, G ∧ F ≡ {F,G}∧, G ∨ F ≡ {F,G}∨, ¬F ≡ F → ⊥, G↔ F ≡ (F →
G) ∧ (G → F) and > ≡ ¬⊥, as happens in Here and There. Although the
stable model semantics for infinitary formulas was formerly defined in terms
of infinitary reducts, in [55] a new semantics, based on Here and There, was
defined.

Definition 2.25 (from [55]). We define an HT -interpretation on a (possibly
infinite) signature At as a pair of sets of atoms, which we denote by M = 〈H,T 〉,
such that H ⊆ T ⊆ At. As happens in the finitary case, when H = T we say that
M is total. The satisfaction of formulas is defined as follows:

• M |= p if p ∈ H, with p ∈ At.
• M |= H∧ if for every F ∈ H, M |= F .

34 Chapter 2. Background

• M |= H∨ if there exists F ∈ H such that M |= F .

• M |= F → G if either M 6|= F or M |= G and 〈T, T 〉 |= F → G.

�

The minimization criterion for selecting the equilibrium models is the same
as in the propositional case. Formally, the definition of infinitary equilibrium
model is given next.

Definition 2.26 (from [55]). A Here and There interpretation 〈H,T 〉 is an equi-
librium model of an infinitary formula F if H = T and there is no H ′ ⊂ T such
that 〈H ′, T 〉 |= F . �

Several equivalences in Here and There can also be extended to the infin-
itary case. For instance, we prove next two equivalences that will be used in
Section 7.1.

Proposition 2.6. The following equivalences are valid in Infinitary Here and
There

H∨ → β ⇔ {α→ β | α ∈ H}∧ (2.28)

α→ H∧ ⇔ {α→ β | β ∈ H}∧ (2.29)

�

Proof.

〈H,T 〉 |= H∨ → β ⇔
〈H,T 〉 6|= H∨ or 〈H,T 〉 |= β
and
〈T, T 〉 6|= H∨ or 〈T, T 〉 |= β

(Def. 2.25)

⇔
∀α ∈ H, 〈H,T 〉 6|= α or 〈H,T 〉 |= β
and
∀α ∈ H, 〈T, T 〉 6|= α or 〈T, T 〉 |= β

(Def. 2.25)

⇔
∀α ∈ H, 〈H,T 〉 |= α→ β
and
∀α ∈ H, 〈T, T 〉 |= α→ β

⇔ 〈H,T 〉 |= {α→ β | α ∈ H}∧ (Def. 2.25)

〈H,T 〉 |= α→ H∧ ⇔
〈H,T 〉 6|= α or 〈H,T 〉 |= H∧
and
〈T, T 〉 6|= α or 〈T, T 〉 |= H∧

(Def. 2.25)

⇔
〈H,T 〉 6|= α or ∀β ∈ H, 〈H,T 〉 |= β
and
〈T, T 〉 6|= α or ∀β ∈ H, 〈T, T 〉 |= β

(Def. 2.25)

2.3. Linear temporal logic 35

⇔
∀β ∈ H, 〈H,T 〉 6|= α or 〈H,T 〉 |= β
and
∀β ∈ H, 〈T, T 〉 6|= α or 〈T, T 〉 |= β

⇔
∀β ∈ H, 〈H,T 〉 |= α→ β
and
∀β ∈ H, 〈T, T 〉 |= α→ β

⇔ 〈H,T 〉 |= {α→ β | β ∈ H}∧ (Def. 2.25)

�

2.3 Linear temporal logic

Linear Temporal Logic is a kind of Temporal Logic whose interpretations are
limited to transitions which are discrete, reflexive, transitive, linear and total.
For defining the LTL syntax, we start from a finite set of atoms At called the
propositional signature. A (temporal) formula ϕ is defined by the grammar:

ϕ ::= ⊥|p |¬ϕ |ϕ1∧ϕ2 |ϕ1∨ϕ2 |ϕ1 → ϕ2 |©ϕ1 |�ϕ1 |♦ϕ1 |ϕ1Uϕ2 |ϕ1Rϕ2 | (ϕ1)

where ϕ1 and ϕ2 are temporal formulas in their turn and p is an atom. Op-
erator © is understood as “at the next moment”, � is read “forever” and ♦
stands for “eventually” or “at some future point. Operators U and R, called
“until” and “release”, must be read as “ϕ1 is true until ϕ2 becomes true” and
“ϕ2 is true while its truth value is not released by ϕ1. Semantically, temporal
formulas are defined in terms of Kripke structures [68].

Definition 2.27 (semantics). Let At be a set of propositional variables. An LTL
model is a Kripke structure of the form

〈W,R, V 〉

where

• W is a set of Kripke points, which intuitively corresponds to our set of
moments in time (our accessible worlds or states),

• R is a reflexive, transitive, and linear accessibility relation, and

• V : W → 2At is a mapping between a state and the set of propositional
atoms that are true in it.

However, since LTL has a linear, discrete basis that is isomorphic to N, this model
structure is often simplified from the above to

〈N, V 〉
where V : N→ 2At maps each Natural Number (representing a moment in time)
to the set of propositions that are true at that moment. Based on the latter, let
M = 〈N, V 〉 and k be an LTL model and an integer respectively. The satisfaction
relation (denoted by |=) is recursively defined as follows:

36 Chapter 2. Background

1. M, k |= p iff p ∈ V (k), for p ∈ At.
2. M, k |= ¬ϕ iff M, k 6|= ϕ.

3. M, k |= ϕ ∧ ψ iff M, k |= ϕ and M, k |= ψ.

4. M, k |= ϕ ∨ ψ iff M, k |= ϕ or M, k |= ψ.

5. M, k |=©ϕ iff M, k + 1 |= ϕ.

6. M, k |= ϕ U ψ iff there is j ≥ k such that M, j |= ψ and for all i ∈ [k, j−1],
M, i |= ϕ.

7. never M, k |=⊥.

�

The rest of derived operators can be defined in terms of U , leading to the
expressions ϕ R ψ = ¬ (¬ϕU¬ψ), ♦ϕ = > U ϕ and �ϕ = ⊥ R ϕ. A formula
ϕ is LTL-valid if M, 0 |= ϕ for any M. An LTL interpretation M is a model of a
theory Γ, written M |= Γ, if M, 0 |= ϕ, for all formula ϕ ∈ Γ.

Proposition 2.7. The following equivalences are valid in LTL

© (ϕ ∨ ψ) ⇔ ©ϕ ∨©ψ (2.30)

© (ϕ ∧ ψ) ⇔ ©ϕ ∧©ψ (2.31)

© (ϕUψ) ⇔ (©ϕ)U (©ψ) (2.32)

♦ (ϕ ∨ ψ) ⇔ ♦ϕ ∨ ♦ψ (2.33)

� (ϕ ∧ ψ) ⇔ �ϕ ∧�ψ (2.34)

ρ U (ϕ ∨ ψ) ⇔ (ρ Uϕ) ∨ (ρ Uψ) (2.35)

(ϕ ∧ ψ)Uρ ⇔ (ϕ Uρ) ∧ (ψ Uρ) (2.36)

¬© ϕ ⇔ ©¬ϕ (2.37)

¬�ϕ ⇔ ♦¬ϕ (2.38)

¬♦ϕ ⇔ �¬ϕ (2.39)

�ϕ ⇔ ϕ ∧©�ϕ (2.40)

♦ϕ ⇔ ϕ ∨©♦ϕ (2.41)

ϕUψ ⇔ ψ ∨ (ϕ ∧© (ϕUψ)) (2.42)

ϕRψ ⇔ ψ ∧ (ϕ ∨© (ϕRψ)) (2.43)

�

Apart from the formal definition we have given in this section, there are
several alternative formalisations providing different, and interesting, ways to
view LTL. We will focus our attention on two well-known characterisations:
ω-languages and first-order logic.

2.3.1 LTL as a fragment of first-order logic

We now provide an alternative view of the semantics for LTL but, this time
in first-order logic. Primarily this is achieved by representing temporal pro-
positions as classical predicates parametrized by the moment in time being

2.3. Linear temporal logic 37

considered [63]. The resulting first-order fragment is called Monadic First-
order logic of linear order (MFO(<)), which is characterised by the following
conditions:

• Only one free variable is considered in any formula or subformula.

• There exists a predefined linear relation, denoted by the binary predicate
≤, among all first-order variables.

• The rest of predicates are monadic.

Next definition shows how an LTL formula can be translated into first-order
logic

Definition 2.28. Let ϕ be a temporal formula for signature At. We define the
translation [ϕ]t for some time point t ∈ N as follows:

[⊥]t
def
= ⊥

[p]t
def
= p(t), with p ∈ At.

[¬α]t
def
= ¬[α]t

[α ∧ β]t
def
= [α]t ∧ [β]t

[α ∨ β]t
def
= [α]t ∨ [β]t

[α→ β]t
def
= [α]t → [β]t

[©α]t
def
= [α]t+1

[α U β]t
def
= ∃x (t ≤ x ∧ [β]x ∧ ∀y (t ≤ y < x→ [α]y))

[α R β]t
def
= ∀x (t ≤ x→ [β]x ∨ ∃y (t ≤ y < x ∧ [α]y))

In this tanslation, the expression w ≤ x stands for w < x ∨ x = w and the
expression [α]t+1 can be seen as the abbreviation of

∃y (t < y ∧ ¬∃z (t < z ∧ z < y ∧ [α]y)) .

�

Note how, per each atom p ∈ At in the temporal formula ϕ, we get a monadic
predicate p(x) in the translation. The effect of this translation on the derived
operators ♦ and � yields the quite natural expressions:

[�α]t
def
= ∀x (t ≤ x→ [α]x) [♦α]t

def
= ∃x (t ≤ x ∧ [α]x)

As a pair of examples, the translations � (¬p→©p) and ♦p for t = 0 respect-
ively correspond to:

[� (¬p→©p)]0 = ∀x (0 ≤ x → (¬p(x)→ p(x+ 1)))

[♦p]0 = ∃x(0 ≤ x ∧ p(x))

On the other hand, every MFO(<) formula is equivalent to an LTL one.
The first proof of the equivalence between LTL and MFO(<) , known as Kamp’s

38 Chapter 2. Background

Theorem (stated below), was proven by Kamp himself in 1968 [63], although
several alternative proofs of the same result [104, 43, 42, 42] are available
nowadays.

Theorem 2.9 (Kamp’s theorem (from [63])). For every MFO(<) formula F (x)
with one free variable, there is an LTL formula which is equivalent to F (x) over
Dedekind complete chains. �

2.3.2 Büchi automata and LTL

As we have already seen, LTL models are essentially infinite, discrete and lin-
ear sequences, with an identified start state. Thus each temporal formula
corresponds to a set of models on which that formula is satisfied.

If we think of each particular state within a propositional model, then we
can see that each such state is of finite size. Since there are only a finite
number of propositions and a finite set of values for those propositions, we
can define the set of all possible states and then rename each of them by a
new symbol. Because of this representation, our models will become strings.

Considering LTL models as strings we can utilize the large amount of pre-
vious work on finite automata. In particular we can define a finite auto-
maton that accepts exactly the strings we are interested in and so we can
use finite automata to represent LTL models. As pioneers in this area saw,
we need an specific form of automata over infinite strings, often named ω-
automata [16, 119]. We next give the definition of a specific kind of ω-
automaton, which is called Büchi automaton, and it is going to be the one
we will use along this thesis.

Definition 2.29 (Büchi automaton). A nondeterministic Büchi automaton (BA)
is a tuple A = (Q,Σ, δ, q0, F) where, as happens in the case of finite automata,
Q is a set of states, Σ an alphabet, δ a transition function and q0 and F are the
initial state and a set of final states respectively. The set of words with infinite
length that can be formed by symbols of Σ is denoted by Σω.

A run of A on an ω-word a0, · · · , an, · · · ∈ Σω consists of an infinite sequence

ρ = p0
a0→ p1

a1→ p1 · · · ,

such that every pi ∈ Q and pi+1 ∈ δ(pi, ai). The set

inf(ρ) = {q ∈ Q | q = pi for infinitely many i’s}

is the set of states that occur in ρ infinitely often. A run ρ is accepted if inf(ρ) ∩
F 6= ∅. A Büchi automaton accepts an ω-word w ∈ Σω if it has an accepting
run on w. The language recognized by a Büchi automaton consists of the set of
ω-words that can be formed with symbols from Σ. �

Figure 2.5 shows two Büchi automata. The automaton on the left is de-
terministic and accepts all ω-words over the alphabet {a, b} that contains in-
finitely many occurrences of a. So for instance, it accepts aω, baω or even
(ab)ω, but not bω. On the other hand, the automaton on the right of the figure
is not deterministic, and recognizes all ω-words over the alphabet {a, b} that
contain finitely many occurrences of a.

2.3. Linear temporal logic 39

s0start s1

b

a

b

a

(a)

s0start s1

a, b

b

b

(b)

Figure 2.5: Two Büchi automata.

2.3.3 ω-languages

Büchi automata, and ω-automata in general, have been deeply studied in the
literature and they are very useful tools to prove several properties of LTL such
as complexity, or expressiveness. Now, we go through the ω-regular languages,
the languages accepted by a Büchi automaton.

Definition 2.30 (Regular languages). Let Σ be an alphabet. The collection of
regular languages over Σ, denoted by Σ∗, is defined recursively as follows:

• ∅ is a regular language.

• For each a ∈ Σ, the singleton language {a} is a regular language.

• if La and Lb are regular languages then La ∪ Lb (union), La · Lb (concat-
enation) and (LA)

∗ (Kleene-star) are regular.

• No other languages over Σ are regular.

�

Definition 2.31 (ω-regular languages). Let Σ be a set of symbols (not necessar-
ily finite), we denote by Σω the set of all words of infinite length that can be built
with symbols of Σ, thus an ω-language L over an alphabet Σ is a subset of Σω.
an ω-language is said to be regular it has the form:

• (L)
ω where L is a non-empty regular language not containing the empty

string. The elements of (L)
ω are obtained by concatenating words from L

infinitely many times.

• L1 · L2, the concatenation of a regular language L1 and an ω-regular lan-
guage L2.

• L2 ∪ L2 where both L1 and L2 are ω-regular languages.

�

It is known that ω-regular languages are closed under union, intersection,
complementation, projection and residual. Moreover, the following relation
between Büchi automata, second-order logic and ω-regular languages was
proven by Büchi:

40 Chapter 2. Background

Theorem 2.10 (from [16]). An ω-language is definable in Monadic Second Or-
der Logic iff it is regular. �

Theorem 2.11 (from [16]). A Büchi automaton recognizes the class of ω-regular
languages. �

A subclass of ω-regular languages, which is closer to temporal logic, is the
class of star-free languages. As their name suggests are constructed from the
letters of the alphabet, the empty set and the operations union, concatena-
tion, complementation but not Kleene star. Similarly to the relation between
ω-regular languages, Büchi automaton and second-order logic, the theorem
below shows that star-free languages are first-order definable and, hence, LTL
definable.

Theorem 2.12 (from [95]). A language is star-free iff it is first-order definable.
�

This result, together with Kamp’s theorem prove the relation between LTL,
star-free languages and MFO(<).

Chapter 3

Temporal Equilibrium Logic

Several approaches [10, 51] tried to provide a better nonmonotonic exten-
sions for temporal reasoning, most of them by introducing temporal operators
from modal temporal logics in ASP or semantics related to Logic Program-
ming. However, these approaches impose several syntactic restrictions while
their semantics are usually defined by means of reducts. Fortunately, those
limitations can be overcomed by extending the definition of Equilibrium Logic
to the temporal case. This extension, called Temporal Equilibrium Logic, has
become the first approach to non-monotonic temporal reasoning, which does
not impose any syntactic restriction.

3.1 Temporal Here-and-There

The logic of Linear Temporal Here-and-There (THT) is defined as follows. We
start from a finite set of atoms At called the propositional signature. The syntax
of THT is the one from propositional LTL which we recall below. A temporal
formula ϕ is defined as:

ϕ ::= ⊥ | p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | ©ϕ1 | ϕ1 U ϕ2 | ϕ1 R ϕ2 | (ϕ1)

where ϕ1 and ϕ2 are temporal formulae in their turn and p is any atom. A
formula is said to be non-modal if it does not contain temporal operators.
Negation is defined as ¬ϕ def

= ϕ → ⊥ whereas > def
= ¬⊥. As usual, ϕ ↔ ψ

stands for (ϕ→ ψ)∧ (ψ → ϕ). Other usual temporal operators can be defined
in terms of U and R as follows:

�ϕ
def
= ⊥ R ϕ ♦ϕ

def
= > U ϕ

� is read “forever” and ♦ stands for “eventually” or “at some future point.” We
define the following notation for a finite concatenation of©’s

©0ϕ
def
= ϕ

©iϕ
def
= ©(©i−1ϕ) (with i ≥ 1)

42 Chapter 3. Temporal Equilibrium Logic

The semantics of the logic of THT is defined in terms of sequences of pairs
of propositional interpretations. A (temporal) interpretation M is an infinite
sequence of pairs mi = 〈Hi, Ti〉 with i = 0, 1, 2, . . . where Hi ⊆ Ti are sets of
atoms standing for here and there respectively. For simplicity, given a temporal
interpretation, we write H (resp. T) to denote the sequence of pair compon-
ents H0, H1, . . . (resp. T0, T1, . . .). Using this notation, we will sometimes
abbreviate the interpretation as M = 〈H,T〉. An interpretation M = 〈H,T〉
is said to be total when H = T.

Definition 3.1 (THT-Satisfaction). The satisfaction relation |= is interpreted as
follows on THT models (M is a THT model and k ∈ N):

1. M, k |= p iff p ∈ Hk, for any p ∈ At.

2. M, k |= ϕ ∧ ψ iff M, k |= ϕ and M, k |= ψ.

3. M, k |= ϕ ∨ ψ iff M, k |= ϕ or M, k |= ψ.

4. M, k |= ϕ→ ψ iff for all H′ ∈ {H,T}, 〈H′,T〉, k 6|= ϕ or 〈H′,T〉, k |= ψ.

5. M, k |=©ϕ iff M, k + 1 |= ϕ.

6. M, k |= ϕ U ψ iff there is j ≥ k such that M, j |= ψ and for all i ∈ [k, j−1],
M, i |= ϕ.

7. M, k |= ϕR ψ iff for all j ≥ k such that M, j 6|= ψ, there exists i ∈ [k, j−1],
M, i |= ϕ.

8. never M, k |=⊥. �

A formula ϕ is THT-valid if M, 0 |= ϕ for any M. An interpretation M is a
THT-model of a theory Γ, written M |= Γ, if M, 0 |= ϕ, for all formula ϕ ∈ Γ.

We assume that a finite sequence M = m1,m2, . . . ,mn is an abbreviation
of an infinite sequence where the remaining elements coincide with mn, that
is, for i > n, mi = mn. The logic of THT is an orthogonal combination of the
logic of HT and the (standard) linear temporal logic (LTL). When we disregard
temporal operators, we obtain the logic of HT. On the other hand, if we restrict
the semantics to total interpretations, 〈T,T〉 |= ϕ corresponds to satisfaction
of formulas T |= ϕ in LTL.

3.1.1 A Three-valued characterisation of THT

As we have seen in Definition 2.16, the logic of Here and There can be defined
as a three valued logic. In order to extend the multivalued characterisation
of HT to the temporal case, we define a valuation for any formula ϕ at time
point i, written1 M(i, ϕ), by similarly considering which formulas are satisfied
by 〈H,T〉 (which will be assigned 2), not satisfied by 〈T,T〉 (which will be
assigned 0) or none of the two (which will take value 1). From the definitions
in the previous section, we can easily derive the following conditions:

1We use the same name M for a temporal interpretation and for its induced three-valued
valuation function – ambiguity is removed by the way in which it is applied (a structure or a
function on indices and formulas).

3.1. Temporal Here-and-There 43

1. M(i, p)
def
=

 2 if p ∈ Hi

0 if p 6∈ Ti
1 otherwise, i. e. p ∈ (Ti \Hi)

2. M(i, ϕ ∧ ψ)
def
= min(M(i, ϕ),M(i, ψ))

3. M(i, ϕ ∨ ψ)
def
= max(M(i, ϕ),M(i, ψ))

4. M(i, ϕ→ ψ)
def
=

{
2 if M(i, ϕ) ≤M(i, ψ)
M(i, ψ) otherwise

5. M(i,©ϕ)
def
= M(i+ 1, ϕ)

6. M(i, ϕ U ψ)
def
=

2 if ∃j ≥ i : M(j, ψ) = 2 and

∀k, i ≤ k < j ⇒M(k, ϕ) = 2
0 if ∀j ≥ i : M(j, ψ) = 0 or

∃k, i ≤ k < j,M(k, ϕ) = 0
1 otherwise

7. M(i, ϕ R ψ)
def
=

2 if ∀j ≥ i : M(j, ψ) = 2 or

∃k, i ≤ k < j,M(k, ϕ) = 2
0 if ∃j ≥ i : M(j, ψ) = 0 and

∀k, i ≤ k < j ⇒M(k, ϕ) = 0
1 otherwise

From their definition, the interpretation of the temporal derived operators
becomes M(i,�ϕ)=min {M(j, ϕ) | j ≥ i} and M(i,♦ϕ)=max {M(j, ϕ) | j ≥
0}.

Under this alternative three-valued definition, an interpretation M satisfies
a formula ϕ when M(0, ϕ) = 2. When M = 〈T,T〉, its induced valuation will
be just written as T(i, ϕ) and obviously becomes a two-valued function, that
is T(i, ϕ) ∈ {0, 2}.

3.1.2 Encoding THT in LTL

As we can see in Definition 3.1, the main difference with respect to LTL is the
interpretation of implication (item 4) that must be checked in both compon-
ents, H and T, of M. In fact, as we said before, it is easy to see that when
we take total models M = 〈T,T〉, THT satisfaction 〈T,T〉, k |= ϕ collapses to
standard LTL satisfaction T, k |= ϕ so that we will sometimes write the latter
when convenient. For instance, item 4 in Definition 3.1 can be rewritten as:

4′. M, k |= ϕ → ψ iff (M, k |= ϕ implies M, k |= ψ) and T, k |= ϕ → ψ
(LTL satisfaction)

A result inherited from HT whose proof can be obtained by structural in-
duction is the so-called persistence property.

Proposition 3.1 (persistence from [17]). For any formula ϕ, any THT model
M = 〈H,T〉 and any i ≥ 0, if M, i |= ϕ, then T, i |= ϕ. �

44 Chapter 3. Temporal Equilibrium Logic

A consequence of this proposition is that the interpretation of negation ¬ϕ
in 〈H,T〉 amounts to checking that ϕ does not hold in the total model T.
Formally:

Corollary 3.1. 〈H,T〉, i |= ¬ϕ iff T, i 6|= ϕ in LTL. �

Obviously, any THT valid formula is also LTL valid, but not the other way
around. For instance, the following are THT valid equivalences:

¬(ϕ ∧ ψ) ↔ ¬ϕ ∨ ¬ψ (3.1)

¬(ϕ ∨ ψ) ↔ ¬ϕ ∧ ¬ψ (3.2)

©(ϕ⊕ ψ) ↔ ©ϕ⊕©ψ (3.3)

©⊗ ϕ ↔ ⊗© ϕ (3.4)

ϕ U ψ ↔ ψ ∨ (ϕ ∧©(ϕ U ψ)) (3.5)

ϕ R ψ ↔ ψ ∧ (ϕ ∨©(ϕ R ψ)) (3.6)

for any binary connective ⊕ and any unary connective ⊗. Equivalences (3.1),
(3.2) mean that De Morgan laws are valid whereas (3.3),(3.4) allow us to
shift the ‘©’ operator to all the operands of any connective. Formulas (3.5)
and (3.6) provide inductive definitions for “until” and “release” respectively.
The following result captures a general class of LTL-valid formulas that are
also THT-valid.

Proposition 3.2 (from [17]). Let ϕ and ψ be two formulas not containing im-
plication2. Then ϕ↔ ψ is THT-valid iff it is LTL-valid. �

There are, however, LTL-valid formulas that are not THT-valid. As an ex-
ample, the formula ϕ∨¬ϕ (known as excluded middle axiom) is not THT valid.
This feature is inherited from the intermediate/intuitionistic nature of HT. In
fact, the addition of this axiom makes THT collapse to LTL, much in the same
way as it makes intuitionistic logic collapse to classical propositional logic. The
following proposition shows that if we add a copy of this axiom for any atom
at any position of the models, we can force THT models of any formula to be
total.

Proposition 3.3 (from [18]). Given a temporal formula ϕ for a propositional
signature At, for every THT model 〈H,T〉, the propositions below are equivalent:

(I) 〈H,T〉, 0 |= ϕ ∧
∧
p∈At�(p ∨ ¬p),

(II) T, 0 |= ϕ in LTL, and for i ≥ 0 Hi = Ti

�

This gives us a direct way of encoding LTL in THT, since LTL models of ϕ
coincide with its total THT models. The translation from THT to LTL can
be done by extending the star-translation described in Section 2.2.3 to the
temporal case by adding a translation just for modal operators:

1. (ϕUψ)∗
def
= ϕ∗Uψ∗

2Remember that negation is a form of implication.

3.2. Temporal Equilibrium Models 45

2. (ϕRψ)∗
def
= ϕ∗Rψ∗

to the propositional case. Since � and ♦ can be defined in terms of U and R,
it can be proved that (�ϕ)∗ = �ϕ∗ and (♦ϕ)∗ = ♦ϕ∗.

We associate to any THT interpretation M = 〈H,T〉 the LTL interpretation
Mt = I in LTL defined as the sequence of sets of atoms I = {Ii}i∈N where
Ii = {p′ | p ∈ Hi} ∪ Ti. As a THT interpretation must satisfy Hi ⊆ Ti by
construction, we may have LTL interpretations that do not correspond to any
THT one. In particular, for an arbitrary I, we will only be able to form some
M such that Mt = I when the set of primed atoms at each Ii is a subset of
the non-primed ones. In other words, only LTL interpretations I satisfying the
axiom schema:

∧
p∈At

�(p′ → p) (Ax1)

will have a corresponding THT interpretation M such that I = Mt.

Example 3.1. M = ((∅, {p, q}), ({p}, {p, q}), ({q}, {q})) is a THT model of the
theory {�(¬p→ q)∧♦q}. In the same way, the corresponding LTL interpretation
Mt = ({p, q}, {p′, p, q}, {q′, q}) is an LTL model of

(�(¬p→ q) ∧ ♦q)∗ ↔ �(¬p→ q)∗ ∧ (♦q)∗

↔ �((¬p→ q) ∧ ((¬p)∗ → q′)) ∧ ♦q′
↔ �((¬p→ q) ∧ ((¬p ∧ ¬p′)→ q′)) ∧ ♦q′.

�

Theorem 3.1 (from [2]). Let M = 〈H,T〉 be any THT interpretation and ϕ
any formula. For any i ≥ 0, it holds that

(a) 〈H,T〉, i |= ϕ if and only if Mt, i |= ϕ∗ in LTL; and

(b) 〈T,T〉, i |= ϕ if and only if Mt, i |= ϕ in LTL. �

Corollary 3.2 (from [18]). Let ϕ be any temporal formula and let ϕ′ be defined
as ϕ∗ ∧

∧
p∈At�(p′ → p). The set of LTL models of ϕ′ corresponds to the set of

THT models of ϕ. �

3.2 Temporal Equilibrium Models

We can now proceed to describe the model selection criterion that defines
temporal equilibrium models. Given two interpretations M = 〈H,T〉 and
M′ = 〈H′,T′〉 we say that M′ is lower or equal than M, written M′ ≤ M,
when T′ = T and for all i ≥ 0, H ′i ⊆ Hi. As usual, M′ < M stands for
M′ ≤M and M′ 6= M.

Definition 3.2 (temporal equilibrium model). An interpretation M is a tem-
poral equilibrium model of a theory Γ if M is a total model of Γ and there is no
other M′ <M, such that M′ |= Γ. �

46 Chapter 3. Temporal Equilibrium Logic

Note that any temporal equilibrium model is total, that is, it has the form
〈T,T〉 and so can be actually seen as an LTL-interpretation of the form T that
we will call temporal stable model.

Definition 3.3 (temporal stable model). If 〈T,T〉 is a temporal equilibrium
model of a theory Γ then T is called a temporal stable model of Γ (or TS-model,
for short). �

In this way, since the set of LTL models of Γ coincides with the set of total
THT models of Γ, we can easily see that:

Observation 3.1. Any TS-model of a temporal theory Γ is also an LTL-model of
Γ. �

Note that the consequence relation induced by temporal equilibrium mod-
els is nonmonotonic. In fact, when we restrict the syntax to ASP programs and
the semantics to HT interpretations of the form 〈H0, T0〉 we talk about (non-
temporal) equilibrium models, which coincide with stable models in their most
general definition [36]. The result below establishes a more general relation
to non-temporal equilibrium logic/ASP.

Proposition 3.4 (from [23]). Let Γ be a combination of non-modal connectives
∧,∨,¬,→,⊥, with their usual grammar, with expressions like ©ip, being p an
atom, and let n be the maximum value for i in all ©ip occurring in Γ. Then
〈T,T〉 is a temporal equilibrium model of Γ iff (1) Ti = ∅ for all i > n ; and
(2) 〈X,X〉 with X =

⋃n
i=0{©ip | p ∈ Ti} is an equilibrium model of Γ, reading

each ‘©ip’ as a new atom in the signature. �

The TEL satisfiability problem consists in determining whether a temporal
formula has a TEL model.

3.2.1 Examples

As a first example, consider the formula

�(¬p→©p) (3.7)

Its intuitive meaning corresponds to the logic program consisting of rules of
the form: p(s(X)) ← not p(X) where time has been reified as an extra para-
meter X = 0, s(0), s(s(0)), Notice that the interpretation of ¬ is that of
default negation not in logic programming. In this way, (3.7) is saying that,
at any situation, if there is no evidence on p, then p will become true in the
next state. In the initial state, we have no evidence on p, so this will imply
©p. To derive©© p the only possibility would be the rule ¬© p → ©© p,
an instance of (3.7). As the body of this rule is false, ©© p becomes false
by default, and so on. It is easy to see that the unique temporal stable model
of (3.7) is captured by the formula ¬p ∧�(¬p↔©p).

As a second example, take the formula ♦p. This formula informally corres-
ponds to an infinite disjunction p ∨ ©p ∨ ©© p ∨ Again, as happens in
disjunctive logic programming, in TEL we have a truth minimality condition
that will make true the formula with as little information as possible. As a

3.2. Temporal Equilibrium Models 47

result, it is easy to see that the temporal stable models of ♦p are captured by
the formula ¬p U (p ∧©�¬p) whose models are those where p holds true at
exactly one position.

It is worth noting that an LTL satisfiable formula may have no temporal
stable model. As a simple example (well-known from non-temporal ASP) the
logic program rule ¬p→ p, whose only (classical) model is {p}, has no stable
models. If we assume that p cannot be derived, i.e. ¬p, then the rule contra-
dicts the assumption. On the other hand, if we assume that p can be derived,
then ¬p becomes false and we are left with no rule that justifies a possible
derivation for p.

When dealing with (finite) logic programs, it is well-known that non-
existence of stable models is always due to a kind of cyclic dependence on
default negation like this. In the temporal case, however, non-existence of
temporal stable models may also be due to a lack of a finite justification for
satisfying the criterion of minimal knowledge. As an example, consider the
formula:

�(¬©p→ p) ∧ �(©p→ p) (3.8)

This formula has no temporal equilibrium models. To see why, note that (3.8)
is LTL-equivalent (and THT-equivalent) to �(¬ © p ∨ ©p → p) that, in its
turn, is LTL-equivalent to �p. Thus, the only LTL-model T of (3.8) has the
form Ti = {p} for any i ≥ 0. However, it is easy to see that the interpretation
〈H,T〉 with Hi = ∅ for all i ≥ 0 is also a THT model of (3.8), whereas H < T.
It is worth to note that (3.8) was extracted from a first-order counterpart,
the pair of rules ¬p(s(X)) → p(X) and p(s(X)) → p(X), that were used
in [35] to show that an acyclic3 program without a well-founded dependence
ordering relation may have no stable models. In this case, we accordingly get
no temporal stable models.

Another example of TEL-unsatisfiable formula is �♦p, typically used in LTL
to assert that property p occurs infinitely often. This formula has no temporal
stable models: all models must contain infinite occurrences of p and there is
no way to establish a minimal H among them. Thus, formula �♦p is LTL
satisfiable but it has no temporal stable model. This formula is normally used
in LTL to specify a liveness property (p occurs infinitely often). When asserted
in TEL, however, this yields a conflict with the minimality criterion: informally
speaking, for an infinite set of p’s along time, we can always take a smaller
model by removing one p. The result would also be an infinite set of p’s.
So, there is no way to get a minimal model. This does not mean a serious
limitation in expressiveness, since for practical problems, we would usually
include this type of liveness property in a constraint, rather than asserting the
formula. In this way, the constraint ¬�♦p→ ⊥ would be ruling out all models
where p does not occur intinitely often. Note also that all LTL is embeddable
both in THT (Proposition 3.3) and in fact in TEL too (see [18] for details).

By contrast, the next proposition states that for a large class of temporal

3A logic program is acyclic if its corresponding dependency graph contains no cycles. This
graph has as vertices the set of atoms in the program and one edge (p, q) for each rule with p in
the head and q occurring in the rule body.

48 Chapter 3. Temporal Equilibrium Logic

formulas, LTL satisfiability is equivalent to THT satisfiability and TEL satisfiab-
ility.

Proposition 3.5 (from [18]). Let ϕ be temporal formula built over the connect-
ives ∨, ∧,→,© and U and such that→ occurs only in subformulae of the form
p →⊥ with p ∈ At. The propositions below are equivalent: (I) ϕ is LTL satis-
fiable; (II) ϕ is THT satisfiable; (III) ϕ has a temporal stable model, i.e. ϕ is TEL
satisfiable.

�

Theorem 3.2 (corollary 2 from [18]). THT satisfiability problem is PSPACE-
complete. �

3.3 Relation between THT and First-order HT

It has been shown in Section 2.3.1 that, due to Kamp’s Theorem, Temporal
Logic is as expressive as MFO(<) in which only the use of one free variable
is allowed, but the relation between THT and MHT(<), the analogous version
of QHT, has not been studied4. Our definition of MHT(<) is characterised
by the use of the set N of natural numbers5 as domain as well as a set of
monadic predicates with variables ranging on N. Once the domain and the
set of predicates P have been fixed, by Atoms(P) we denote the set of all
possible atoms formed by predicates in P and constants in N. We provide next
a formal definition of MHT(<), whose corresponding interpretations are built
on the set Atoms(P).

Definition 3.4 (MHT(<)). Monadic Quantified Here-and-There with a linear
ordering, MHT(<), is a simplified instance of Quantified HT [101]. An MHT(<)-
interpretation is a tupleM = 〈H, T 〉 where H ⊆ T ⊆ Atoms(P). As before, we
say that the interpretation is total iffH = T . The satisfiability relation is defined
as follows:

• M |= p(i) iff p(i) ∈ H

• M |= i ≤ j iff i is less or equal than j as natural numbers

• ∧, ∨, ⊥ as usual

• M |= F → G iff for all w ∈ {H, T }, 〈w, T 〉 6|= F or 〈w, T 〉 |= G

• M |= ∀x F (x) iff for all i ∈ N,M |= F (i)

• M |= ∃x F (x) iff there exists i ∈ N,M |= F (i)

�

4Up to date, the question of whether the other direction of Kamp’s theorem holds for THT or
not is unanswered. Namely, we ignore whether MHT(<) can be translated back to THT.

5Although the original Kamp’s result holds for any time model in the form of a Dedekind
complete linear ordering, for our purposes, it suffices with considering the ordered set of natural
numbers.

3.3. Relation between THT and First-order HT 49

As we saw in Section 2.3.1, the trivial direction of Kamp’s theorem guar-
antees that, given any temporal formula ϕ, there exists an obvious one-to-one
correspondence between LTL-models of ϕ and MFO(<)-models of [ϕ]0. We can
easily define a correspondence between THT and MHT(<)models as follows:

Definition 3.5. Given a THT interpretation M = 〈H,T〉 on a signature At, we
say that the MHT(<)-interpretationM = 〈N,H, T 〉 corresponds to M iff

• p ∈ Hi iff p(i) ∈ H, for all i ∈ N.

• p ∈ Ti iff p(i) ∈ T , for all i ∈ N.

�

We now prove that when considering this model correspondence, together
with Kamp’s translation defined in Section 2.3.1, we obtain the same one-to-
one correspondence between THT and MHT(<) interpretations:

Theorem 3.3. Let ϕ be a temporal formula for a vocabulary Σ. Moreover, let
M = 〈H,T〉 be a THT-interpretation for Σ and letM = 〈H, T 〉 be its correspond-
ing MHT(<)-interpretation as stated in Definition 3.5. It holds that M, i |= ϕ in
THT iffM |= [ϕ]i in MHT(<).

Proof. We proceed by structural induction.

• If ϕ = ⊥ then [ϕ]i = ⊥ and the result is straightforward.

• If ϕ = p is an atom, then [p]i = p(i) and we get the chain of equivalent
conditions: M, i |= p⇔ p ∈ Hi ⇔ p(i) ∈ H ⇔M |= p(i).

• If ϕ = α ∧ β we get:
M, i |= α ∧ β

⇔ M, i |= α and M, i |= α
⇔ M |= [α]i andM |= [β]i by induction on α, β
⇔ M |= [α]i ∧ [β]i
⇔ M |= [α ∧ β]i

• The proof for ϕ = α ∨ β is analogous to the one for α ∧ β.

• If ϕ = α→ β we get:
M, i |= α→ β

⇔ for any w ∈ {H,T}, 〈w,T〉, i 6|= α or 〈w,T〉, i |= β

Now, since the THT-interpretation 〈T,T〉 also corresponds to the MHT(<)
interpretation 〈T , T 〉 we can apply induction on subformulas, so that we
continue with the equivalent conditions:
⇔ for any w ∈ {H, T }, 〈w, T 〉 6|= [α]i or 〈w, T 〉 |= [β]i
⇔ 〈H, T 〉 |= [α→ β]i.

• If ϕ =©α we get the equivalent conditions:
M, i |=©α

⇔ M, i+ 1 |= α
⇔ M |= [α]i+1 by induction
⇔ M |= [©α]i

50 Chapter 3. Temporal Equilibrium Logic

• If ϕ = α U β we get the equivalent conditions:
M, i |= α U β

⇔ There is some k ≥ i s.t. that M, k |= β and
for j ∈ {i, . . . , k − 1}, M, j |= α

⇔ There is some k ≥ i s.t. thatM |= [β]k and
for j ∈ {i, . . . , k − 1},M |= [α]j

⇔ M |= ∃k(i ≤ k ∧ [β]k ∧ ∀j(i ≤ j < k → [α]j))
⇔ M |= [α U β]i

• The proof for ϕ = α R β is analogous to the one for α U β.

�

3.4 TEL and Infinitary Formulas

In this section we define a translation from temporal theories under Tem-
poral Equilibrium Logic semantics into infinitary propositional formulas. Such
translation is defined next:

Definition 3.6. Let ϕ be a temporal formula built over a signature At. We define
its expanded signature as

At∞
def
= {©ip | p ∈ At and i ∈ N}

We define the translation of ϕ into infinitary HT (HT∞) up to level k, written
‖ϕ‖k, recursively as follows:

• ‖⊥‖k
def
= ∅∨

• ‖p‖k
def
= ©k p, with p ∈ At.

• ‖© ϕ‖k
def
= ‖ϕ‖k+1

• ‖ϕ ∧ ψ‖k
def
= {‖ϕ‖k, ‖ψ‖k}∧

• ‖ϕ ∨ ψ‖k
def
= {‖ϕ‖k, ‖ψ‖k}∨

• ‖ϕ→ ψ‖k
def
= ‖ϕ‖k → ‖ψ‖k

• ‖♦ϕ‖k
def
= {‖ϕ‖i | k ≤ i}∨

• ‖�ϕ‖k
def
= {‖ϕ‖i | k ≤ i}∧

• ‖ϕUψ‖k
def
= {{‖ψ‖i, ‖ϕ‖j | k ≤ j < i}∧ | k ≤ i}∨

• ‖ϕRψ‖k
def
= {{‖ψ‖i, ‖ϕ‖j | k ≤ j < i}∨ | k ≤ i}∧

�

We define now how a THT model is translated into HT∞ in the sense
of [55] and then we will prove that, there exists a one-to-one correspond-
ence between the set of THT models of a formula ϕ and the HT∞ models of
‖ϕ‖0.

3.4. TEL and Infinitary Formulas 51

Definition 3.7. Let M = 〈H,T〉 be a THT interpretation. We define its corres-
ponding HT interpretation M∞ = 〈H∞, T∞〉 as:

H∞ =
⋃
i≥0

{©ip | p ∈ Hi}

T∞ =
⋃
i≥0

{©ip | p ∈ Ti}

�

Lemma 3.1. Let ϕ be a THT formula built on a signatureAt, M = 〈H,T〉 a THT
interpretation and M∞ = 〈H∞, T∞〉 its corresponding HT∞ interpretation. For
all i ∈ N, it holds that

M, i |= ϕ⇔M∞ |= ‖ϕ‖i.

Proof. We proceed by structural induction (by (Ind.)we denote the Induction
Hypothesis):

M, i |= p, with p ∈ At ⇔ p ∈ Hi

⇔ ©ip ∈ H∞ (Def. 3.7)
⇔ M∞ |= ‖p‖i

M, i |= α ∧ β ⇔ M, i |= α and M, i |= β
⇔ M∞ |= ‖α‖i and M∞ |= ‖β‖i (Ind.)
⇔ M∞ |= {‖α‖i, ‖β‖i}∧ (Def. 2.25)
⇔ M∞ |= ‖α ∧ β‖i (Def. 3.6)

M, i |= α ∨ β ⇔ M, i |= α or M, i |= β
⇔ M∞ |= ‖α‖i or M∞ |= ‖β‖i (Ind.)
⇔ M∞ |= {‖α‖i, ‖β‖i}∨ (Def. 2.25)
⇔ M∞ |= ‖α ∨ β‖i (Def. 3.6)

M, i |= α→ β ⇔ for any w ∈ {H,T}, 〈w,T〉, i 6|= α or 〈w,T〉, i |= β

Now, since the THT-interpretation 〈T,T〉 also corresponds to the HT∞ in-
terpretation 〈T, T 〉, we can apply induction on subformulas, so that we con-
tinue with the equivalent conditions:

⇔ for any w ∈ {H∞, T∞}, 〈w, T∞〉 6|= ‖α‖i or 〈w, T∞〉 |= ‖β‖i (Ind.)
⇔ M∞ |= ‖α→ β‖i.

52 Chapter 3. Temporal Equilibrium Logic

M, i |= αUβ ⇔ ∃j, i ≤ j s.t. M, j |= β
and ∀k, if i ≤ k < j then M, k |= α

⇔ ∃j, i ≤ j s.t. M∞, |= ‖β‖j
and ∀k, if i ≤ k < j then M∞ |= ‖α‖k

(Ind.)

⇔ M∞ |= {{‖α‖k, ‖β‖j | i ≤ k < j}∧ | i ≤ j}∨ (Def. 2.25)
⇔ M∞ |= ‖αUβ‖i (Def. 3.6)

M, i |= αRβ ⇔ ∀j, j ≤ i if M, j 6|= β then
∃k, i ≤ k < j such that M, j |= α

⇔ ∀j, j ≤ i if M∞ 6|= ‖β‖j then
∃k, i ≤ k < j such that M∞ |= ‖α‖k

(Ind.)

⇔ M∞ |= {{‖β‖j , ‖α‖k | i ≤ k < j}∨ | i ≤ j}∧ (Def. 2.25)
⇔ M∞ |= ‖αRβ‖i (Def. 3.6)

�

This one-to-one correspondence together with how the minimisation cri-
terion is defined, cause that the same correspondence remains after the min-
imisation. Once we have shown that Temporal Here and There can be encoded
into Infinitary Formulas, we can apply all results on the latter formalism (the
extension of Ferraris’ definition of reduct) to the infinitary case [115].

Chapter 4

Towards an axiomatisation
of THT

Usually, normal modal logics can be defined in two different ways: semantic-
ally, that is by describing a set of formulas that are “valid” with respect to a
predefined Kripke frame, or syntactically (or axiomatically), where a logic is
defined by a set of axioms and inference rules that are sufficient for deriving
formulas that are “theorems”.

When the set of axioms and inference rules is finite we are defining a calcu-
lus. Dealing with a calculus means that we only have at hand the axioms and
inference rules; the logic represented by the calculus is the set of theorems
that are deducible in it. It may happen that a given logic can be represented
by different calculi, which leads to the problem of deciding whether two given
axiomatic systems are equivalent (that is, both generate the same logic) or
not. A formula ϕ is said to be valid for a class of frames C if for any kripke
modelM that can be formed with a frame from C,M satisfies ϕ.

A desirable property of an axiomatic system is not only to be sound but also
complete. Given a class of frames C, we say that an axiomatic system `Λ for a
logic Λ is sound with respect to a class C of Kripke frames if for every formula
ϕ of Λ it holds that

if `Λ ϕ then C |= ϕ.

Informally speaking, this property means that every derivable formula in
the logic is also valid with respect to C. Conversely, the axiomatic system is
complete if for any formula ϕ of Λ it holds that

if C |= ϕ then `Λ ϕ,

or, in other words, every formula semantically valid in C is also derivable from
the axiomatic system.

While several axiomatisations of LTL have been published in the state of
the art [53, 121], Here and There was first axiomatised by Łukasiewicz [85]
and later, in a slightly simplified form, by Hosoi [60]. Hosoi’s axiomatic system
consists of the Hilbert-type Intuitionistic Propositional calculus plus the axiom

54 Chapter 4. Towards an axiomatisation of THT

ϕ ∨ (ϕ→ ψ) ∨ (ψ → ⊥) .

In this chapter we aim to set the bases for axiomatising THT by adapting
Goldblatt’s proof of completeness of LTL [53], which is based on the canonical
model and filtration. We start presenting an axiomatisation of Here and There
based on the concept of HT system.

4.1 HT axiomatisation

As a first building block of our THT axiomatisation, we provide a sound and
complete axiomatic system for Here and There. It consists of axioms (1)-(9)
and Inference Rule 10 from Table 4.1 and Modus Ponens as rule of inference.
We start defining when a formula is valid in Here and There as well as when
it is derivable.

Definition 4.1 (Validity). We say that a formula ϕ is valid, written |= ϕ, if it is
a tautology in Here and There. �

Definition 4.2 (Derivability). An HT formula ϕ is said to be derivable from a
set of formulas Γ, written Γ ` ϕ, if there exists n ∈ N and a sequence ψ0, · · · , ψn
of formulas such that ψn = ϕ and for all i ∈ N, if i ≤ n then one of the following
conditions holds:

• ψi is an instance of one of the axioms (1)-(9) from Table 4.1,

• ψi ∈ Γ,

• ψi is obtained from previous formulas in the sequence by means of Modus
Ponens or by Rule (10) from Table 4.1.

�

Theorem 4.1 (Deduction Theorem adapted from [25]). Let Γ be a set of for-
mulas and both ϕ and ψ two formulas. It holds that

if Γ, ϕ `HT ψ then Γ `HT ϕ→ ψ

�

The proof of soundness consists in checking that axioms (1)-(9) shown
in Table 4.1 are valid in Here and There while both (10) and Modus Ponens
preserve validity. Since the only difference of our proposal with respect to
Hosoi’s axiomatisation is the use of (10) instead of Hosoi’s axiom, we refer
to [60] for the validity of HT axioms while we prove that (10) preserves valid-
ity in Lemma A.5. Concerning to completeness, we present here an alternative
proof based on the concept of HT system. We begin defining the concept of
tableau.

4.1. HT axiomatisation 55

Table 4.1: Set of axioms and inference rules
Logic Name Axiom/ Inference Rule

H
er

e
an

d
T

he
re

Pr
op

.
Lo

gi
c

(1)ϕ0 → (ϕ1 → ϕ0)
(2)(ϕ0 → (ϕ1 → ϕ2))→ ((ϕ0 → ϕ1)→ (ϕ0 → ϕ2))
(3)ϕ0 ∧ ϕ1 → ϕ0

(4)ϕ0 ∧ ϕ1 → ϕ1

(5)ϕ0 → (ϕ1 → ϕ0 ∧ ϕ1)
(6)ϕ0 → ϕ0 ∨ ϕ1

(7)ϕ1 → ϕ0 ∨ ϕ1

(8)(ϕ2 → ϕ2)→ ((ϕ1 → ϕ2)→ (ϕ0 ∨ ϕ1 → ϕ2))
(9)⊥ → ϕ0

(10)
φ1 ∧ · · · ∧ φn → χ1 ∨ · · · ∨ χn

φ1 ∨ (φ1 → χ1) ∨ · · · ∨ φn ∨ (φn → χn)

Modus Ponens (11)
ϕ→ ψ,ϕ

ψ

K
H

T

K�

(12)
φ1 ∧ · · · ∧ φm → χ1 ∨ · · · ∨ χn ∨ ϕ

�φ1 ∧· · ·∧�φm → ♦χ1 ∨· · ·∨ ♦χn ∨�ϕ

(13)
φ1 ∧ · · · ∧ φm → χ1 ∨ · · · ∨ χn ∨ ¬¬ϕ

�φ1 ∧ · · · ∧�φm → ♦χ1 ∨ · · · ∨ ♦χn ∨ ¬¬�ϕ

(14)
φ1 ∧ · · · ∧ φm ∧ ϕ→ χ1 ∨ · · · ∨ χn

�φ1 ∧ · · · ∧�φm ∧ ♦ϕ→ ♦χ1 ∨ · · · ∨ ♦χn

(15)
φ1 ∧ · · · ∧ φm ∧ ¬¬ϕ→ χ1 ∨ · · · ∨ χn

�φ1 ∧ · · · ∧�φm ∧ ¬¬♦ϕ→ ♦χ1 ∨ · · · ∨ ♦χn

K©
(16)

φ1 ∧ · · · ∧ φm → χ1 ∨ · · · ∨ χn ∨ ϕ
©φ1 ∧ · · · ∧©φm → ©̂χ1 ∨ · · · ∨ ©̂χn ∨©ϕ

(17)
φ1 ∧ · · · ∧ φm → χ1 ∨ · · · ∨ χn ∨ ¬¬ϕ

©φ1 ∧ · · · ∧©φm → ©̂χ1 ∨ · · · ∨ ©̂χn ∨ ¬¬© ϕ

(18)
φ1 ∧ · · · ∧ φm ∧ ϕ→ χ1 ∨ · · · ∨ χn

©φ1 ∧ · · · ∧©φm ∧ ©̂ϕ→ ©̂χ1 ∨ · · · ∨ ©̂χn

(19)
φ1 ∧ · · · ∧ φm ∧ ¬¬ϕ→ χ1 ∨ · · · ∨ χn

©φ1 ∧ · · · ∧©φm ∧ ¬¬©̂ϕ→ ©̂χ1 ∨ · · · ∨ ©̂χn

negation

(20) ♦(ϕ→ ⊥)→ (�ϕ→ ⊥)
(21) (♦ϕ→ ⊥)→ �(ϕ→ ⊥)

(22) ©̂(ϕ→ ⊥)→ (©ϕ→ ⊥)

(23) (©̂ϕ→ ⊥)→©(ϕ→ ⊥)

S4
H

T Reflexivity
(24)ϕ→ ♦ϕ
(25)�ϕ→ ϕ

Transitivity
(26)�ϕ→ ��ϕ
(27) ♦♦ϕ→ ♦ϕ

T
H

T

(28) �ϕ→©ϕ
(29) ©̂ϕ→ ♦ϕ

Induction
(30)

ϕ→©ϕ
ϕ→ �ϕ

(31)
©̂ϕ→ ϕ

♦ϕ→ ϕ
Functional (32)©̂ϕ↔©ϕ

56 Chapter 4. Towards an axiomatisation of THT

4.1.1 Background on tableaux

The concept of set of formulas that can be derived from an axiomatic system
is essential when proving completeness in modal and intuitionistic logics. This
set of formulas can be defined in terms of a semantic tableau [25] (we will deal
with maximal consistent tableaux), that will be used along this chapter. We
provide next a formal definition of a tableau system taken from [25] together
with some of its useful properties:

Definition 4.3 (Tableau from [25]). A tableau consists of a pair of sets of for-
mulas t = (Γ,∆). We will say that

• t is consistent if:

∀ψ1, · · · , ψn ∈ ∆ then Γ 6` ψ1 ∨ · · · ∨ ψn

Note that the empty disjunction corresponds to ⊥.

• t is maximal if
∀ψ (ψ ∈ ∆ or ψ ∈ Γ) .

• t is disjoint if Γ ∩∆ = ∅ and ⊥ 6∈ Γ. It should be noted that if a tableau
(Γ,∆) is both consistent and disjoint then ⊥ ∈ ∆.

• t is saturated if:

– If ϕ ∨ φ ∈ Γ then either ϕ ∈ Γ or φ ∈ Γ.

– If ϕ ∨ φ ∈ ∆ then both ϕ ∈ ∆ and φ ∈ ∆.

– If ϕ ∧ φ ∈ Γ then both ϕ ∈ Γ and φ ∈ Γ.

– If ϕ ∧ φ ∈ ∆ then either ϕ ∈ ∆ or φ ∈ ∆.

– If ϕ→ φ ∈ Γ then either ϕ ∈ ∆ or ψ ∈ Γ

�

If we focus on consistent tableaux, we will see that they are implicitly
disjoint and, by Lindenbaum Lemma they can be extended to a maximal con-
sistent one.

Lemma 4.1 (Lindenbaum Lemma from [25]). Let t be a tableau. If t is consist-
ent then it can be extended to a maximal consistent tableau t′ �

Lemma 4.2. Let t = (Γ,∆) be a tableau. If t is consistent then t is disjoint.

Proof. Suppose t is consistent but not disjoint. Hence, either Γ ∩ ∆ 6= ∅ or
⊥ ∈ Γ. The case ⊥ ∈ Γ would imply that t is not consistent and, therefore,
a contradiction. On the other hand, if Γ ∩ ∆ 6= ∅ then there exists a formula
ϕ such that ϕ ∈ Γ and ϕ ∈ ∆ and, therefore, Γ ` ϕ. Since ϕ ∈ ∆, t is not
consistent and it contradicts our assumption. �

Lemma 4.3 (Saturation). Let t be a tableau. If t is maximal and consistent then
t is saturated.

4.1. HT axiomatisation 57

Proof. assume that t is maximal and consistent (and therefore disjoint) but it
is not saturated. We consider the following cases:

• ϕ ∨ ψ ∈ Γ but both ϕ 6∈ Γ and ψ 6∈ Γ: since t is maximal we get that
ϕ ∈ ∆ and ψ ∈ ∆. As ϕ ∨ ψ ∈ Γ we obviously have Γ ` ϕ ∨ ψ, which
contradicts the assumption of consistency.

• ϕ ∨ ψ ∈ ∆ but either ϕ 6∈ ∆ or ψ 6∈ ∆: again, as t is maximal ϕ ∈ Γ
or ψ ∈ Γ. But this implies Γ ` ϕ ∨ ψ, which is a contradiction since
ϕ ∨ ψ ∈ ∆.

• ϕ ∧ ψ ∈ Γ but either ϕ 6∈ Γ or ψ 6∈ Γ: similarly to the previous cases,
ϕ ∈ ∆ or ψ ∈ ∆ and, since ϕ ∧ ψ ∈ Γ, we derive the contradiction Γ ` ϕ
and Γ ` ψ.

• ϕ ∧ ψ ∈ ∆ but both ϕ 6∈ ∆ and ψ 6∈ ∆: as in the previous cases, we can
easily derive that ϕ ∈ Γ and ψ ∈ Γ. Hence, from Γ, which contains both
ϕ and ψ, we can derive ϕ∧ψ which also belongs to ∆, contradicting the
consistency criterion on t.

• ϕ → ψ ∈ Γ but both ϕ 6∈ ∆ and ψ 6∈ Γ. Note that, because of the
maximality and consistency critera, it holds that ϕ ∈ Γ and ψ ∈ ∆. From
ϕ ∈ Γ and ϕ→ ψ ∈ Γ we conclude, by Modus Ponens, that ψ ∈ Γ, which
contradicts the consistency of t.

�

Definition 4.4 (HT system). An HT system s = 〈(ΓH ,∆H), (ΓT ,∆T)〉, which
is a simplification of a Hintikka system for Intuitionistic logic [25], consists of a
pair of maximal consistent tableaux satisfying the following conditions:

• ΓH ⊆ ΓT and, as a consequence of being maximal an consistent, ∆T ⊆
∆H ;

• If φ→ ψ ∈ ∆H and φ ∈ ∆H then φ ∈ ΓT and ψ ∈ ∆T .

We say that s is a system for a formula ϕ if ϕ ∈ ∆H . �

Definition 4.5 (Total System). Given an HT system x = 〈(ΓH ,∆H), (ΓT ,∆T)〉,
we define its corresponding total system as x̌ = 〈(ΓT ,∆T), (ΓT ,∆T)〉. �

An interesting property of HT systems is that they can be built from a con-
sistent tableau (by means of Lemma 4.1), as shown in the following lemma.

Lemma 4.4 (System Construction). Let t = (Γt,∆t) be a tableau. If t is con-
sistent then the tableau t′ = (Γt

′
,∆t′), defined as

Γt
′

= Γt ∪ {φ | φ→ ψ ∈ ∆t and φ ∈ ∆t}
∆t′ = {ψ | φ→ ψ ∈ ∆t and φ ∈ ∆t},

is also consistent.

58 Chapter 4. Towards an axiomatisation of THT

Proof. Suppose that t is consistent but t′ is not. In case that ∆t contains no
formula of the form φ → ψ the resulting tableau (Γt, ∅) is not consistent and,
therefore, (Γt,∆t) is not consistent and we get a contradiction.
Otherwise, if we assume that ∆t contains formulas of the form φ → ψ, then
there exist m and n in N and formulas ϕ1, ψ1, · · · , ϕm+n, ψm+n such that

{φ1 → ψ1, · · · , φm → ψm, φm+1 → ψm+1, · · · , φm+n → ψm+n} ⊆ ∆t,

{φ1, · · · , φm, φm+1, · · · , φm+n} ⊆ ∆t

and Γt ∪ {φ1, · · · , φm} ` ψm+1 ∨ · · · ∨ ψm+n. Therefore, we can conclude that

Γt∪{φ1, · · · , φm, φm+1, · · · , φm+n} ` ψ1∨· · ·∨ψm∨ψm+1∨· · ·∨ψm+n. (4.1)

By applying Lemma 4.1 on (4.1) we conclude

Γt ` φ1∧· · ·∧φm∧φm+1∧· · ·∧φm+n → ψ1∨· · ·∨ψm∨ψm+1∨· · ·∨ψm+n (4.2)

and, therefore, the following expression can be derived by applying Rule (10)
from Table 4.1:

Γt ` (φ1 ∨ (φ1 → ψ1)) ∨ · · · ∨ (φm ∨ (φm → ψm)) ∨
(φm+1 ∨ (φm+1 → ψm+1)) ∨ · · · ∨ (φm+n ∨ (φm+n → φm+n)) .

However, all φi and (φi → ψi), with 1 ≤ i ≤ m + n, belong to ∆t and this
contradicts the consistency of t.

�

We introduce next some properties of HT systems we will use later, all of
them related to the behaviour of connectives→ and ¬.

Proposition 4.1. Let s = 〈(ΓH ,∆H), (ΓT ,∆T)〉 be a system. The following
properties hold

(i) Both (ΓH ,∆H) and (ΓT ,∆T) are disjoint.

(ii) Both (ΓH ,∆H) and (ΓT ,∆T) are saturated.

(iii) If α → β ∈ ΓH then either α ∈ ∆H or β ∈ ΓH and either α ∈ ∆T or
β ∈ ΓT .

(iv) If α→ β ∈ ∆H then α ∈ ΓH and β ∈ ∆H or α ∈ ΓT and β ∈ ∆T .

(v) α→ β ∈ ∆T iff α ∈ ΓT and β ∈ ∆T .

(vi) ¬¬α ∈ ΓH iff α ∈ ΓT .

�

4.1. HT axiomatisation 59

4.1.2 Completeness of here and there

In this section, we use HT systems to prove the completeness of Hosoi’s axio-
matic system. We first define the correspondence between HT interpretations
and HT systems.

Definition 4.6. Given an HT system s = 〈(ΓH ,∆H), (ΓT ,∆T)〉, letM=〈Hs, Ts〉
be its corresponding HT interpretation, which is defined as follows:

• Hs = ΓH ∩At (here, At stands for the set of propositional variables)

• Ts = ΓT ∩At.

Lemma 4.5 (Truth Lemma for HT). Let ϕ be HT formula on a set of pro-
positional atoms At, s = 〈(ΓH ,∆H), (ΓT ,∆T)〉 an HT system and both M =
〈Hs, Ts〉 and M̌ = 〈Ts, Ts〉 their corresponding HT and total-HT interpretations
respectively. The following conditions hold:

(A) If ϕ ∈ ΓH thenM |= ϕ.

(B) If ϕ ∈ ∆H thenM 6|= ϕ.

(C) If ϕ ∈ ΓT then M̌ |= ϕ.

(D) If ϕ ∈ ∆T then M̌ 6|= ϕ.

Proof. We proceed by structural induction:

Base case: p ∈ At

(A) p ∈ ΓH ⇒ p ∈ Hs (Def. 4.6)
⇒ M |= p

(B) p ∈ ∆H ⇒ p 6∈ ΓH (Prop. 4.1(i))
⇒ p 6∈ Hs (Def. 4.6)
⇒ M 6|= p

(C) p ∈ ΓT ⇒ p ∈ Ts (Def. 4.6)
⇒ M̌ |= p

(D) p ∈ ∆T ⇒ p 6∈ ΓT (Prop. 4.1(i))
⇒ p 6∈ Ts (Def. 4.6))
⇒ M̌ 6|= p

60 Chapter 4. Towards an axiomatisation of THT

Inductive step

α∧ β

(A) α ∧ β ∈ ΓH ⇒ α ∈ ΓH and β ∈ ΓH (Prop. 4.1(ii))
⇒ M |= α andM |= β (Ind.)
⇒ M |= α ∧ β

(B) α ∧ β ∈ ∆H ⇒ α ∈ ∆H or β ∈ ∆H (Prop. 4.1(ii))
⇒ M 6|= α orM 6|= β (Ind.)
⇒ M 6|= α ∧ β

The proof for (C) and (D) would follows the same reasoning as in the cases
(A) and (B) respectively.

α∨ β

(A) α ∨ β ∈ ΓH ⇒ α ∈ ΓH or β ∈ ΓH (Prop. 4.1(ii))
⇒ M |= α orM |= β (Ind.)
⇒ M |= α ∨ β

(B) α ∨ β ∈ ∆H V α ∈ ∆H and β ∈ ∆H (Prop. 4.1(ii))
⇒ M 6|= α andM 6|= β (Ind.)
⇒ M 6|= α ∨ β

The proof for (C) and (D) would follows the same reasoning as in the cases
(A) and (B) respectively.

α→ β

(A) α→ β ∈ ΓH ⇒ α→ β ∈ ΓT (ΓH ⊆ ΓT)

⇒

α ∈ ∆H or β ∈ ΓH
and
α ∈ ∆T or β ∈ ΓT

(Prop. 4.1(iii))

⇒

M 6|= α orM |= β
and
M̌ 6|= α or M̌ |= β

(Ind.)

⇒ M |= α→ β (Def. 3.1)

4.1. HT axiomatisation 61

(B) α→ β ∈ ∆H ⇒

α ∈ ΓH and β ∈ ∆H

or
α ∈ ΓT and β ∈ ΓT

(Prop. 4.1(iv))

⇒

M |= α andM 6|= β
or
M |= α andM 6|= β

(Ind.)

⇒ M 6|= α→ β (Def. 2.15)

(C) α→ β ∈ ΓT ⇒ α ∈ ∆T or β ∈ ΓT (Prop. 4.1(ii))
⇒ M̌ 6|= α or M̌ |= β (Ind.)
⇒ M̌ |= α→ β

(D) α→ β ∈ ∆T ⇒ α ∈ ΓT and β ∈ ∆T (Prop. (v))
⇒ M̌ |= α but M̌ 6|= β (Ind.)
⇒ M̌ 6|= α→ β

�

Finally, we prove that the axiomatic system is complete:

Theorem 4.2 (Completeness). Let ϕ be a formula. The following conditions are
equivalent:

1. |= ϕ

2. There exists no system for ϕ.

3. ` ϕ

Proof. We proceed as follows:

• 1 → 2: Suppose that |= ϕ and there exists a system for ϕ. Hence, there
exists s = 〈(ΓH ,∆H), (ΓT ,∆T)〉 such that ϕ ∈ ∆H . Since ϕ ∈ ∆H , by
the Lemma 4.5,M, s 6|= ϕ, which is a contradiction.

• 2 → 3: Assume that there exists no system for ϕ and 6` ϕ. Hence, the
tableau t0 = (∅, {ϕ}) is consistent. By Lemma 4.1, there exists a maximal
consistent tableau t = (ΓH ,∆H) satisfying ϕ ∈ ∆t

H . By Lemmas 4.4
and 4.1, t can be extended to a system s = 〈(ΓH ,∆H), (ΓT ,∆T)〉 such
that ϕ ∈ ∆H . However, s a system for ϕ and it contradicts our initial
assumption.

�

Once we have proven the completeness of Here and There we will try to
extend this proof to THT by adapting Goldblatt’s proof for LTL.

62 Chapter 4. Towards an axiomatisation of THT

4.2 A partial axiomatisation of temporal here and
there

In this section we present a partial axiomatisation of Temporal Here and There,
which is based on the analogous proof for the case of LTL developed by Gold-
blatt [53], and also inspired in Simpson’s work on Modal Intuitionistic Lo-
gic [110]. Our proof of completeness will use the canonical model construc-
tion (see Section 4.9) and filtration method (Section 4.2.4). However, it is
still incomplete since we have neither considered the connectives U and R
nor proven the corresponding Truth Lemma. We start redefining the syntax of
THT, where we introduced a new operator, ©̂, that corresponds to the dual of
©, and also the semantics in terms of Kripke models.

Definition 4.7 (Syntax). Given a set of propositional variables At, a THT for-
mula ϕ is built from the following the grammar:

ϕ := p | ⊥ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | �ϕ1 | ♦ϕ1 | ©ϕ1 | ©̂ϕ1

where p ∈ At and both ϕ1 and ϕ2 are THT formulas in their turn. �

Definition 4.8 (Semantics). A Temporal Here and There (THT) interpretation is
a Kripke structureM = 〈W,R�, R©, H, T 〉 such that W is set of Kripke worlds,
R� and R© are two accessibility relations (the former refers to the operators �
and ♦ while the latter refers to© and ©̂) such that:

• R� is reflexive and transitive.

• R© is functional and serial.

• R� corresponds to the reflexive transitive closure of R©.

Finally, both H and T are defined as follows:

• H : W → 2At, where At is the set of atoms.

• T : W → 2At,

satisfying
∀x ∈W,H(x) ⊆ T (x).

Using a similar notation as in in Definition 4.6, the corresponding modal HT
total interpretation M̌ as the structure 〈W,R�, R©, T, T 〉. The satisfacion of a
formula ϕ is defined in a recursive way as follows:

• M, x 6|= ⊥

• M, x |= p iff p ∈ H(x)

• M, x |= ϕ ∨ ψ iffM, x |= ϕ orM, x |= ψ

• M, x |= ϕ ∧ ψ iffM, x |= ϕ andM, x |= ψ

4.2. A partial axiomatisation of temporal here and there 63

• M, x |=ϕ→ ψ iff (M, x 6|= ϕ orM, x |= ψ)and
(
M̌, x 6|= ϕ or M̌, x |= ψ

)
• M, x |= �ϕ iff forall y ∈W if xR�y thenM, y |= ϕ

• M, x |= ♦ϕ iff there exists y ∈W such that xR�y andM, y |= ϕ

• M, x |=©ϕ iff forall y ∈W if xR©y thenM, y |= ϕ

• M, x |= ©̂ϕ iff there exists y ∈W such that xR©y andM, y |= ϕ

�

4.2.1 Canonical model: definition and properties

The method of the Canonical Model has been used to prove completeness and
other properties, like finite approximability, of many superintuitionistic and
modal logics. The canonical model, in its former definition, consists of a Kripke
structure where Kripke worlds are maximal consistent sets of formulas. In our
case, those worlds will be all possible HT systems. We define the canonical
model for modal HT logics below:

Definition 4.9 (Canonical Model, adapted from [25]). We define the Canonical
Model structure for our modal HT language built on a set of atoms At, as the
structureMc = 〈Wc, R

�
c , R

©
c , Hc, Tc〉 where:

• Wc is the set of all possible Here and There systems (see Definition 4.4).
Note that, since 6 `HT ⊥, the tableau (∅, {⊥}) is consistent and, because of
Lemma 4.4 it can be extended to a system which belongs to Wc.

• R�c is an accessibility relation defined among the systems in Wc. Given
two systems, x = 〈(ΓxH ,∆x

H), (ΓxT ,∆
x
T)〉 and y = 〈(ΓyH ,∆

y
H), (ΓyT ,∆

y
T)〉,

x R�c y is defined as

x R�c y
def
= (∀ϕ if �ϕ ∈ ΓxH then ϕ ∈ ΓyH)

and
(∀ϕ if ♦ϕ ∈ ∆x

H then ϕ ∈ ∆y
H) .

We usually refer to x R�c y by using the expression

�ΓxH ⊆ ΓyH and ♦∆x
H ⊆ ∆y

H

where both sets, �Γ and ♦∆, are defined as:

�Γ = {ϕ | �ϕ ∈ Γ}
♦∆ = {ϕ | ♦ϕ ∈ ∆}

64 Chapter 4. Towards an axiomatisation of THT

• R©c is an accessibility relation that connects two systems in Wc. Given
two systems, x = 〈(ΓxH ,∆x

H), (ΓxT ,∆
x
T)〉 and y = 〈(ΓyH ,∆

y
H), (ΓyT ,∆

y
T)〉,

x R©c y if

x R©c y
def
= (∀ϕ if © ϕ ∈ ΓxH then ϕ ∈ ΓyH)

and(
∀ϕ if ©̂ϕ ∈ ∆x

H then ϕ ∈ ∆y
H

)
.

We usually refer to x R©c y by using the expression

©ΓxH ⊆ ΓyH and ©̂∆x
H ⊆ ∆y

H

where both sets,©Γ and ©̂∆, are defined as:

©Γ = {ϕ | ©ϕ ∈ Γ}
©̂∆ = {ϕ | ©̂ϕ ∈ ∆}

• Hc and Tc are two evaluation functions defined as

Hc : Wc → 2At
def
= Hc(〈(ΓH ,∆H), (ΓT ,∆T)〉) = ΓH ∩At.

Tc : Wc → 2At
def
= Tc(〈(ΓH ,∆H), (ΓT ,∆T)〉) = ΓT ∩At.

Since every system s ∈ Wc satisfies the condition Hc(s) ⊆ Tc(s) then Mc is a
model. �

We present below some properties of the canonical model, which will be used
along this chapter:

Lemma 4.6. Let x and y be two systems in the canonical modelMc. If x R�c y
then �ΓxT ⊆ ΓyT and ♦∆x

T ⊆ ∆y
T .

Proof. For the sake of contradiction assume that either �ΓxT 6⊆ ΓyT or ♦∆x
T 6⊆

∆y
T . If �ΓxT 6⊆ ΓyT then there exists a formula ϕ such that �ϕ ∈ ΓxT but ϕ 6∈ ΓyT .

Hence

�ϕ ∈ ΓxT ⇒ ¬�ϕ ∈ ∆x
T (⊥ ∈ ∆x

H and Prop. 4.1 (v))
⇒ ¬�ϕ ∈ ∆x

H (∆x
T ⊆ ∆x

H)
⇒ ♦(ϕ→ ⊥) ∈ ∆x

H (Axiom (20) from Table 4.1)
⇒ ϕ→ ⊥ ∈ ∆y

H (xR�c y)
⇒ ϕ ∈ ΓyT (Prop. 4.1(iii))

which is a contradiction. On the other hand, if ♦∆x
T 6⊆ ∆y

T then there exists a
formula ϕ such that ♦ϕ ∈ ∆x

T but ϕ 6∈ ∆y
T , so we can derive

4.2. A partial axiomatisation of temporal here and there 65

ϕ 6∈ ∆y
T ⇒ ϕ ∈ ΓyT (Prop. 4.1(i))
⇒ ¬ϕ ∈ ∆y

T (Prop. 4.1(v))
⇒ ¬ϕ ∈ ∆y

H (∆y
T ⊆ ∆y

H)
⇒ �¬ϕ 6∈ ΓxH (xR�c y)
⇒ �¬ϕ ∈ ∆x

H (Prop. 4.1(i))
⇒ ¬♦ϕ ∈ ∆x

H (Axiom (21) from Table 4.1)
⇒ ♦ϕ ∈ ΓxT (Prop. 4.1(iv))

which contradicts the consistency of the tableau (ΓxT ,∆
x
T). �

Lemma 4.7. Let x and y be two systems in the canonical model Mc. If xR©c y
then©ΓxT ⊆ ΓyT and©∆x

T ⊆ ∆y
T .

Proof. It can be done by following the same reasoning as in Lemma 4.6, but
using Axioms (22) and (23) instead. �

4.2.2 Canonical model: an example

As an example of a proof of completeness using the canonical model con-
struction, we show that the axiomatic system for the logic KHT, which consists
of Axioms (1)-(9), (20)-(21) from Table 4.1 and rules of inference (10)-(15)
from the same table, is sound and complete with respect to all class of frames.
KHT formulas are built from the grammar

ϕ := p | ⊥ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | �ϕ1 | ♦ϕ1,

where both ϕ1 and ϕ2 are valid formulas in their turn, while its semantics
is given in terms of Kripke structures.

Definition 4.10 (KHT semantics). A KHT interpretation is defined as the Kripke
structure M = 〈W,R�, H, T 〉 where W is a set of worlds, R� an accesibility
relation and both H and T : W → 2At, with At being a signature, are two
evaluation functions such that

∀x ∈W,H(x) ⊆ T (x).

The structure 〈W,R�, T, T 〉, which is denoted by M̌ is called total Kripke
model. A modelM satisfies a formula ϕ in a world x ∈W if:

• M, x 6|= ⊥

• M, x |= p iff p ∈ H(x)

• M, x |= ϕ ∨ ψ iffM, x |= ϕ orM, x |= ψ

• M, x |= ϕ ∧ ψ iffM, x |= ϕ andM, x |= ψ

• M, x |=ϕ→ ψ iff (M, x 6|= ϕ orM, x |= ψ)and
(
M̌, x 6|= ϕ or M̌, x |= ψ

)
• M, x |= �ϕ iff forall y ∈W if xR�y thenM, y |= ϕ

• M, x |= ♦ϕ iff there exists y ∈W such that xR�y andM, y |= ϕ

66 Chapter 4. Towards an axiomatisation of THT

The KHT canonical model is the structure Mc = 〈Wc, R
�
c , Hc, Tc〉 where

Wc, R�c and both Hc and Tc are defined as in Definition 4.9. The following
lemma, as Lemma 4.5 for HT, states thatMc determines the logic KHT.

Lemma 4.8 (Truth lemma for KHT). Let ϕ a KHT formula and x a system in the
canonical modelMc. The following conditions hold:

• If ϕ ∈ ΓxH thenMc, x |= ϕ

• If ϕ ∈ ∆x
H thenMc, x 6|= ϕ

• If ϕ ∈ ΓxT then M̌c, x |= ϕ

• If ϕ ∈ ∆x
T then M̌c, x 6|= ϕ

Proof. We proceed by structural induction on ϕ. Since the cases for atoms and
connectives ∧, ∨ and→ have been proved in Lemma 4.5, we will only consider
the modal connectives:

• ϕ = �α:

1. Assume that �α ∈ ΓxH but Mc, x 6|= �α. Due to the initial as-
sumption, we assure that there exists one system y ∈ Wc such that
xR�c y andM, y 6|= α. Finally, by the induction hypothesis we derive
that α ∈ ∆y

H and, from xR�c y and α ∈ ∆y
H , �α 6∈ ΓxH , which is a

contradiction.

2. Assume that �α ∈ ∆x
H and let u = (�ΓxH ,♦∆x

H ∪ {α}) a consistent
tableau (because of Lemma A.4). By Lemma 4.4, we can extend u
to a system y ∈ Wc such that, by definition, xR�c y and α ∈ ∆y

H .
Hence, Mc, y 6|= α because of the induction hypothesis and this
means thatMc, x 6|= �α.

3. Assume that �α ∈ ΓxT but M̌c, x 6|= �α. It means that there exists a
system y in Wc such that xR�c y and M̌, y 6|= α. Then, by induction
hypothesis, we derive α ∈ ∆y

T . Finally, from xR�c y and α ∈ ∆y
T we

conclude, by Lemma 4.6, �α 6∈ ΓxT , which is a contradiction.

4. Since �α ∈ ∆x
T , �α ∈ ∆x

H . Let be t = (�ΓxH ,♦∆x
H ∪ {¬¬α}) be a

consistent tableau (because of Lemma A.1). By Lemma 4.4, t can
be extended to a system y belonging to Wc. By definition, xR�c y
and ¬¬α ∈ ∆y

H , thus, ¬α ∈ ΓyT (it follows from Proposition 4.1 (iv)
and ΓyH ⊆ ΓyT). Finally, since (ΓyT ,∆

y
T) is saturated, α ∈ ∆y

T and,
by induction hypothesis, M̌, y 6|= α and, therefore, M̌, x 6|= �α.

• ϕ = ♦α:

1. Assume that ♦α ∈ ΓxH and let t = (�ΓxH ∪ {α},♦∆x
H) be a consist-

ent tableau (because of Lemma A.2) and y ∈ Wc its corresponding
system. By definition, xR�c y and α ∈ ΓyH . Finally applying induc-
tion on α ∈ ΓyH we getM, y |= α and, therefore (note that xR�c y),
M, x |= ♦α.

4.2. A partial axiomatisation of temporal here and there 67

2. Assume that ♦α ∈ ∆x
H butM, x |= ♦ϕ. SinceM, x |= ♦ϕ, there ex-

ists a system y ∈Wc such that xR�c y andM, y |= α. By applying the
induction hypothesis, we derive that α ∈ ΓyH . Finally, since xR�c y
and ♦α ∈ ∆x

H , we derive that α ∈ ∆y
H , which is a contradiction.

3. Assume that ♦α ∈ ΓxT and let t = (�ΓxH ∪ {¬¬ϕ},♦∆x
H) be a con-

sistent tableau (because of Lemma A.3). As in the previous cases,
let y ∈ Wc be the system corresponding to u. It holds that xR�c y,
¬¬α ∈ ΓyH and α ∈ ΓyT (because of Proposition 4.1 (vi)). Finally,
by induction hypothesis, we derive M̌, y |= α and, since xRy, it
follows that M̌, x |= ♦α.

4. Assume that ♦α ∈ ∆x
T but M̌, x |= ♦ϕ. Since M̌, x |= ♦ϕ, there

exists a system y ∈ Wc such that xRcy and M̌, y |= α. By applying
the induction hypothesis we derive that α ∈ ΓyT . On the other
hand, since xR�c y and ♦α ∈ ∆x

T we derive, by Lemma 4.6, the
contradiction that α ∈ ∆y

T .

�

Finally use Lemma 4.8 to prove KHT completeness.

Theorem 4.3 (Soundness and Completeness for KHT).

`KHT ϕ iff |=KHT ϕ

Proof.

• `KHT ϕ ⇒|=KHT ϕ: Rules of inference (12)-(19) preserve validity and
axioms (20)-(23) are valid (see Section A.3).

• |=KHT ϕ ⇒`KHT ϕ: Suppose 6`KHT ϕ, then, by a similar argument
used for the completeness of Here and There, there exists a system s =
〈(ΓH ,∆H), (ΓT ,∆T)〉 such that ϕ ∈ ∆H . Take now the canonical model
Mc from Definition 4.9. Since s ∈Wc and ϕ ∈ ∆H then by Truth Lemma
for KHT (Lemma 4.8),Mc, s 6|=KHT ϕ which contradicts the assumption
|=KHT ϕ.

�

4.2.3 Back to THT, properties of R�c and R©c

THT frames are characterised by some conditions imposed on R�c and R©c :
while R�c is reflexive and transitive, R©c is serial and functional. The following
lemmas show that both relations satisfy these properties:

Lemma 4.9 (R�c is reflexive and transitive). The set of axioms (24)-(27) from
Table 4.1 guarantees that R�c is both reflexive and transitive.

Proof. We will proceed by contradiction in all cases. If we suppose that R�c
is not reflexive, then there exists a system x ∈ Wc such that x 6R�c x thus there
exists a formula ϕ such that either �ϕ ∈ ΓxH but ϕ 6∈ ΓxH or ♦ϕ ∈ ∆x

H and
ϕ 6∈ ∆x

H . In the first case we get

68 Chapter 4. Towards an axiomatisation of THT

�ϕ ∈ ΓxH ⇒ ϕ ∈ ΓxH (Axiom (25) from Table 4.1)

which is a contradiction. In the second case we have

ϕ 6∈ ∆x
H ⇒ ϕ ∈ ΓxH (Prop. 4.1(i))
⇒ ♦ϕ ∈ ΓxH (Axiom (24) from Table 4.1)

which is also a contradiction.
If we assume that R�c is not transitive then, there exist x, y, z ∈ Wc such

that xR�c y, yR�c z but x 6R�c z. From x 6R�c z we can conclude that there exists a
formula ϕ such that either �ϕ ∈ ΓxH and ϕ 6∈ ΓzH or ♦ϕ ∈ ∆x

H and ϕ 6∈ ∆z
H . In

the first case we get

�ϕ ∈ ΓxH ⇒ ��ϕ ∈ ΓxH (Axiom (26) from Table 4.1)
⇒ �ϕ ∈ ΓyH (xR�c y)
⇒ ϕ ∈ ΓzH (yR�c z)

which contradicts the consistency of the tableau (ΓzH ,∆
z
H). In the second case

we proceed as follows:

♦ϕ ∈ ∆x
H ⇒ ♦♦ϕ ∈ ∆x

H (Axiom (27) from Table 4.1))
⇒ ♦ϕ ∈ ∆y

H (x R�c y)
⇒ ϕ ∈ ∆z

H (y R�c z)

which is also a contradiction �

Lemma 4.10 (Seriality of R©c). R©c is serial, that is, it satisfies the following
property:

∀x ∈Wc,∃y ∈Wc s.t. xR©c y

Proof. Let x ∈ Wc be a system and ϕ a formula. Since Axiom (32) from
Table 4.1 belongs to ΓH and (ΓxH ,∆

x
H) is saturated, we get that either both

©ϕ and ©̂ϕ belong to ΓxH or both belong to ∆x
H . In the first case we can

define the tableau

(©ΓxH ∪ {ϕ}, ©̂∆x
H)

which, because of Corollary A.1, is consistent and therefore it can be extended
to a system y such that y ∈ Wc and, by definition, xR©c y. In the second case,
the tableau

(©ΓxH , ©̂∆x
H ∪ {ϕ}),

is consistent too (Corollary A.2), so it can also be extended to a system y such
that xR©c y. In both cases we have found a system y which is accessible from
x by means of R©c �

Lemma 4.11 (R©c is functional). The relation R©c is functional, that is, it
satisfies the expression:

∀x, y, z ∈Wc, if xR©c y and xR©c z then y = z

4.2. A partial axiomatisation of temporal here and there 69

Proof. Assume that R©c is not functional, so we get that

∃x, y, z ∈Wc s.t xR©c y and xR©c z but y 6= z.

Since y 6= z we must consider two different cases:

ϕ ∈ ΓyH and ϕ ∈ ∆z
H ⇔ ©̂ϕ 6∈ ∆x

H and©ϕ 6∈ ΓxH (xR©c y and xR©c z)
⇔ ©̂ϕ ∈ ΓxH and©ϕ ∈ ∆x

H (Prop. 4.1(i))

which contradicts the Axiom (32) of Table 4.1. The proof for the case ϕ ∈
ΓyT and ϕ ∈ ∆z

T would be performed by using Lemma 4.6 and the Axiom (32)
of Table 4.1. �

4.2.4 Ancestral lemma and filtration

Apart from the conditions imposed in the previous section, we need that(
R©c

)∗
= R�c ,

that is, R�c has to be equal to the reflexive transitive closure of R©c . Unfortu-
nately it cannot be proved unless we use the filtration method. The filtration
technique consists in, given a formula ϕ and a Kripke model M (like, for in-
stance, the canonical model), identify kripke points of M with same truth
values for ϕ and its subformulas and collapse them into equivalence clases.
This method, which may succeed even if the canonical model fails in proving
completeness, is formally defined next:

Definition 4.11. A set Σ is closed under subformulas if, for all formula ϕ ∈ Σ,
all subformulas of ϕ belong to Σ. �

Since we are interested only in the truth values of ϕ, which comes from the
truth values of its subformulas, filtration is defined with respect to a set closed
under subformulas. Filtration is usually defined with respect to an arbitrary
Kripke model but, since our structures contain two accesibility relations, R�

and R©, we define filtration considering this specific kind of structures. Our
definition also differs from the traditional one [53] in that ours is weaker but
sufficient to adapt Goldblatt’s argument to THT.

Definition 4.12 (Filtration). Let Σ be a THT set closed under subformulas and
M = 〈W,R�, R©, H, T 〉 a modal HT model. We define the equivalence relation
∼Σ on W as:

x ∼Σ y iff ∀ϕ ∈ Σ (M, x |= ϕ⇔M, y |= ϕ) and
(
M̌, x |= ϕ⇔ M̌, y |= ϕ

)
iff |x| =|y|.

The resulting Kripke structure MΣ = 〈WΣ, R
�
Σ , R

©
Σ , HΣ, TΣ〉, where WΣ =

W\ ∼Σ, is said to be a filtration ofM with respect to Σ iff it satisfies the follow-
ing conditions:

70 Chapter 4. Towards an axiomatisation of THT

(i) For all x, y ∈ W , if xR�y, then there exists z ∈ W such that |x|R�Σ |z| and
either |z| =|y| or |z| =|y̌|, where y and y̌ are a HT Kripke world and its
corresponding total world (see Definition 4.5) respectively.

(ii) For all x, y ∈W , if x R�y, then there exists z ∈W such that |z|R�Σ |y| and
either |z| =|x| or |z| =|x̌|, where x and x̌ are a HT Kripke world and its
corresponding total world (see Definition 4.5) respectively.

(iii) For all x, y ∈ W , if |x|R�Σ |y|, then for all formulas ϕ, if �ϕ ∈ Σ and
M, x |= �ϕ thenM, y |= ϕ.

(iv) For all x, y ∈ W , if |x|R�Σ |y|, then for all formulas ϕ, if ♦ϕ ∈ Σ and
M, x 6|= ♦ϕ thenM, y 6|= ϕ.

(v) For all x, y ∈W , if xR©y, then there exists z ∈W such that |x|R©Σ |z| and
either |z| =|y| or |z| =|y̌|.

(vi) For all x, y ∈W , if xR©y, then there exists z ∈W such that |z|R©Σ |y| and
either |z| =|x| or |z| =|x̌|.

(vii) For all x, y ∈ W , if |x|R©Σ |y|, then for all formulas ϕ, if ©ϕ ∈ Σ and
M, x |=©ϕ thenM, y |= ϕ.

(viii) For all x, y ∈ W , if |x|R©Σ |y|, then for all formulas ϕ, if ©̂ϕ ∈ Σ and
M, x 6|= ©̂ϕ thenM, y 6|= ϕ.

(ix) For all atoms p, if p ∈ Σ then for all x ∈W , |x| ∈ HΣ(p) iff x ∈ H(p).

(x) For all atoms p, if p ∈ Σ then for all x ∈W , |x| ∈ TΣ(p) iff x ∈ T (p).

�

Definition 4.13. Now let Mc = 〈Wc, R
�
c , R

©
c , Hc, Tc〉 be the canonical model

from Definition 4.9 and Σ a theory closed under subformulas . We define its
corresponding filtration model as follows:

MΣ = 〈WΣ, R
�
Σ , R

©
Σ , HΣ, TΣ〉

where

• WΣ = Wc\∼Σ.

• |x|R©Σ |y| iff there exists z, t ∈Wc such that x ∼Σ z, y ∼Σ t and z R©c t.

• |x|R�Σ |y| iff there exists n ∈ N such that |x|
(
R©Σ

)n
|y|.

• |x| ∈ HΣ(p) iff x ∈ Hc(p) for every atom p ∈ Σ.

• |x| ∈ TΣ(p) iff x ∈ Tc(p) for every atom p ∈ Σ.

�

We now proceed to check thatMΣ is a filtration ofMc. Note that the equi-
valence relation ∼Σ already satisfies conditions (ix) and (x) of Definition 4.12.
We start checking that R©Σ satisfies conditions (v)-(viii) of Definition 4.12.

4.2. A partial axiomatisation of temporal here and there 71

Lemma 4.12. R©Σ satisfies conditions (v)-(viii) of Definition 4.12.

Proof.

• Condition (v): assume that R©Σ does not satisfy condition (v). This
means that there exist two points x, y ∈ Wc such that xR©c y but for all
z ∈Wc, if |x|R©Σ |z| then |z| 6=|y| and |z| 6=|y̌|, but taking z = y, as xR©c y
we have |x|R©Σ |y| and the contradiction |y| 6=|y|.

• Condition (vi): Assume that R©Σ does not satisfy the condition (vi). It
would mean that there exist two points x, y ∈ Σ such that xR©c y but for
all z ∈ Wc such that |z|R©Σ |y| then |z| 6=|x| and |z| 6=|x̌|. However, if
we take z = x, it holds that |x|R©Σ |y| and therefore we can derive the
contradiction |x| 6=|x|.

• Condition (vii): Assume that there exist x, y ∈Wc and a formula ϕ ∈ Σ
such that |x|R©Σ |y| andMc, x |=©ϕ butMc, y 6|= ϕ. From the definition

|x|R©Σ |y| ⇔ ∃x
′ ∈|x|, y′ ∈|y| and x′R©c y

′.

and the assumptionsM, x |=©ϕ and x ∼Σ x′ we conclude bothM, x′ |=
©ϕ andM, y′ |= ϕ. Finally, sinceM, y′ |= ϕ and y ∼Σ y′ we derive that
M, y |= ϕ, which is a contradiction.

• Condition (viii): Assume that there exist x and y in Wc and a formula
ϕ ∈ Σ such that |x|R©Σ |y| and Mc, x 6|= ©̂ϕ but Mc, y |= ϕ. From the
definition

|x|R©Σ |y|
def
= ∃x′ ∈|x|, y′ ∈|y| and x′R©c y

′

and the facts y ∼Σ y′ we conclude thatM, y′ |= ϕ and thereforeMc, x
′ |=

©̂ϕ. Finally, since x′ ∼Σ x then we derive thatMc, x |= ©̂ϕ, which is a
contradiction.

�

Next step is to prove that R�Σ also satisfies (i)-(iv) of Definition 4.12, but
this step requires to introduce the following auxiliary lemma:

Lemma 4.13 (Definability Lemma adapted from [53]). For any set X ⊆ WΣ

there is a formula ΨX (a truth-functional combination of members of Σ) such
that for all x ∈Wc

Mc, x |= ΨX iff ∃|z| ∈ X s. t. |x| =|z| or |x| =|ž|.

Proof. For each t = 〈(ΓtH ,∆t
H), (ΓtT ,∆

t
T)〉, let Φt be the following conjunction

of formulas (for a better readability we assume that both ϕ and ψ belong to
Σ):

72 Chapter 4. Towards an axiomatisation of THT

Φt =

 ∧
ϕ∈ΓtH

ϕ

 ∧
 ∧
ϕ∈∆t

T

¬ϕ

 ∧
 ∧
ϕ∈(ΓtT

⋂
∆t
H)

¬¬ϕ

 ∧
 ∧
ϕ,ψ∈(ΓtT

⋂
∆t
H)

(ϕ→ ψ)

 .

By using a similar argument as in Proposition 2.5, we deduce that for all s ∈
Wc

Mc, s |= Φt iff |s| =|t| or |s| =|ť|,

where ť = 〈(ΓtT ,∆t
T), (ΓtT ,∆

t
T)〉 (see Definition 4.5). Now WΣ is finite, since

Σ is. So if

X = {|t1|, · · · , |tn|}

we can take

ΨX =
∨
|ti|∈X

Φti .

�

Now we can prove that R�Σ satisfies conditions (i)-(iv):

Lemma 4.14. R�Σ satisfies conditions (i)-(iv) of Definition 4.12

Proof.

• Condition (i): Suppose that there exists x, y ∈ Wc such that xR�c y and
take

X = {|z| s. t. ∃t ∈Wc |x|R�Σ |t| and either |t| =|z| or |t| =|ž|}.

Its complementary set is denoted by (WΣ \X). Note that, because of
how X is defined, |x| ∈ X and, moreover, it is easy to prove that

if |z| ∈ (WΣ \X) then |ž| ∈ (WΣ \X) . (4.3)

From Lemma 4.13 (Definability Lemma) and (4.3) we conclude that for
all u ∈Wc

Mc, u |= Ψ(WΣ\X) iff ∃ |z| ∈ (WΣ \X) s.t. |u| =|z| or |u| =|ž|(4.4)

iff |u| ∈ (WΣ \X) (4.5)

We aim to show that |y| ∈ X so, suppose by contradiction that |y| ∈
(WΣ \X). Therefore, from (4.5), we conclude that Mc, y |= Ψ(WΣ\X)

and due to the fact xR�c y we obtainMc, x |= ♦Ψ(WΣ\X).

4.2. A partial axiomatisation of temporal here and there 73

On the other hand, as |x| ∈ X, we derive that |x| 6∈ (WΣ \X) and,
because of (4.5), we obtainMc, x 6|= Ψ(WΣ\X). Hence

Mc, x 6|= ♦Ψ(WΣ\X) → Ψ(WΣ\X)

and, consequently, it follows that

6` ♦Ψ(WΣ\X) → Ψ(WΣ\X)

and, due to Rule (31) from Table 4.1, we get

6` ©̂Ψ(WΣ\X) → Ψ(WΣ\X),

which means that

∃u ∈Wc s.t. Mc, u |= ©̂Ψ(WΣ\X) butMc, u 6|= Ψ(WΣ\X).

While from Mc, u 6|= Ψ(WΣ\X) and (4.4) we conclude that |u| ∈ X
which, by definition of X, means that

∃t ∈Wc s.t. |x|R�Σ |t| and either |t| =|u| or |t| =|ǔ|, (4.6)

fromMc, u |= ©̂Ψ(WΣ\X) we get the expression

∃v ∈Wc s.t. uR©c v andMc, v |= Ψ(WΣ\X). (4.7)

This means that |v| ∈ (WΣ \X) and, therefore, |v̌| ∈ (WΣ \X). We
consider now the two cases in (4.6).

– |t| =|u|: from uR©c v, |x|R�Σ |u| and the Condition (v) of filtration,
we derive

∃|z| s. t. |x|R�Σ |z| and |z| =|v| or |z| =|v̌|.

From this, it follows the contradiction |v| ∈ X.

– |t| =|ǔ|: ǔR©c v̌ follows from uR©c v and Proposition A.1. Moreover,
Condition (v) allows us to derive |ǔ|R©Σ |v̌|, which together with
|x|R�Σ |ǔ|, leads to |x|R�Σ |v̌|. This fact means that v̌ ∈ X, but it is a
contradiction.

Summing up, it follows that our, |y| ∈ (WΣ \X), leads to a contradiction.

• Condition (ii): suppose that there exists x, y ∈ Wc such that xR�c y and
let

Y = {|z| s. t. ∃t ∈Wc |t|R�Σ |y| and either |t| =|z| or |t| =|ž|}

74 Chapter 4. Towards an axiomatisation of THT

be a set whose complementary is denoted by (WΣ \ Y). As in Condi-
tion (i), it holds that |y| ∈ Y and, moreover, it can be easily proved
that

if |z| ∈ (WΣ \ Y) then |ž| ∈ (WΣ \ Y) . (4.8)

Following the same argument as in Condition (i), it follows that for all
u ∈Wc

Mc, u |= Ψ(WΣ\Y) iff ∃ |z| ∈ (WΣ \ Y) s.t. |u| =|z| or |u| =|ž| (4.9)

iff |u| ∈ (WΣ \ Y) . (4.10)

Since what we aim is to show that |x| ∈ Y , suppose by contradiction
that |x| ∈ (WΣ \ Y). From |y| ∈ Y and (4.10) we obtain that Mc, y 6|=
Ψ(WΣ\Y) soMc, x 6|= �Ψ(WΣ\Y) (because xR�c y).

On the other hand, from our initial assumption, |x| ∈ (WΣ \ Y), we get
thatMc, x |= Ψ(WΣ\Y) and, therefore,Mc, x 6|= Ψ(WΣ\Y) → �Ψ(WΣ\Y).
This implies that 6` Ψ(WΣ\Y) → �Ψ(WΣ\Y), which together with Rule (31)
from Table 4.1 allows us to conclude 6` Ψ(WΣ\Y) → ©Ψ(WΣ\Y), which
means that

∃u ∈Wc s.t. Mc, u |= Ψ(WΣ\Y) butMc, u 6|=©Ψ(WΣ\Y).

While Mc, u |= Ψ(WΣ\Y) and (4.10) allow us to derive |u| ∈ (WΣ \ Y),
fromMc, u 6|=©Ψ(WΣ\Y) we have that

∃v ∈Wc s.t. uR©c v andMc, v 6|= Ψ(WΣ\Y),

which, because of the expression (4.10), means that |v| ∈ Y , which
corresponds to the complementary set of (WΣ \ Y). Since |v| ∈ Y , we
use the definition of Y to conclude

∃t ∈Wc s.t. |t|R�Σ |y| and |t| =|v| or |t| =|v̌|, (4.11)

and we go now through (4.11) by cases:

– |t| =|v|: we get that |v|R�Σ |y|, which together with uR©c v and Con-
dition (vi) of filtration, lead to the expression

∃z ∈Wc s. t. |z|R�Σ |y| and |z| =|u| or |z| =|ǔ|.

This would mean, by definition of Y , that |u| ∈ Y , which is a con-
tradiction.

– |t| =|v̌|: from uR©c v and Proposition A.1 we conclude that ǔR©c v̌
and, following the same reasoning as in the previous case, we get
|ǔ|R�Σ |y|, which contradicts the fact that both |u| and |ǔ| belong to
(WΣ \ Y).

4.2. A partial axiomatisation of temporal here and there 75

From all the previous derivations, it follows that our assumption |x| ∈
(WΣ \ Y) leads to a contradiction.

• Condition (iii): Let �ϕ ∈ Σ be a formula and x ∈ Wc satisfying
Mc, x |= �ϕ. Remark that R�Σ , which is defined as

|x|R�Σ |y| ⇔ ∃n ∈ N s.t. |x|
(
R©Σ

)n
|y|,

is both reflexive and transitive. In order to prove Condition (iii) we
need to proceed by induction on n: for the base case, n = 0, we get that

|x|
(
R©Σ

)0

|y|, which means that |x| =|y| and therefore x ∼Σ y. Hence,

since R�c is reflexive, x ∼Σ y andMc, x |= �ϕ we get Mc, y |= ϕ.

For the inductive step let us assume that

∀|z| ∈WΣ, |x|R�Σ |z| iff ∃ k ∈ N s.t. |x|
(
R©Σ

)k
|z|

and we try prove

|x|R�Σ |y| iff ∃ k + 1 ∈ N s.t. |x|
(
R©Σ

)k+1

|y|.

Note that |x|
(
R©Σ

)k+1

|y| can be rewritten as |x|
(
R©Σ

)k
|z| and |z|R©Σ |y|,

for some |z| ∈ WΣ. By induction hypothesis, this means that |x|R�Σ |z|
and |z|R©Σ |y|. Now, since R�Σ is transitive and the hypothesis Mc, x |=
�ϕ, we get that Mc, z |= �ϕ and, together with Axiom (28) from
Table 4.1, we conclude that Mc, z |= ©ϕ. Finally, since R©Σ satisfies
Condition (vii) of filtration we getMc, y |= ϕ.

• Condition (iv): Let ♦ϕ ∈ Σ be a formula and x ∈Wc satisfyingMc, x 6|=
♦ϕ. As in the previous case we proceed by induction on n. For the base

case, n = 0 we have that |x|
(
R©Σ

)0

|y| iff |x| =|y| and, therefore, x ∼Σ y.

Hence, since R�c is reflexive, x ∼Σ y andMc, x 6|= ♦ϕ, we get Mc, y 6|= ϕ.

For the inductive step let us assume that

∀|z| ∈WΣ, |x|R�Σ |z| iff ∃ k ∈ N s.t. |x|
(
R©Σ

)k
|z|

and we try prove

|x|R�Σ |y| iff ∃ k + 1 ∈ N s.t. |x|
(
R©Σ

)k+1

|y|.

As in the previous case, |x|
(
R©Σ

)k+1

|y| can be rewritten as |x|
(
R©Σ

)k
|z|

and |z|R©Σ |y|, for some |z| ∈ WΣ. By induction hypothesis, this means
that |x|R�Σ |z| and |z|R©Σ |y|. Now, since R�Σ is transitive andMc, x 6|= ♦ϕ,

76 Chapter 4. Towards an axiomatisation of THT

we get thatMc, z 6|= ♦ϕ. This, together with Axiom (28) from Table 4.1,
allows us conclude thatMc, z 6|= ©̂ϕ. Finally, since R©Σ satisfies Condi-
tion (vii) of filtration we getMc, y 6|= ϕ.

�

After showing that MΣ is a filtration of Mc we define and prove the so
called filtration lemma, which connects the satisfiability of a formula, ϕ ∈ Σ,
in both the canonical and filtration models.

Lemma 4.15 (Filtration lemma). Let Mc = 〈Wc, R
�
c , R

©
c , Hc, Tc〉 be the ca-

nonical model and MΣ = 〈WΣ, R
�
Σ , R

©
Σ , HΣ, TΣ〉 its corresponding filtration

model with respect to a theory, Σ, closed under subformulas. It holds that for
every point x ∈Mc and every formula ϕ ∈ Σ

Mc, x |= ϕ iffMΣ, |x| |= ϕ and M̌c, x |= ϕ iff M̌Σ, |x| |= ϕ.

Proof. We proceed by structural induction. Since the base case corresponds
to ϕ = p, with p an atom. Mc, x |= p iff x ∈ Hc(p) and, by the equivalence
relation that induces the filtration, |x| ∈ HΣ(p) iff MΣ, |x| |= p. The case
M̌c, x |= p iff M̌Σ, |x| |= p is also straightforward.

Now we apply structural induction on the subformulas. We will prove only
the first part of the conjunction because the second part can be proved by
following the same reasoning.

Mc, x |= α ∧ β ⇔ Mc, x |= α andMc, x |= β (Def. 4.8)
⇔ MΣ, |x| |= α andMΣ, |x| |= β (Ind.)
⇔ MΣ, |x| |= α ∧ β (Def. 4.8)

Mc, x |= α ∨ β ⇔ Mc, x |= α orMc, x |= β (Def. 4.8)
⇔ MΣ, |x| |= α orMΣ, |x| |= β (Ind.)
⇔ MΣ, |x| |= α ∨ β (Def. 4.8)

Mc, x |= α→ β ⇔

(Mc, x 6|= α orMc, x |= β)
and(
M̌c, x 6|= α or M̌c, x |= β

) (Def. 4.8)

⇔

(MΣ, |x| 6|= α orMΣ, |x| |= β)
and(
M̌Σ, |x| 6|= α or M̌Σ, |x| |= β

) (Ind.)

⇔ MΣ, |x| |= α→ β (Def. 4.8)

Now we proceed with the proof for modalities:

• ϕ = �α From left to right assume thatMc, x |= �α butMΣ, |x| 6|= �α.
FromMΣ, |x| 6|= �α we derive

∃|y| ∈WΣ s.t. |x|R�Σ |y| andMΣ, |y| 6|= α.

4.2. A partial axiomatisation of temporal here and there 77

Hence, by Induction Hypothesis we obtain Mc, y 6|= α. On the other
hand, since Mc, x |= �α and |x|R�Σ |y| then we conclude, by applying
the condition (iii) of filtration, the contradictionMc, y |= α.

From right to left, assume thatMΣ, |x| |= �α butMc, x 6|= �α. Since

Mc, x 6|= �α⇔ ∃y ∈Wc s.t. xR�c y and andMc, y 6|= α.

thus, by applying the induction hypothesis on y we get thatMΣ, |y| 6|= α.
On the other hand, from xR�c y and condition (ii) we derive that

∃z ∈Wc|z|R�Σ |y| and either |z| =|x| or |z| =|x̌|.

If |z| =|x|, from |x|R�Σ |y| andMΣ, |x| |= �α we reach the contradiction
MΣ, |y| |= α. Otherwise, if |z| =|x̌| then the contradictionMc, |y| |= α
follows from |x̌|R�Σ |y| andMΣ, |x̌| |= �ϕ (result derived by applying the
property of persistence on x and then the induction hypothesis).

• ϕ = ♦α

From left to right, let us assume that Mc, x |= ♦α but MΣ, |x| 6|= ♦α.
From the former assumption we get

∃y ∈Wc s.t. xR�c y andMc, y |= α

and by Induction Hypothesis it holds thatMΣ, |y| |= α.

Since x and y are related by means of R�c , the application of Condi-
tion (i) of filtration leads to the following result

∃z ∈Wc s.t. |x|R�Σ |z| and either |z| =|y| or |z| =|y̌|.

Let us consider both cases:

1. |z| =|y|: from |x|R�Σ |y| andMΣ, |y| |= α we obtain thatMΣ, |x| |=
♦α.

2. |z| =|y̌|: from |x|R�Σ |y̌| and MΣ, |y̌| |= α (obtained by means of
the property of persistence on y and the induction hypothesis) we
conclude thatMΣ, |x| |= ♦α.

Hence, in any case it holds that MΣ, |x| |= ♦α, which contradicts our
initial assumption.

From right to left, assume that MΣ, |x| |= ♦α but Mc, x 6|= ♦α. From
MΣ, |x| |= ♦α we obtain that

∃|y| ∈WΣ s.t. |x|R�Σ |y| andMc, y |= α,

which by Induction Hypothesis leads to derive Mc, y |= α. However, it
contradicts the factMc, y 6|= α, which is derived from |x|R�Σ |y|,Mc, x 6|=
♦α and Condition (iv) of filtration.

78 Chapter 4. Towards an axiomatisation of THT

The proof for ϕ = ©α (resp. ϕ = ©̂α) is the same as for ϕ = �α (resp.
ϕ = ♦α) but we must use conditions (v)-(viii) instead of (i)-(iv).

�

4.2.5 Properties of filtration

We remind that R�Σ is both reflexive, transitive by definition but we do not
know anything about R©Σ . We first check that seriality is preserved after filtra-
tion.

Lemma 4.16 (Seriality of R©Σ). R©Σ is serial.

Proof. Assume, for the sake of contradiction, that R©Σ is not serial, thus

∃|x| ∈WΣ,∀|y| ∈WΣ |x|6R©Σ |y|. (4.12)

So, take x′ ∈|x|. Since R©c is serial then it holds that

∃y ∈Wc s.t. xR©c y

and it follows, from Condition (ii) of filtration, that

∃z ∈Wc s.t. |x|R©Σ |z| and either |z| =|y| or |z| =|y̌|

so we get a contradiction. �

Unfortunately, R©c is functional (see Lemma 4.10), |x|R©Σ |y| might be not.
To deal with this, we introduce the following lemma:

Lemma 4.17 (R©Σ is functional). Let ©ϕ ∈ Σ be a temporal formula and
x ∈Wc a system. The following conditions are equivalent:

i) Mc, x |=©ϕ.

ii) ∀y ∈Wc

(
|x|R©Σ |y| impliesMc, y |= ϕ

)
iii) ∃y

(
|x|R©Σ |y| andMc, y |= ϕ

)
Conversely, the following three conditions are also equivalent:

iv) Mc, x 6|= ©̂ϕ.

v) ∃y
(
|x|R©Σ |y| andMc, y 6|= ϕ

)
vi) ∀y ∈Wc

(
|x|R©Σ |y| impliesMc, y 6|= ϕ

)
Proof.

4.2. A partial axiomatisation of temporal here and there 79

• i)⇒ ii): assume that i) holds but ii) does not. Therefore

∃y ∈Wc s.t.
(
|x|R©Σ |y| andMc, y 6|= ϕ

)
.

From i), |x|R©Σ |y| and the condition (iii) of filtration, we obtain the con-
tradictionMc, y |= ϕ.

• ii)⇒ iii): Take |x| ∈Wc, by Lemma 4.16 it follows that

∃ |y| ∈WΣ s. t. |x|R©Σ |y|.

Thus, from ii) and |x|R©Σ |y| we getMc, y |= ϕ, that is

∃y ∈Wc s.t. |x|R©Σ |y| andMc, y |= ϕ,

which corresponds to iii).

• iii) ⇒ i): Suppose iii) but Mc x 6|= ©ϕ. By applying the definition of
|x| R©Σ |y| we obtain

∃x′ ∈|x| ∃y′ ∈|y| s.t. x′R©c y′.

It is easy to see that Mc, x
′ 6|= ©ϕ (because x′ ∼Σ x) and Mc, y

′ |= ϕ

(because y′ ∼Σ y). Hence,Mc, x
′ |= ©̂ϕ because x′R©c y

′. However the
fact that R©c is functional, together with Mc, x

′ |= ©̂ϕ and Mc, x
′ 6|=

©ϕ, leads to a contradiction.

• iv)⇒ vi): Suppose that iv) holds but (vi)) does not, that is,

∃y
(
|x|R©Σ |y| andMc, y |= ϕ

)
.

From |x| R©c |y| and the condition (iv) of filtration, it follows the contra-
dictionMc, y 6|= ϕ.

• vi)⇒ v): Take |x| ∈WΣ, by Lemma 4.16 se obtain

∃|y| ∈WΣ |x|R©Σ |y|.

From this conclusion and vi) we getMc, y 6|= ϕ, that is

∃ y ∈Wc s.t. |x|R©Σ |y| andMc, y 6|= ϕ,

which is equivalent to v).

80 Chapter 4. Towards an axiomatisation of THT

• v) ⇒ iv): Suppose v) but Mc x |= ©̂ϕ. By applying the definition of
|x| R©Σ |y| we obtain

∃x′ ∈|x| ∃y′ ∈|y| s.t. x′R©c y′.

We can easily derive thatMc, x
′ |= ©̂ϕ (because x′ ∼Σ x) andMc, y

′ 6|=
ϕ (because y′ ∼Σ y). Hence,Mc, x

′ 6|= ©ϕ because x′R©c y
′. However

the fact that R©c is functional, together withMc, x
′ |= ©̂ϕ andMc, x

′ 6|=
©ϕ, leads to a contradiction.

�

4.3 Conclusions

In this chapter we set the basis for the axiomatisation of THT. We define the
concept of canonical model as well as the method of filtration for modal HT
logics. We have proved that the axiomatic system is sound but, unfortunately,
our proof of completeness still requires to adapt Goldblatt’s argument about
the use of Dummett’s schema

� (� (ϕ→ �ϕ)→ ϕ)→ (♦�ϕ→ ϕ)

from LTL to the case of THT as well as his consideration of the clusters induced
by the relation R�Σ (see Chapter 9 of [53] for a more detailed explanation
about completeness proof for LTL). If we succeed in adapting those arguments,
the next step would consist in proving the corresponding Truth Lemma for THT
and, finally, its completeness, as we did in the case of KHT.

Chapter 5

Computing Temporal
Equilibrium Models

In this chapter we study the algorithms available for computing temporal
equilibrium/stable models. It must be noted that, as shown in Definition 3.3
and remarked in Observation 3.1, a temporal stable model (or TS-model) has
the form of an LTL-interpretation, that is, an infinite sequence of propositional
interpretations and, furthermore, it is quite usual that a theory has an infinite
set of TS-models. Thus, the usual behaviour of ASP solvers enumerating finite
stable models is not applicable here. Instead, temporal equilibrium models
can be represented by mean of a Büchi automaton [16] (see Section 2.3.2),
whose accepting language coincides with the set of TS-models.

As a result1, we also present a pair of tools, STeLP and ABSTEM , which
are based on the previously studied algorithms. Those tools are of different
nature. While STeLP was firstly conceived for dealing with propositional split-
table temporal logic programs, (a syntactic subclass of TEL) and then extended
to the case of temporal programs with variables, ABSTEM is an implementation
of the automata construction method presented in [18] and it is oriented to
deal with propositional arbitrary temporal theories.

5.1 Splittable Temporal Logic Programs

Before presenting the definition of splittable temporal logic program, let us
remind that some temporal expressions (for instance, rule 3.8) may have no
temporal stable models due to, informally speaking, an “infinite dependence
on the future.” Fortunately, most ASP programs dealing with transition sys-
tems represent rules so that past does not depend on the future. This is what
we called future projected dependence and can be captured by the following
subclass of TLPs.

1The main results of this chapter have been published in [1] and [20]

82 Chapter 5. Computing Temporal Equilibrium Models

Definition 5.1 (Splittable TLP (STLP)). A TLP Π for signature At is said to be
splittable if Π consists of rules of any of the forms:

B ∧N → H (5.1)

B ∧©B′ ∧N ∧©N ′ → ©H ′ (5.2)

�(B ∧©B′ ∧N ∧©N ′ → ©H ′) (5.3)

whereB andB′ are conjunctions of atoms,N andN ′ are conjunctions of negative
literals like ¬p with p ∈ At, and H and H ′ are disjunctions of atoms. �

The set of rules of form (5.1) in Π will be denoted ini0(Π) and correspond
to initial rules for situation 0. The rules of form (5.2) in Π will be repres-
ented as ini1(Π) and are initial rules for the transition between situations 0
and 1. Finally, the set of rules of form (5.3) is written dyn(Π) and contains
dynamic rules. Both in (5.2) and (5.3), we understand that operator © is
actually shifted until it only affects to atoms – this is always possible due to
equivalences (3.3), (3.4). By abuse of notation, we will also use the formulas
B,B′, N,N ′, H and H ′ as sets that respectively contain the atoms that occur
in each respective formula.

An STLP is said to be positive if for all rules (5.1)-(5.3),N andN ′ are empty
(an empty conjunction is equivalent to >). An STLP is said to be normal if it
contains no disjunctions, i.e., for all rules (5.1)-(5.1), H and H ′ are atoms. As
an example of STLP take the program Π5.1, which is shown below:

Example 5.1. The following theory, Π5.1, is an STLP:

¬a ∧©b → ©a (5.4)

�(a → b) (5.5)

�(¬b → ©a) (5.6)

where (5.4) is an initial rule and (5.5),(5.6) are dynamic rules.
Notice that a rule of the form �(B ∧ N → H) (i.e., without © operator)

is not splittable but it can be transformed into the equivalent pair of rules
B∧N → H and �(©B∧©N →©H) which are both splittable. For instance,
(5.5) becomes the pair of rules:

a → b (5.7)

�(©a → ©b) (5.8)

As an example, it is easy to check that the program

Π1 = {(5.4), (5.6), (5.7), (5.8)}

is splittable, and its sets ini0(Π1), ini1(Π1) and dyn(Π1) are the following

ini0(Π1) = {(5.7)}
ini1(Π1) = {(5.4)}
dyn(Π1) = {(5.8), (5.6)}.

5.1. Splittable Temporal Logic Programs 83

In particular, in (5.4) we have the non-empty sets B′ = {b}, N = {a} and
H ′ = {a}, whereas for (5.6) the sets are N = {b}, H ′ = {a}. On the other
hand, the rule

�(¬©p→ p) ∧ �(©p→ p)

is an example of a non-splittable program.

5.1.1 Splitting a temporal logic program

The most interesting feature of splittable TLPs is that we can adapt so-called
splitting technique (see Section 2.1.3) to the temporal case and, hence, obtain
their temporal equilibrium models in an incremental way by considering op-
erator � in dynamic rules �r as as an infinite sequence of expressions ©ir,
one for each i ≥ 0. Using (3.3),(3.4) we can shift©i inside all connectives in
r so that©ir is equivalent to an initial rule resulting from prefixing any atom
in r with ©i. To put an example, if r = (5.6) then ©2r would correspond to
(¬©2b→©3a). We formalise this idea below.

Definition 5.2 (i-expansion of a rule). Given i ≥ 0, the i-expansion of a dy-
namic rule �r, written (�r)i, is a set of rules defined as:

(�r)i
def
=

 ∅ if i = 0 and r contains some ‘©’
{©jr | 0 ≤ j ≤ i− 1} if i > 0 and r contains some ‘©’
{©jr | 0 ≤ j ≤ i} otherwise

If r is an initial rule, its i-expansion is defined as:

ri
def
=

{
∅ if i = 0 and r contains some ‘©’
r otherwise

�

From Definition 5.2 we can easily conclude that, when Π is a splittable
TLP, its program expansions have the form Π0 = ini0(Π) and Πi = ini0(Π) ∪
ini1(Π) ∪ dyn(Π)i for i > 0.

Proposition 5.1. Given a splittable TLP Π for signature At and any i ≥ 0:

(i) Ati is a splitting set for Πω;

(ii) and bAti(Πω) = Πi.

�

Given any rule like r like (5.2) of (5.3) and a set of atoms X, we define its
simplification simp(r,X) as:

simp(r,X)
def
=

{
©B′ ∧©N ′ →©H ′ if B ⊆ X and N ∩X = ∅
> otherwise

Given some LTL interpretation T, let us define now the sequence of pro-
grams:

84 Chapter 5. Computing Temporal Equilibrium Models

Π[T, i]
def
= eAti

(
Πω \Πi , Ti

)
that is, Π[T, i] is the “simplification” of Πω by replacing atoms in Ati by their
truth value with respect to Ti. Then, we have:

Proposition 5.2.

Π[T, 0] = (dyn(Π)ω \ dyn(Π)1) ∪ {simp(r, T0) | r ∈ ini1(Π) ∪ dyn(Π)}
Π[T, i] = (dyn(Π)ω \ dyn(Π)i+1) ∪ {©isimp(r, Ti) | r ∈ dyn(Π)}

for any i ≥ 1. �

As we can see, programs Π[T, i] maintain most part of dyn(Π)ω and only
differ in simplified rules. Let us call these sets of simplified rules:

slice(Π,T, 0)
def
= Π0 = ini0(Π)

slice(Π,T, 1)
def
= {simp(r, T0) | r ∈ ini1(Π) ∪ dyn(Π)}

slice(Π,T, i+ 1)
def
= {©isimp(r, Ti) | r ∈ dyn(Π)} for i ≥ 1

Theorem 5.1 (Splitting sequence theorem adapted from [82]). Let 〈T,T〉 be
a model of a splittable TLP Π. 〈T,T〉 is a temporal equilibrium model of Π iff

(i) T0 = T0 is a stable model of slice(Π,T, 0) = Π0 = ini0(Π) and

(ii) (T1 \At0) is a stable model of slice(Π,T, 1) and

(iii) (Ti \Ati−1) is a stable model of slice(Π,T, i) for i ≥ 2.

�

As an example, let us take again program Π1 = (5.4), (5.7), (5.8), (5.6).
The program Π0

1 = ini0(Π1) = (5.7) has the stable model T0 = ∅ = T0.
Then we take slice(Π,T, 1) = {simp(r, T0) | r ∈ ini1(Π) ∪ dyn(Π)} that cor-
responds to {(©b → ©a), (©a → ©b), (> → ©a)} whose stable model is
{©a,©b} = (T1 \ At0) so that T1 = {a, b}. In the next step, slice(Π,T, 2) =
{©simp(r, T1) | r ∈ dyn(Π)} = {(©2a → ©2b), (>)} whose stable model is
∅ = (T2 \ At1) so that T2 = ∅. Then, we would go on with slice(Π,T, 3) =
{©2simp(r, T2) | r ∈ dyn(Π)} = {(©3a → ©3b), (> → ©3a)} leading to
{©3a,©3b} that is T3 = {a, b} and so on.

5.1.2 Loop formulas for splittable temporal logic programs

Theorem 5.1 allows us building the temporal equilibrium models by consider-
ing an infinite sequence of finite ASP programs slice(Π,T, i). If we consider
each program Π′ = slice(Π,T, i+1) for signature Ati+1 \Ati then, since it is a
standard disjunctive ASP program, we can use the main result in [37] to com-
pute its stable models by obtaining the classical models of a theory Π′∪LF (Π′)
where LF stands for loop formulas.

5.1. Splittable Temporal Logic Programs 85

Given an ASP program Π we define its (positive) dependency graph G(Π)
where its vertices are At (the atoms in Π) and its edges are E ⊆ At × At so
that (p, p) ∈ E for any atom2 p, and (p, q) ∈ E if there is an ASP rule in Π
like (5.1) with p ∈ H and q ∈ B. A nonempty set L of atoms is called a loop of
a program Π if, for every pair p, q of atoms in L, there exists a path from p to
q in G(Π) such that all vertices in the path belong to L. In other words, L is a
loop of Π iff the subgraph of G(Π) induced by L is strongly connected. Notice
that reflexivity of G(Π) implies that for any atom p, the singleton {p} is also a
loop.

Definition 5.3 (external support). Given an ASP program Π for signature At,
the external support formula of a set of atoms Y ⊆ At with respect to Π, written
ESΠ(Y) is defined by:

∨
r∈R(Y)

(
B ∧N ∧

∧
p∈H\Y

¬p
)

where R(Y) = {r ∈ Π like (5.1) | H ∩ Y 6= ∅ and B ∩ Y = ∅}. �

Theorem 5.2 (from [37]). Given a program Π for signature At, and a (clas-
sical) model X ⊆ At of Π then X is a stable model of Π iff for every loop Y of Π,
X satisfies

∨
p∈Y p→ ESΠ(Y) �

This result can be directly applied to each finite ASP program slice(Π,T, i).
As we have slice programs for i = 0, 1, . . . , this means we would obtain an
infinite sequence of classical theories (each program plus its loop formulas).
Fortunately, these theories are not arbitrary. For situations 0, 1, we may obtain
loops induced by dependencies that are due to initial rules, but for i ≥ 2
loops follow a repetitive pattern, so they can be easily captured using � and©
operators. Thus, we just need to consider loops for situations 0, 1, 2 bearing in
mind that any loop at level i = 2 will occur repeatedly from then on. Given a
splittable TLP Π its associated dependency graph G(Π) is generated from the
expanded (ASP) program Π2, so that its nodes are atoms in the signature At2

and its loops are obtained from this finite program. For instance, given our
example program Π1, its graph G(Π1), shown in Figure 5.1, is obtained from
the expanded program Π2

1 and, as we can see, contains the loops {©a,©b}
plus {A} for any A ∈ At2.

a ©a

��

©2a

b

OO

©b

UU

©2b

OO

Figure 5.1: Graph G(Π1) (reflexive arcs are not displayed) corresponding to
Π2

1.

2The original formulation in [37] did not consider reflexive edges, dealing instead with the
idea of paths of length 0.

86 Chapter 5. Computing Temporal Equilibrium Models

Theorem 5.3 (from [3]). Let Π be a splittable TLP and T an LTL model of Π.
Then 〈T,T〉 is a temporal equilibrium model of Π iff T is an LTL model of the
union of formulas LF (Y) defined as:

Y ∨ → ESini0(Π)(Y) for any loop Y ⊆ At0 = At
Y ∨ → ESini1(Π)∪dyn(Π)1(Y) for any loop Y ⊆ (At1 \At0)

�

(
Y ∨ → ESdyn(Π)2\dyn(Π)1(Y)

)
for any loop Y ⊆ (At2 \At1)

�

5.2 Temporal Quantified Equilibrium Logic

Syntactically, we consider function-free first-order languages L = 〈C,P 〉 built
over a set of constant symbols, C, and a set of predicate symbols, P . Using L,
connectors and variables, an L = 〈C,P 〉-formula F is defined following the
grammar:

F ::= p | ⊥ | F1 ∧ F2 | F1 ∨ F2 | F1 → F2 |
©F | �F | ♦F | ∀xF (x) | ∃xF (x)

where p ∈ P is an atom and x is a variable. The derived operators ¬, > and
↔ are defined in the same way as in the propositional case as well as a theory
is also defined as a set of formulas. An atom is any p(t1, . . . , tn) where p ∈ P
is a predicate with n-arity and each ti is a term in its turn. We say that a term
or a formula is ground if it does not contain variables. A L-sentence or closed-
formula is a formula without free-variables. A temporal fact is a construction
of the form©iA where A is an atom.

If D is a non-empty set, we denote by At(D,P) the set of ground atomic
sentences of the language 〈D,P 〉. For the semantics, we will also define a
mapping

σ : C ∪D → D

such that σ(d) = d for all d ∈ D.
A first-order LTL-interpretation is a structure 〈(D,σ),T〉 where D is a non-

empty set (the domain), σ is a mapping as defined above (the interpretation of
constants) and T is an infinite sequence of sets of ground atoms T = {Ti}i≥0.
Intuitively, Ti ⊆ At(D,P) contains those ground atoms that are true at situ-
ation i. Given two LTL-interpretations H and T we say that H is smaller than
T, written H ≤ T, when Hi ⊆ Ti for all i ≥ 0. As usual, H < T stands
for: H ≤ T and H 6= T. We define the ground temporal facts associated to
T as follows: Facts(T)

def
= {©ip | p ∈ Ti}. It is easy to see that H ≤ T iff

Facts(H) ⊆ Facts(T).

Definition 5.4. A temporal-here-and-there L-structure with static domains,
or a TQHT-structure, is a tuple M = 〈(D,σ),H,T〉 where 〈(D,σ),H〉 and
〈(D,σ),T〉 are two LTL-interpretations satisfying H ≤ T. �

A TQHT-structure of the form M = 〈(D,σ),T,T〉 is said to be total.
If M = 〈(D,σ),H,T〉 is a TQHT-structure and k any positive integer, we

5.2. Temporal Quantified Equilibrium Logic 87

denote by (M, k) = 〈(D,σ), (H, k), (T, k)〉 the temporal-here-and-there L-
structure with (H, k) = {Hi}i≥k and (T, k) = {Ti}i≥k. The satisfaction re-
lation for M = 〈(D,σ),H,T〉 is defined recursively forcing us to consider
formulas from 〈C ∪ D,P 〉. Formally, if ϕ is an L-sentence for the atoms in
At(C ∪D,P), then:

• If ϕ = p(t1, . . . , tn) ∈ At(C ∪D,P), then

M |= p(t1, . . . , tn) iff p(σ(t1), . . . , σ(tn)) ∈ H0.

M |= t = s iff σ(t) = σ(s)

• M 6|= ⊥

• M |= ϕ ∧ ψ iff M |= ϕ and M |= ψ.

• M |= ϕ ∨ ψ iff M |= ϕ or M |= ψ.

• M |= ϕ → ψ iff 〈(D,σ), w,T〉 6|= ϕ or 〈(D,σ), w,T〉 |= ψ for all w ∈
{H,T}

• M |=©ϕ if (M, 1) |= ϕ.

• M |= �ϕ if ∀j ≥ 0, (M, j) |= ϕ

• M |= ♦ϕ if ∃j ≥ 0, (M, j) |= ϕ

• 〈(D,σ),H,T〉 |= ∀xϕ(x) iff 〈(D,σ), w,T〉 |= ϕ(d) for all d ∈ D and for
all w ∈ {H,T}.

• M |= ∃xϕ(x) iff M |= ϕ(d) for some d ∈ D.

The resulting logic is called Quantified Temporal Here-and-There Logic with
static domains, and denoted by SQTHT or simply by QTHT. It is not difficult
to see that, if we restrict to total TQHT-structures, 〈(D,σ),T,T〉 |= ϕ iff
〈(D,σ),T,T〉 |= ϕ in first-order LTL. Furthermore, the following property can
be easily checked by structural induction.

Proposition 5.3. For any formula ϕ, if 〈(D,σ),H,T〉 |= ϕ, then 〈(D,σ),T,T〉 |=
ϕ �

A theory Γ is a set of L-sentences. An interpretation M is a model of a
theory Γ, written M |= Γ, if it satisfies all the sentences in Γ.

Definition 5.5 (temporal equilibrium model). A temporal equilibrium model
of a theory Γ is a total model M = 〈(D,σ),T,T〉 of Γ such that there is no
H < T satisfying 〈(D,σ),H,T〉 |= Γ. �

If M = 〈(D,σ),T,T〉 is a temporal equilibrium model of a theory Γ, we say
that the First-Order LTL interpretation 〈(D,σ),T〉 is a temporal stable model of
Γ. We write TSM(Γ) to denote the set of temporal stable models of Γ. The
set of credulous consequences of a theory Γ, written CredFacts(Γ) contains all
the temporal facts that occur at some temporal stable model of Γ, that is:

CredFacts(Γ)
def
=

⋃
〈(D,σ),T〉∈TSM(Π)

Facts(T)

88 Chapter 5. Computing Temporal Equilibrium Models

A property of TEL directly inherited from Equilibrium Logic (see Proposi-
tion 5 in [99]) is the following:

Proposition 5.4 (cummulativity for negated formulas). Let Γ be some theory
and let ¬ϕ be some formula such that M |= ¬ϕ for all temporal equilibrium
models of Γ. Then, the theories Γ and Γ ∪ {¬ϕ} have the same set of temporal
equilibrium models. �

It is well-known that stable models (and so Equilibrium Logic) do not sat-
isfy cummulativity in the general case: that is, if a formula is satisfied in all
the stable models, adding it to the program may vary the consequences we
obtain. However, when we deal with negated formulas, Proposition 5.4 tells
us that cummulativity is guaranteed.

Definition 5.6. A first-order splittable temporal logic program is a finite set of
sentences like

ϕ = ∀x1∀x2 . . . ∀xnψ,
where ψ is a splittable temporal formula with x1, x2, . . . , xn free variables. �

For an example including variables, let us consider the following example:

Example 5.2. Suppose we have a set of cars placed at different cities and, at each
transition, we can drive a car from one city to another in a single step, provided
that there is a road connecting them. �

The encoding of this example can be represented as an STLP Π5.2 whose logical
representation corresponds to:

�(Driveto(x, a) → ©At(x, a)) (5.9)

�(At(x, a) ∧Road(a, b) → Driveto(x, b)

∨NoDriveto(x, b)) (5.10)

�(At(x, a) ∧ ¬©NoAt(x, a) → ©At(x, a)) (5.11)

�(At(x, b) ∧ City(a) ∧ a 6= b → NoAt(x, a)) (5.12)

�(At(x, a) ∧At(x, b) ∧ a 6= b → ⊥) (5.13)

Remember that all rule variables are implicitly universally quantified. For sim-
plicity, we assume that inequality is a predefined predicate.

Proposition 5.5. Any normal first-order positive STLP Π has a unique temporal
stable model 〈(D,σ),T〉 which coincides with its ≤-least LTL-model. We denote
LM(Π) = Facts(T). �

5.2.1 Safe Variables and Domain Independence

In this section we prove the the typical safety condition imposed in ASP first-
order representation (see Definition 2.12) can be applied to the temporal case.

Definition 5.7 (Safety condition). A splittable temporal formula ϕ of type (5.1),
(5.2) or (5.3) is said to be safe if, for any variable x occurring in ϕ, there exists an
atomic formula p in B or B′ such that x occurs in p. A formula ∀x1∀x2 . . . ∀xnψ
is safe if the splittable temporal formula ψ is safe. �

5.2. Temporal Quantified Equilibrium Logic 89

For instance, rules (5.9)-(5.13) are safe. A simple example of unsafe rule is
the splittable temporal formula:

> → P (x) (5.14)

where x does not occur in the positive body (in fact, the rule body is empty).
Although an unsafe rule not always leads to lack of domain independence
(see examples in Section 2.1.7) it is frequently the case. For instance, if a
program contains (5.14) and we add a new fresh constant c to the signature,
stable models will contain the ground fact P (c), something that was obviously
impossible before the addition of constant c not mentioned before. We prove
next that domain independence is, in fact, guaranteed for safe STLP’s.

A variable assignment µ in a universe (D,σ) is a mapping from the set of
variables to D. If ϕ ∈ L has free-variables, ϕµ is the closed formula obtained
by replacing every free variable x by µ(x). From now on, if T = {Ti}i≥0

with Ti ⊆ At(D,P), we denote by T|C the sequence of sets defined by T|C =
{Ti|C}i≥0, where each Ti|C = Ti ∩ At(σ(C), P) is the subset of Ti whose
atoms contain terms only from σ(C), that is, those atoms exclusively formed
with elements in the universe that are images of syntactic constants in C.

Lemma 5.1. Let ϕ be a splittable temporal formula and µ a variable assignment
in (D,σ). If ϕ is safe, then if follows that:

〈(D,σ),T,T〉 |= ϕµ iff 〈(D,σ),T|C ,T〉 |= ϕµ.

Proof. First of all, take ϕ = B∧N → H of type 5.1 and suppose that 〈T,T〉 |=
ϕµ but 〈T|C ,T〉 6|= ϕµ. This means that 〈T|C ,T〉 |= Bµ ∧Nµ and 〈T|C ,T〉 6|=
Hµ. Since 〈T,T〉 |= Hµ, there exists an atomic formula q in H such that
〈T,T〉 |= qµ but 〈T|C ,T〉 6|= qµ. So we have a variable x in q with µ(x) 6∈
σ(C). As ϕ is safe, we know that x occurs in an atomic formula p in B. Then
〈T|C ,T〉 6|= pµ and 〈T|C ,T〉 6|= Bµ which yields a contradiction.

If ϕ is of type (5.2), we use a similar argument.
Finally, take ϕ = �(B∧©B′∧N ∧©N ′ → ©H ′) = �ψ of type (5.3) and

suppose that 〈T,T〉 |= ϕµ but 〈T|C ,T〉 6|= ϕµ. There exists i ≥ 0 such that
〈Ti, Ti〉 |= ψµ and 〈Ti ∩ σ(C), Ti〉 6|= ψµ. We then have that 〈Ti ∩ σ(C), Ti〉 |=
Bµ ∧ (©B′)µ ∧ Nµ ∧ (©N ′)µ and 〈Ti ∩ σ(C), Ti〉 6|= (©H ′)µ. Using the fact
that ϕ is safe and the same argument as above, we find an atomic formula
p in B or B′ such that 〈Ti ∩ σ(C), Ti〉 6|= pµ which implies 〈Ti ∩ σ(C), Ti〉 6|=
Bµ∧(©B′)µ and leads to contradiction. The other implication follows directly
from proposition 5.3. �

Proposition 5.6. For any safe sentence ϕ = ∀x1∀x2 . . . ∀xnψ

〈(D,σ),T,T〉 |= ϕ iff 〈(D,σ),T|C ,T〉 |= ϕ.

Proof. Proceed by induction over the length of the prefix. If n = 0, we can take
any µ assignment of variables and apply Lemma 5.1 on ϕ = ϕµ . So take ϕ =
∀x1 . . . ∀xnψ of length n and suppose that the result is true for any universal
safe sentence whose prefix has length at most n − 1. If 〈(D,σ),T,T〉 |= ϕ,
put ϕ = ∀x1α(x1) with α(x1) = ∀x2 . . . ∀xnψ. For any d ∈ D, we know that

90 Chapter 5. Computing Temporal Equilibrium Models

〈(D,σ),T,T〉 |= α(d) and we have to show that 〈(D,σ),T|C ,T〉 |= α(d). The
induction hypothesis and the fact that α(d) is a safe sentence whose prefix has
length smaller or equal than n− 1 finishes the proof. �

Theorem 5.4. If ϕ is a safe sentence and 〈(D,σ),T,T〉 is a temporal equilibrium
model of ϕ, then T|C = T and Ti ⊆ At(σ(C), P) for any i ≥ 0.

Proof. If ϕ is a safe sentence and 〈(D,σ),T,T〉 is a temporal equilibrium
model of ϕ, we have that 〈(D,σ),T|C ,T〉 |= ϕ by proposition 5.6. The
definition of temporal equilibrium model implies that T|C = T and Ti ⊆
At(σ(C), P) for any i ≥ 0. �

Let (D,σ) be a domain and D′ ⊆ D a finite subset; the grounding over D′

of a sentence ϕ, denoted by GrD′(ϕ), is defined recursively

GrD′(p)
def
= p, where p denotes any atomic formula

GrD′(ϕ1 � ϕ2)
def
= GrD′(ϕ1)�GrD′(ϕ2), with � any binary operator in

{∧,∨,→}

GrD′(∀xϕ(x))
def
=

∧
d∈D′

GrD′ϕ(d)

GrD′(∃xϕ(x))
def
=

∨
d∈D′

GrD′ϕ(d)

GrD′(©ϕ)
def
= ©GrD′(ϕ)

GrD′(�ϕ)
def
= �GrD′(ϕ)

GrD′(♦ϕ)
def
= ♦GrD′(ϕ)

Proposition 5.7. Given any non empty finite set D and any sentence ϕ:

〈(D,σ),H,T〉 |= ϕ iff 〈(D,σ),H,T〉 |= GrD(ϕ).

�

Lemma 5.2. Let ϕ(x) be a safe splittable temporal formula of type (5.1), (5.2) or
(5.3) and take 〈(D,σ),H,T〉 be such that T = T|C. Then, for any d ∈ D\σ(C)
we have:

〈(D,σ),H,T〉 |= ϕ(d).

Proof. First of all, suppose that ϕ(x) is of type (5.1):

B ∧N → H

and take d ∈ D \ σ(C) and w ∈ {H,T} such that 〈(D,σ), w,T〉 6|= ϕ(d). This
implies that 〈(D,σ), w,T〉 |= B(d) ∧N(d) but 〈(D,σ), w,T〉 6|= H(d). ϕ(x) is
safe so there must be an atom p in B such that x has an occurrence in p. Since
T0 ⊆ At(σ(C), P), it is clear that 〈(D,σ), w,T〉 6|= p(d), so 〈(D,σ), w,T〉 6|=B(d)
which yields a contradiction.

The proof for the case of ϕ(x) being of type (2) and (3) is similar. �

5.2. Temporal Quantified Equilibrium Logic 91

Lemma 5.3. Let ϕ(x) = ∀x1∀x2 . . . ∀xnψ with ψ a splittable temporal formula
and such that ϕ(x) has no other free variables than x. Let M = 〈(D,σ),H,T〉
be such that T = T|C. Then, if ∀xϕ(x) is safe, we have that:

M |= ∀xϕ(x) iff M |=
∧
c∈C ϕ(c).

Proof. From left to right, just note that if M |= ∀xϕ(x) but M 6|= ϕ(c), for some
c ∈ C, we would have that M 6|= ϕ(σ(c)) which would yield a contradiction.

For right to left, we can proceed by induction in n. If n = 0, then ϕ(x) is in
the case of the previous lemma for any d ∈ D\σ(C), so M |= ∀xϕ(x) whenever
M |=

∧
c∈C ϕ(c). Now, suppose the result is true for any prenex formula with

length up to n − 1 and take ϕ(x) = ∀x1∀x2 . . . ∀xnψ(x, x1, . . . , xn) such that
M |=

∧
c∈C ϕ(c). In order to conclude the result, it only rests to show that

M |= ϕ(d) for any d ∈ D \ σ(C). Notice that ϕ(d) = ∀x1α(x1) with α(x1) =
∀x2 . . . ∀xnψ(d, x1, x2, . . . , xn). Since we can apply the induction hypothesis on
α(x1), it will be sufficient to prove that:

M |=
∧
c∈C α(c).

Now fix any c ∈ C and take into account that

M |= ϕ(c′) = ∀x1∀x2 . . . ∀xnψ(c′, x1, x2 . . . , xn)

for all c′ ∈ C, so we can replace x1 by any constant in C, including c, and it
holds that:

M |= ∀x2 . . . ∀xnψ(c′, c, x2, . . . , xn), for any c′ ∈ C
Observe that we can apply the induction hypothesis on β(z), where

β(z) = ∀x2 . . . ∀xnψ(z, c, x2, . . . , xn)

and then M |= ∀zβ(z). In particular M |= β(d) which completes the proof
since β(d) = α(c). �

Theorem 5.5. If ϕ = ∀x1∀x2 . . . ∀xnψ is a safe splittable temporal sentence and
M = 〈(D,σ),H,T〉 such that T = T|C, then

M |= ϕ iff M |= GrC(ϕ).

Proof. From left to right, suppose that M |= ϕ. By Proposition 5.7, we
know that M |= GrD(ϕ). The result follows since σ(C) ⊆ D and GrC(ϕ) =
Grσ(C)(ϕ).

Now, from the right to left direction, take ϕ = ∀x1∀x2 . . . ∀xnψ a safe
splitable temporal sentence and suppose that M |= GrC(ϕ). Again, we can
proceed by induction in n. If n = 0, then ϕ is quantifier free so GrC(ϕ) = ϕ.
Suppose the result is true for any safe splitable sentence with length up to
n− 1 and put ϕ = ∀x1α(x1) with α(x1) = ∀x2 . . . ∀xnψ(x1, x2, . . . , xn). Notice
that α(x1) is a safe formula that has no more free variables than x1, so, if we
apply Lemma 5.3, it will be sufficient to show that M |=

∧
c∈C α(c). Since we

are supposing that

M |= GrC(ϕ) =
∧
c∈C GrC(α(c)),

92 Chapter 5. Computing Temporal Equilibrium Models

and we can apply the induction hypothesis on any α(c) with c ∈ C, it follows
that M |=

∧
c∈C α(c) and this completes the proof. �

Theorem 5.6. If ϕ is a safe splittable temporal sentence, then 〈(D,σ),T,T〉 is
a temporal equilibrium model of ϕ iff 〈(D,σ),T,T〉 is a temporal equilibrium
model of GrC(ϕ).

Proof. Suppose that 〈(D,σ),T,T〉 is a temporal equilibrium model of ϕ and
〈(D,σ),H,T〉 |= GrC(ϕ). Since ϕ is safe, we know by Theorem 5.4 that T =
T|C so, applying Theorem 5.5, it follows that 〈(D,σ),H,T〉 |= ϕ and H = T.
This shows that 〈(D,σ),T,T〉 is also a temporal equilibrium model of GrC(ϕ),
The other implication follows directly from the fact that 〈(D,σ),H,T〉 |= ϕ
implies 〈(D,σ),H,T〉 |= GrC(ϕ). �

Theorem 5.7 (Domain independence). Let ϕ be safe splittable temporal sen-
tence. Suppose we expand the language L by considering a set of constants
C ′ ⊇ C. A total QTHT-model 〈(D,σ),T,T〉 is a temporal equilibrium model
of GrC′(ϕ) if and only if it is a temporal equilibrium model of GrC(ϕ).

Proof of Theorem 5.7. Let us show that the following assertions are equivalent:

1. 〈(D,σ),T,T〉 is a temporal equilibrium model of GrC(ϕ)

2. 〈(D,σ),T,T〉 is a temporal equilibrium model of ϕ

3. 〈(D,σ),T,T〉 is a temporal equilibrium model of GrC′(ϕ)

Taking into account the previous theorem, we only have to prove the equival-
ence of 2 and 3. Suppose that 〈(D,σ),T,T〉 is a temporal equilibrium model
of ϕ and 〈(D,σ),H,T〉 |= GrC′(ϕ). Because of Theorem 5.4, we have that
T = T|C ⊆ T|C ′ and an obvious extension of Theorem 5.5 to C ′, implies that

〈(D,σ),H,T〉 |= ϕ

and so H = T. This shows that 2 implies 3. The other implication (3. =⇒ 2.)
follows directly. �

Theorem 5.7 guarantees that, since the program Π5.2 is safe, Gr(D)(Π5.2)
preserves the set of temporal equilibrium models for whatever domain we
consider. Suppose we add the following set of facts:

Car(1), Car(2), City(Lisbon), City(Madrid), City(Paris),
City(Boston), City(Ny), City(Nj), Road(Lisbon,Madrid),
Road(Madrid,Lisbon), Road(Madrid,Paris),
Road(Paris,Madrid), Road(Boston,Ny), Road(Ny,Boston),
Road(Ny,Nj), Road(Nj,Ny), At(1,Madrid), At(2,Ny).

The domain consists of the set of constants

{1, 2, Lisbon, Madrid, Paris, Boston, Ny, Nj}

and, in this case, GrD((5.10)) generates 512 ground rules, some of them like:

5.2. Temporal Quantified Equilibrium Logic 93

�(At(1, Nj)∧Road(Nj,Ny)→ Driveto(1, Ny)∨NoDriveto(1, Ny). (5.15)

This rule intuitively means that whenever the car 1 be in New Jersey, since
the ground atom Road(Ny,Nj) states a road between New Jersey y New York,
the driver can choose between driving to N. York or not. However, we can
conclude that, since At(1,Madrid) places the car in Madrid at instant 0 and
N. Jersey can never be reached from Madrid, At(1,Nj) is never derived from
the program. Hence the body of Rule (5.15) is false in every TEL model and,
as a consequence, it can be removed from Gr(D)(Π5.2).

In next section we present a technique for grounding safe temporal pro-
grams that avoids generating rules like (5.15). This technique is based on the
construction of a positive normal ASP program with variables. The least model
of this program can be obtained by the ASP grounder3 DLV and it can be used
afterwards to provide the variable substitutions to be performed on the STLP.

5.2.2 Derivable ground facts

The method is based on the idea of derivable ground temporal facts for an
STLP Π. This set, call it ∆, will be an upper estimation of the credulous con-
sequences of the program, that is, CredFacts(Π) ⊆ ∆. Of course, the ideal
situation would be that ∆ = CredFacts(Π), but the set CredFacts(Π) re-
quires the temporal stable models of Π and these (apart from being infinite
sequences) will not be available at grounding time. In the worst case, we
could choose ∆ to contain the whole set of possible temporal facts, but this
would not provide relevant information to improve grounding. So, we will
try to obtain some superset of CredFacts(Π) as small as possible, or if pre-
ferred, to obtain the largest set of non-derivable facts we can find. Note that
a non-derivable fact ©ip 6∈ ∆ satisfies that ©ip 6∈ CredFacts(Π) and so, by
Proposition 5.4, Π ∪ {¬©i p} is equivalent to Π, that is, both theories have
the same set of temporal equilibrium models. This information can be used to
simplify the ground program either by removing rules or literals.

We begin defining several transformations on STLP’s. For any temporal
rule r, we define r∧ as the set of rules:

• If r has the form (5.1) then

r∧
def
= {B → p | atom p occurs in H}

• If r has the form (5.2) then

r∧
def
= {B ∧©B′ →©p | atom p occurs in H ′}

• If r has the form (5.3) then

r∧
def
= {�(B ∧©B′ →©p) | atom p occurs in H ′}

3Or any other ASP grounder, such as gringo, respecting the safety condition of Definition 2.12.

94 Chapter 5. Computing Temporal Equilibrium Models

In other words, r∧ results from removing all negative literals in r and, inform-
ally speaking, transforming disjunctions in the head into conjunctions, so that
r∧ will imply all the original disjuncts in the disjunctive head of r. It is in-
teresting to note that for any rule r with an empty head (⊥) this definition
implies r∧ = ∅. Program Π∧ is defined as the union of r∧ for all rules r ∈ Π.
As an example, Π∧5.1 consists of the rules:

©b → ©a
a → b

�(©a → ©b)
�(> → ©a)

whereas Π∧5.2 would be the program:

�(Driveto(x, a) → ©At(x, a)) (5.16)

�(At(x, a) ∧Road(a, b) → Driveto(x, b)) (5.17)

�(At(x, a) ∧Road(a, b) → NoDriveto(x, b)) (5.18)

�(At(x, a) → ©At(x, a)) (5.19)

�(At(x, b) ∧ City(a) ∧ a 6= b → NoAt(x, a)) (5.20)

If we look carefully at this example program, we are now moving each car x
so that it will be at several cities at the same time (constraint (5.13) has been
removed) and, at each step, it will additionally locate car x in all adjacent cities
to the previous ones “visited” by x. In this way, if we conclude©iAt(x, a) from
this program this is actually representing that car x can reach city a in i steps
or less. In some sense, Π∧ looks like a heuristic simplification4 of the original
problem obtained by removing some constraints (this is something common
in the area of Planning in Artificial Intelligence).

Notice that, by definition, Π∧ is always a positive normal STLP and, by
Proposition 5.5, it has a unique temporal stable model, LM(Π∧). We start
proving a very basic result for non-temporal programs that will be used, as an
auxiliary lemma, in the subsequent proofs.

Lemma 5.4. If T is any equilibrium model of a (non temporal) program Π with
rules of type (5.1), then T ⊆ J , where J is any model of the normal positive
program Π∧.

Proof. We will prove the result by showing that the interpretation 〈T ∩J, T 〉 |=
Π and, in consequence, T ∩ J = T by the minimality of T .

Let B ∧ N → H of the form (5.1) be an arbitrary rule in Π. To prove
〈T ∩ J, T 〉 |= r we already know that 〈T, T 〉 |= r and it remains to prove that if
〈T ∩ J, T 〉 |= B ∧N then 〈T ∩ J, T 〉 |= H. So suppose that 〈T ∩ J, T 〉 |= B ∧N .
Then 〈T, T 〉 |= B ∧N and 〈J, J〉 |= B. Therefore, 〈T, T 〉 |= H and there exists
p ∈ H such that 〈T, T 〉 |= p. Since rule B → p ∈ Π∧ and 〈J, J〉 |= B, we get
that 〈J, J〉 |= p and so 〈T ∩ J, T 〉 |= H, as we wanted to prove. �

4We could further simplify Π∧ removing rules (5.18) and (5.20) by observing that their head
predicates never occur in a positive body of Π5.2. However, for the formal results, this is not
essential, and would complicate the definitions.

5.2. Temporal Quantified Equilibrium Logic 95

Proposition 5.8. For any STLP Π, CredFacts(Π) ⊆ LM(Π∧).

Proof. Let 〈T,T〉 be any temporal equilibrium model of Π an denote by {Li}i≥0

the corresponding infinite sequence of ground atoms of LM(Π∧). By The-
orem 5.1, we know that, for all i ≥ 0, Ti (resp. Li) is a stable model of
slice(Π,T, i) (resp. of slice(Π∧, LM(Π∧), i). Finally, we can apply lemma 5.4
and the fact that slice(Π,T, 0)∧ = slice(Π∧, LM(Π∧), 0) and, for i ≥ 1,

slice(Π,T, i)∧ ⊆ slice(Π∧, LM(Π∧), i).

�

Unfortunately, using ∆ = LM(Π∧) as set of derivable facts is infeasible for
practical purposes, since this set contains infinite temporal facts correspond-
ing to an “infinite run” of the transition system described by Π∧. Take for
instance Π∧5.2 for the cars scenario. Imagine a roadmap with thousands of con-
nected cities. LM(Π∧) can tell us that, for instance, car 1 cannot reach New
York in less than 316 steps, so that ©315At(1, Ny) is non-derivable, although
©316At(1, Ny) is derivable. However, in order to exploit this information for
grounding, we would be forced to expand the program up to some temporal
distance, and we have no hint on where to stop. Note that, on the other hand,
when we represent the transition system as usual in ASP, using a bounded
integer variable for representing time, then this fine-grained optimization for
grounding can be applied, because the temporal path always has a finite length.

As a result, we will adopt a compromise solution taking a superset of
LM(Π∧) extracted from a new theory, ΓΠ. This theory will collapse all the
temporal facts from situation 2 on, so that all the states Ti for i ≥ 2 will be
repeated. We define ΓΠ as the result of replacing each rule �(B∧©B′ →©p)
in Π∧ by the formulas:

B ∧©B′ → ©p (5.21)

©B ∧©2B′ → ©2p (5.22)

©2B ∧©2B′ → ©2p (5.23)

and adding the axiom schema:

©2�(p↔©p) (5.24)

for any ground atom p ∈ At(D,P) in the signature of Π. As we can see, (5.21)
and (5.22) are the first two instances of the original rule �(B ∧©B′ → ©p)
corresponding to situations i = 0 and i = 1. Formula (5.23), however, differs
from the instance we would get for i = 2 since, rather than having©3B′ and
©3p, we use ©2B′ and ©2p respectively. This can be done because axiom
(5.24) is asserting that from situation 2 on all the states are repeated.

In the cars example, for instance, rule (5.16) in Π∧5.2 would be transformed
in ΓΠ5.2

into the three rules:

Driveto(x, a) → ©At(x, a)

©Driveto(x, a) → ©2At(x, a)

©2Driveto(x, a) → ©2At(x, a)

96 Chapter 5. Computing Temporal Equilibrium Models

As axiom (5.24) asserts/implies that the extent we obtain for predicates at
situation 2 will be repeated for the rest of future situations i ≥ 3, it is quite
easy to see that, for computing temporal stable models of ΓΠ it suffices with
just considering the theory ΓΠ \ {(5.24)}. In fact, for any M = 〈(D,σ),T,T〉,
the following conditions are equivalent:

• M is a temporal equilibrium model of ΓΠ

• {©ip | p ∈ Ti , i = 0, 1, 2} is a stable model of ΓΠ \ {(5.24)} and Ti = T2

for i ≥ 2.

Doing so, we can see the remaining rules as a positive normal ASP (i.e., non-
temporal) program for the propositional signature {p,©p,©2p | p ∈ At(D,P)}.
This program can be fed to DLV to obtain a unique stable model that fixes T0,
T1 and T2 for LM(ΓΠ). This completes our set of derivable facts since Ti = T2

for i ≥ 3 in LM(ΓΠ).

Theorem 5.8. ΓΠ has a least LTL-model, LM(ΓΠ) which is a superset of LM(Π∧).

Proof. Let 〈T,T〉 be the unique temporal equilibrium model of Π∧ and let
〈D,D〉 denote the temporal interpretation defined by:

• Di = Ti if 0 ≤ i ≤ 1,

• D2 is the stable model of the positive non-disjunctive program:

{©2B ∧©2B′ →©2p |�(B ∧©B′ →©p) ∈ dyn(Π∧)}
∪ slice(Π∧, LM(Π∧), 1)

• Di = D2 if ≥ 3,

It is straightforward to check that 〈D,D〉 is a temporal equilibrium model of
ΓΠ. Notice that T2 ⊆ D2. This follows from lemma 5.4 and the facts that
T2 \ AT 1 is the stable model of slice(Π∧, LM(Π∧), 1) and D2 is a model of
this latter program.

The cases i = 0, 1, 2 follow from Proposition 5.8 an the fact that T2 ⊆ D2.
When i ≥ 3, we shall prove that 〈Ti \ Ati−1 ∩Di \ Ati−1,Ti \ Ati−1〉 is a

model of slice(Π∧,T, i) so by Theorem 5.1, Ti\Ati−1∩Di\Ati−1 = Ti\Ati−1

and, consequently, Ti ⊆ Di. So, take ©iB′ → ©iH ′ ∈ slice(Π∧,T, i) and
suppose that

〈Ti \Ati−1 ∩Di \Ati−1,Ti \Ati−1〉 |=©iB′

This fact implies that 〈Ti \ Ati−1,Ti \ Ati−1〉 |= ©iB′ and also that there
exists a (positive normal) dynamic rule like (5.3) such that B ⊆ Ti−1 ⊆ Di−1.
Since 〈Ti \ Ati−1,Ti \ Ati−1〉 is a model of slice(Π∧,T, i), the only atom
p ∈ H ′ satisfies 〈Ti \ Ati−1,Ti \ Ati−1〉 |= ©ip. It only rests to show that
〈Di,Di〉 |=©ip or equivalently 〈D,D〉 |=©2p (notice that Di = D2 if i ≥ 2).
Finally, we can use that the rule ©2B ∧ ©2B′ → ©2p ∈ ΓΠ and also the
fact that 〈D,D〉 |= ©2B ∧ ©2B′ because i ≥ 3 and B′ ⊆ Di = D2 and
B ⊆ Ti−1 ⊆ Di−1 = D2. �

5.2. Temporal Quantified Equilibrium Logic 97

In other wordsCredFacts(Π) ⊆ LM(Π∧) ⊆ LM(ΓΠ) = ∆, i.e., we can use
LM(ΓΠ) as set of derivable facts and simplify the ground program accordingly.
Note that this simplification does not mean that we first ground everything
and then remove rules and literals: we simply do not generate the irrelevant
ground cases.

A slight adaptation is further required for this method: as we get ground
facts of the form p,©p and©2p we have to unfold the original STLP rules to
refer to atoms in the scope of ©2. For instance, given (5.10) we would first
unfold it into:

At(x, a) ∧Road(a, b) → Driveto(x, b) ∨
NoDriveto(x, b) (5.25)

©At(x, a) ∧©Road(a, b) → ©Driveto(x, b) ∨ (5.26)

©NoDriveto(x, b)
�(©2At(x, a) ∧©2Road(a, b) → ©2Driveto(x, b)

∨©2 NoDriveto(x, b)) (5.27)

and then check the possible extents for the positive bodies we get from the set
of derivable facts ∆ = LM(ΓΠ). For instance, for the last rule, we can make
substitutions for x, a and b using the extents of©2At(x, a) and©2Road(a, b)
we have in ∆. However, this still means making a join operation for both
predicates. We can also use DLV for that purpose by just adding a rule that has
as body, the positive body of the original temporal rule r, and as head, a new
auxiliary predicate Substr(x, a, b) referring to all variables in the rule. In the
example, for rule (5.27) we would include in our DLV program:

©2At(x, a) ∧©2Road(a, b)→ Subst(5.27)(x, a, b)

In this way, each tuple of Substr(x1, . . . , xn) directly points out the variable
substitution to be performed on the temporal rule.

5.2.3 STeLP

STeLP [19] was the first tool which is able to compute models of temporal
programs under TEL semantics. This tool has been designed and developed in
order to deal with splittable temporal logic programs, the subset of temporal
equilibrium logic defined in Section 5.1.

Input programs of STeLP adopt the standard ASP notation for conjunction,
negation and implication, so that, an initial rule like (5.1) is represented as:

Am+1 v . . . v As :- A1, . . . ,An, not An+1, . . . , not Am

Operator ‘©’ is represented as ‘o’ whereas a dynamic rule like �(α → β) is
written as β ::- α. In STeLP we can also use rules where atoms have variable
arguments like p(X1,. . . ,Xn) and, as happens with most ASP solvers, these
are understood as abbreviations of all their ground instances. A kind of safety
condition (a special case of the safety condition of Definition 5.7) is defined
for variables occurring in a rule. We will previously distinguish a family of

98 Chapter 5. Computing Temporal Equilibrium Models

predicates, called static, that satisfy the property �(p(X) ↔ ©p(X)) for
any tuple of elements X. These predicates are declared using a list of pairs
name/arity preceded by the keyword static. All built-in relational operators
=, !=, <, >, <=, >= are implicitly defined as static, having their usual meaning.
An initial or dynamic rule r is safe when:

1. Any variable X occurring in a rule head(r) ← body(r) or �(head(r) ←
body(r)) occurs in some positive literal in body(r) for some static predic-
ate p.

2. Initial rules of the form head(r)← body(r) where at least one static pre-
dicate occurs in head(r) only contain static predicates (these are called
static rules).

As an example, let us consider the STeLP input program of the Figure 5.2,
which is the temporal representation of the ASP program of Figure 2.3.

domain item(X), object(Y).
static opp/2. fluent at/2. action m/1.
% Domain predicates
opp(l,r). opp(r,l). item(w). item(g). item(c).
object(Z) :- item(Z). object(b).
% Effect axiom for moving
o at(X,A) ::- at(X,B), m(X), opp(A,B).
% The boat is always moving
o at(b,A) ::- at(b,B), opp(A,B).
% Inertia
o at(Y,A) ::- at(Y,A), not o at(Y,B),opp(A,B).
% Action executability
::- m(X), at(b,A), at(X,B), opp(A,B).
% Unique value constraint
::- at(Y,A), at(Y,B), opp(A,B).
% Wolf eats goat
::- at(w,A), at(g,A), at(b,B), opp(A,B).
% Goat eats cabbage
::- at(g,A), at(c,A), at(b,B), opp(A,B).
% Choice rules for action execution
a(X) ::- not m(X).
m(X) ::- not a(X).
% Non-concurrent actions
::- m(X), item(Z), m(Z), X != Z.
% Initial state
at(Y,l).

Figure 5.2: Wolf-goat-cabbage puzzle in STeLP.

Since static predicates must occur in any rule, STeLP allows defining global
variable names with a fixed domain, in a similar way to the lparse5 directive

5http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz

http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz

5.2. Temporal Quantified Equilibrium Logic 99

#domain. For instance, the declaration domain item(X). means that any rule
referring to variable X is implicitly extended by including an atom item(X)
in its body. All predicates used in a domain declaration must be static – as a
result, they will be implicitly declared as static, if not done elsewhere.

A feature that causes a difficult reading of the obtained automaton for a
given STLP is that all the information is represented by formulas that occur
as transition labels, whereas states are just given a meaningless name. As op-
posed to this, in an actions scenario, one would expect that states displayed the
fluents information and transitions only contained the actions execution. To
make the automaton closer to this more natural representation, we can distin-
guish predicates representing actions and fluents. For instance, in the previous
example, we would further declare: action m/1. fluent at/2. STeLP uses
this information so that when all the outgoing transitions from a given state
share the same information for fluents, this is information is shown altogether
inside the state, and removed from the arc labels. Besides, any symbol that is
not an action or a fluent is not displayed (they are considered as auxiliary).
As a result of these simplifications, we may obtain several transitions with the
same label: if so, they are collapsed into a single one. An example of this
feature is shown in Figure 5.3.

at(b,l),at(c,l)
at(s,l),at(w,l)

init

at(b,r),at(c,l)
at(g,r),at(w,l)

at(b,l),at(c,l)
at(g,r),at(w,l)

at(b,r),at(c,r)
at(g,r),at(w,l)

at(b,l),at(c,r)
at(g,l),at(w,l)

at(b,r),at(c,r)
at(g,l),at(w,r)

at(b,l),at(c,r)
at(g,l),at(w,r)

at(b,r),at(c,r)
at(s,r),at(w,r)

goal

at(b,l),at(c,l)
at(g,l),at(w,r)

at(b,r),at(c,l)
at(g,r),at(w,r)

m(g)

∅

m(c) m(g) m(w)

∅

m(g)

m(c)

m(g)

m(w)

Figure 5.3: Automaton for the wolf-goat-cabbage example.

Constraints in STeLP are more general than in STLP: their body can include
any arbitrary combination of propositional connectives with o, always (stand-
ing for �), pos (standing for ♦) and until (standing for U). The empty head
⊥ is not represented. This feature allows us to impose constraints on infinite
paths. For instance if we want to restrict the set of models shown in Figure 5.3
to the ones satisfying that the three items were moved to the opposite bank of
the river, we should include the theory

100 Chapter 5. Computing Temporal Equilibrium Models

¬¬♦ (at(w, r) ∧ at(g, r) ∧ at(c, r))

which is equivalent to

¬�¬ (at(w, r) ∧ at(g, r) ∧ at(c, r)) .

This formula can be represented in STeLP by adding the rules

% Goal predicate
g ::- at(w,r), at(g,r), at(c,r).
% Goal must be satisfied
:- always not g.

When these rules are added to the program of Figure 5.2, we obtain the Büchi
automaton of Figure 5.4. It is easy to see that every accepting path reaches
an state where all items were moved to the opposite bank of the river. Both a
more detailed specification of the system and more examples can be found in
Appendix B.

5.3 Arbitrary temporal theories

In this section, following [18], we outline the automata-based approach to de-
termine whether a formula ϕ built over the propositional variables {p1, . . . , pn}
has a TEL model. This method has the advantage of being applicable to any
arbitrary temporal theory and also allows us to establish some complexity
bounds for THT and TEL satisfiability problems. The method builds a Büchi
automaton B over the alphabet Σ = P({p1, . . . , pn}) such that L(B) is equal
to the set of TEL consequences for ϕ. Based on this construction, we have
developed a tool called ABSTEM6 using, as a backend, the library SPoT7 [31]
which has been enhanced with new features such as checking different types
of temporal equivalence.

5.3.1 Automata-based Computation of Temporal Equilibrium
Models

Given a temporal formula ϕ built over a signature At, the first step of the
algorithm presented in [18] consists in computing a first automaton A1 for
capturing the THT total models, that is the set of LTL models, of ϕ. There
exist several algorithms [120] that allow obtaining a Büchi automaton whose
accepting language corresponds to the set of LTL models of ϕ (see [18] for a
recall of a Büchi automaton construction method). Remember that temporal
stable models are also LTL-models, so we need something else to reject those
LTL-models that are not stable.

In a second step, we will strengthen the mapping ϕ′′ to obtain not only
THT models of ϕ but also to constrain them to be strictly non-total (that is

6Available at http://kr.irlab.org/?q=abstem
7Available at http://spot.lip6.fr

http://kr.irlab.org/?q=abstem
http://spot.lip6.fr

5.3. Arbitrary temporal theories 101

at
(b

,l)
,a

t(
c,

l)
at

(s
,l)

,a
t(

w
,l)

in
it

at
(b

,r
),

at
(c

,l)
at

(g
,r

),
at

(w
,l)

at
(b

,l)
,a

t(
c,

l)
at

(g
,r

),
at

(w
,l)

at
(b

,r
),

at
(c

,r
)

at
(g

,r
),

at
(w

,l)
at

(b
,l)

,a
t(

c,
r)

at
(g

,l)
,a

t(
w

,l)
at

(b
,r

),
at

(c
,r

)
at

(g
,l)

,a
t(

w
,r

)
at

(b
,l)

,a
t(

c,
l)

at
(g

,l)
,a

t(
w

,r
)

at
(b

,r
),

at
(c

,l)
at

(g
,r

),
at

(w
,r

)

at
(b

,l)
,a

t(
c,

r)
at

(g
,l)

,a
t(

w
,r

)
at

(b
,r

),
at

(c
,r

)
at

(g
,r

),
at

(w
,r

)

go
al

at
(b

,l)
,a

t(
c,

r)
at

(g
,l)

,a
t(

w
,r

)
at

(b
,r

),
at

(c
,r

)
at

(g
,l)

,a
t(

w
,r

)

at
(b

,l)
,a

t(
c,

r)
at

(g
,l)

,a
t(

w
,l)

at
(b

,r
),

at
(c

,r
)

at
(g

,r
),

at
(w

,l)

at
(b

,l)
,a

t(
c,

l)
at

(g
,r

),
at

(w
,l)

at
(b

,r
),

at
(c

,l)
at

(g
,r

),
at

(w
,r

)
at

(b
,l)

,a
t(

c,
l)

at
(g

,l)
,a

t(
w

,r
)

at
(b

,r
),

at
(c

,l)
at

(g
,r

),
at

(w
,l)

at
(b

,l)
,a

t(
c,

l)
at

(g
,l)

,a
t(

w
,l)

m
(g

)
∅ m

(c
)

m
(g

)
m

(w
)

∅ m
(g

)

m
(c

)

m
(g

)

m
(w

)

m
(g

)
∅

m
(w

)

m
(g

)

m
(c

)

m
(w

)

m
(g

)

m
(c

)

∅m
(g

)

Figure 5.4: All possible solutions of the wolf-goat-cabbage example.

102 Chapter 5. Computing Temporal Equilibrium Models

H < T). This operation is carried out by combining Corollary 3.2 and the
axiom schema:

∨
p∈At

♦(¬p′ ∧ p) (Ax2)

to define the expression

ϕ′′
def
= Ax1 ∧ (ϕ)

∗ ∧ Ax2.

where (ϕ)
∗ is the extension of the star-translation from Definition 2.2.3 to the

temporal case (see Section 3.1) and Ax1 is the axiom schema, also defined in
Section 3.1, which forces that (ϕ)

∗ satisfies the property of persistence. The
formula ϕ′′ characterizes the non-total THT models of the formula ϕ and Ax2
ensures that at some position j, Hj ⊂ Tj (strict inclusion).

Lemma 5.5. The set of LTL models for the formula ϕ′′ corresponds to the set of
non-total THT models for the temporal formula ϕ. �

Let A2 be the Büchi automaton such that L(A2) = Mod(ϕ′′), following
again any construction similar to [120]. The set L(A2) is isomorphic to the
set of non-total THT models of ϕ.

Note that both automata A1 and A2 are built over different alphabets Σ
and Σ′ = P({p1, . . . , pn, p

′
1, . . . , p

′
n}) respectively. Let h : Σ′ → Σ be a map (re-

naming) between the two finite alphabets such that h(a) = a∩ {p1, . . . , pn}. h
can be naturally extended as an homomorphism between finite words, infinite
words and as a map between languages.

Similarly, given a Büchi automaton A2 = (Σ′, Q,Q0, δ, F), h(A2) denotes
the Büchi automaton (Σ, Q,Q0, δ

′, F) such that q a−→ q′ ∈ δ′ iff there is b ∈ Σ′

such that q b−→ q′ ∈ δ and h(b) = a. Obviously, L(h(A2)) = h(L(A2)) and
L(h(A2)) can be viewed as the set of total THT models for ϕ having a strictly
smaller THT one.

The only remaining task is getting the intersection of total models captured
by L(A1) with models of the complementary of L(h(A2)), that is, those for
which we do not have a strictly smaller model (or they are not models either).
We have shown in Section 2.3.3 that the class of languages recognized by
Büchi automata (the class of ω-regular languages) is effectively closed under
union, intersection and complementation and renaming operation. Since A1

and h(A2) are Büchi automata, one can build a Büchi automaton A′ such that

L(A′) = Σω \ L(h(A2)).

Similarly, one can effectively build a Büchi automaton Bϕ such that

L(Bϕ) = L(A1) ∩ L(A′).

Complementation can be performed using the constructions in [112] or, if
optimality is required, in [107].

5.3. Arbitrary temporal theories 103

Proposition 5.9 (from [18]). ϕ has a TEL model iff

L(A1) ∩ (Σω \ L(h(A2))) 6= ∅.

�

Consequently, the set of TEL models for a given formula forms an ω-regular
language.

As a corollary, Cabalar and Demri, could stablish in [18] both a lower
bound (PSPACE-hard) and an upper bound (EXPSPACE) for Temporal Equilib-
rium Logic. The former comes from the fact that LTL can be encoded in TEL
an the latter from how the final automaton is computed. This result is sum-
marised in the following theorem.

Theorem 5.9 (from [18]). Checking whether two temporal formulae have the
same TEL models is decidable in EXPSPACE and it is PSPACE-hard. �

Recently, this gap was filled in [13], fixing the complexity of TEL as EX-
PSPACE.

5.3.2 ABSTEM

In this section we present ABSTEM, a tool designed to deal with arbitrary tem-
poral theories (see Appendix C to have an overview of the system options). In
order to show a full example of ABSTEM input theory, we consider the non-
splittable formula ϕ = ¬p → ♦q, which means that if p cannot be proved in
the initial state, then q will be satisfied once (and only one due to the model
minimisation) in a future state. In TEL, we have infinite temporal equilibrium
models, each one corresponding to q true in one (and only one) time point
i ≥ 0 whereas p becomes false forever. If we assume that ϕ is written in a file
called th1.abs, we can obtain the two initial automata, Aϕ and Aϕ′′ executing
the following commands:

• abstem -t -m –SForm -f th1.abs : ABSTEM will produce a file called
ltl_models.png which corresponds to the automaton Aϕ shown in Fig-
ure 5.6(a).

• abstem -t -m –SNonTot -f th1.abs : we will get another file called
non_total.png which corresponds toAϕ′′ (shown in Figure 5.6(b)), and
obtained from the expression

ϕ′′ = � (p′ → p) ∧� (q′ → q) ∧ (¬p→ ♦q) ∧ (¬ (p ∨ p′)→ ♦q′)
∧ (♦ (p ∧ ¬p′) ∨ ♦ (q ∧ ¬q′)) .

Both automata are computed by the algorithm published in [29] and im-
plemented in SPoT. Once they have been computed, the filter h is applied
to Aϕ′′ by removing every auxiliary atom from the transitions of Aϕ′′ . Then
h(Aϕ′′), shown in Figure 5.6(c), is complemented by using Safra’s comple-
mentation [107] (the result is shown in Figure 5.6(d)) and finally, the com-
mon language accepted by both Aϕ and h(Aϕ′′) is obtained by means of the

104 Chapter 5. Computing Temporal Equilibrium Models

Automata File Command
Aϕ ltl_models.png abstem -t -m –SForm -f th1.abs
Aϕ′′ non_total.png abstem -t -m –SNonTot -f th1.abs

h(Aϕ′′) filtered.png abstem -t -m –SFiltered -f th1.abs
h(Aϕ′′) complementary.png abstem -t -m –SComp -f th1.abs

Aϕ ⊗ h(Aϕ′′) tem.png abstem -t -m -f th1.abs

Table 5.1: Commands that are necessary to compute every intermediate auto-
maton in ABSTEM.

lazy product of both automata. Figure 5.6(e) shows the final automaton, Aϕ⊗
h(Aϕ′′), whose accepting language corresponds to the set of temporal stable
models of ϕ. The sequence of commands to obtain all intermediate automata
are outlined in Table 5.1. For a more detailed description of ABSTEM usage see
Appendix C.

Unfortunately, because of TEL’s complexity, intermediate automata become
more unreadable and complex as the number of atoms of the theory increases.
For instance, let us consider the theory Γ shown in 5.5(a). While rules (5.28)-
(5.30) can be analysed by STeLP, the (non-splittable) rule (5.31) could not be
represented neither in ASP nor STeLP. Intuitively (5.31) allows deriving q if p
occurs “infinitely often” (something that follows from (5.28)-(5.30).

If we use ABSTEM to compute the set of temporal equilibrium models of
such theory, we will obtain the Büchi automaton of Figure 5.5(b) where, as
we can see, atom q is made true at the initial state, pointing out that p occurs
infinitely often due to the other rules. However, the intermediate automata
are more complex. For instance Aϕ consists of 5 states and 13 transitions, Aϕ′′
has 19 states and 592 transitions and, finally, h(Aϕ′′) consists of 19 states and
123 transitions.

¬r → p (5.28)

�(p→©p ∨©s) (5.29)

�(s ∧ ¬p→©p) (5.30)

(�♦p)→ q (5.31)

(a) Γ1

init S1 S2
p, q

p

s

p

(b) TEM’s of Γ1

Figure 5.5: Example of a non-splittable theory Γ1 and its set of temporal equi-
librium models.

5.3. Arbitrary temporal theories 105

init

S2

S3

〈∅, ∅〉

〈{p}, {p}〉
〈{q}, {q}〉
〈{p, q}, {p, q}〉

〈∅, ∅〉
〈{p}{p}〉

〈{q}, {q}〉
〈{p, q}, {p, q}〉

〈∅, ∅〉
〈{p}{p}〉
〈{q}, {q}〉
〈{p, q}{p, q}〉

(a) Aϕ

initS1

S2

S3

S4

〈{p}, {p}〉
〈∅, ∅〉

〈∅, ∅〉,〈{p, q}{p, q}〉
〈{p}, {p}〉,〈{q}, {q}〉

〈∅, ∅〉
〈∅, {q}〉
〈∅, {p}〉
〈∅, {p, q}〉
〈{q}, {q}〉
〈{p}, {p}〉
〈{q}, {p, q}〉
〈{p}, {p, q}〉
〈{p, q}, {p, q}〉

〈∅, ∅〉, 〈{p}, {p}〉, 〈∅, {p, q}〉
〈{p}, {p, q}〉, 〈∅, {p}〉, 〈∅, {q}〉

〈{∅, ∅}〉

〈{p}, {p}〉
〈{q}, {q}〉
〈{p, q}, {p, q}〉

〈∅, {p}〉
〈∅, {p, q}〉
〈{q}, {p, q}
〈{p}, {p, q}〉

〈∅, {q}〉

〈{p, q}, {p, q}〉
〈{q}, {q}〉

〈∅, {q}〉, 〈∅, {p}〉
〈{q}, {p, q}〉
〈∅, {p, q}〉
〈{p}, {p, q}〉

〈{q}, {q}〉, 〈{q}, {p, q}〉
〈{p, q}, {p, q}〉

〈∅, {q}〉, 〈∅, {p}〉
〈∅, {p, q}〉, 〈{p}, {p, q}〉

〈{q}〉
〈{p, q}〉

(b) Aϕ′′

init S1

S2

S3 S4

{p}, {p, q}

{q}
∅

{p}, {q}
{p, q}

{p, q}

{q}

{p}

{q}
{p, q}

∅, {p}, {q}, {p, q}

∅

∅, {p}∅

(c) h(Aϕ′′)

init

S1

S2

S3

{q}

∅

{q}
{p}

∅

∅

∅, {p}

(d) h(Aϕ′′)

init S1

∅

∅

{q}

(e) Aϕ ∩ h(Aϕ′′)

Figure 5.6: Intermediate automata generated in the example ϕ = ¬p→ ♦q.

Chapter 6

Temporal Strong Equivalence

As mentioned in Section 2.2.4, strong equivalence is a very important prop-
erty if we want to check whether two theories have the same behaviour in a
non-monotonic formalism. In the case of TEL, this property was firstly con-
sidered in [2]. In that paper, authors showed that THT-equivalence is obvi-
ously a sufficient condition for strong equivalence in TEL and, furthermore
they implemented a prototype checker and used it on some examples. How-
ever, since [2], the question whether THT-equivalence was also necessary or
not remained unanswered. This raised doubts on the adequacy of THT as a
basis for TEL and had also some practical negative consequences. In particular,
when two theories Γ1,Γ2 were not THT-equivalent, the checker in [2] could
not answer anything about strong equivalence, while one would expect to be
provided with a negative answer plus some context Γ that made them behave
differently.

In this chapter we provide a proof1, inspired in the one developed in [79]
for the case of first-order non-monotonic theories, of such a necessary con-
dition and, moreover, we provide an algorithm for checking strong equival-
ence by applying several ω-automata transformations that have been also used
in [18] for computing the set of temporal equilibrium models of arbitrary the-
ories.

Apart from these theoretical results, we also extend the functionalities of
ABSTEM with the possibility of checking three different types of equivalence
such as LTL-equivalence, weak equivalence (coincidence in temporal stable
models) and THT-equivalence which, being a necessary and sufficient condi-
tion corresponds to strong equivalence. When a negative answer for strong
equivalence is obtained, the tool also suggests a context formula Γ that makes
Γ1 and Γ2 behave differently and generates a Büchi automaton which captures
either one or all temporal stable models in the difference.

1The main results of this chapter have been published in [20]

108 Chapter 6. Temporal Strong Equivalence

6.1 Temporal Strong Equivalence

Concerning to temporal scenarios, checking whether two arbitrary temporal
theories2, Γ1 and Γ2, are strongly equivalent introduces, in fact, a temporal
dimension in the study of strong equivalence for ASP, since it means show-
ing that Γ1 and Γ2 have the same behaviour not only under any hypothet-
ical context, but also for narratives with unlimited time. Of course, resort-
ing to temporal logic is not always necessary. For instance, when we just
deal with transition systems, a straightforward possibility3 is to restrict the
study to transitions between two consecutive states, say 0 and 1, using the
non-temporal approach to check strong equivalence (that is, HT-equivalence).
However, when non-splittable formulas are involved, that technique is not
possible any more. As an example of the kind of difficulties we find when we
move to non-splittable theories, consider the theory Γ2:

�(p ∧ q → ©q) (6.1)

�(¬p ∧©p → ©© q) (6.2)

p → ⊥ (6.3)

�(p ∧ q → ⊥) (6.4)

where (6.2) is non-splittable, since it checks atoms at three different situations.
As the rule is preceded by �, if we wanted to make a static analysis, we should
take transitions for states 0, 1, 2 but also for 1, 2, 3. This should be carefully
chosen by hand and, in any case, it is difficult to conclude, for instance, that in
the theory above, the first two formulas (6.1) and (6.2) can be safely replaced
by:

�(p→©q) (6.5)

as stated below.

Proposition 6.1. Theory Γ3 = (6.3)-(6.5) is strongly equivalent to Γ2 =(6.1)-
(6.4).

Proof. Using Theorem 6.1, we will show that Γ2 and Γ3 are THT-equivalent.
We begin recalling a pair of LTL theorems that are also valid in THT:

�(α ∧ β) ↔ �α ∧�β (6.6)

�α ↔ α ∧�(α→©α) (6.7)

©(α→ β) ↔ (©α→©β) (6.8)

We will also use the HT-valid equivalences that allow unnesting implications:

α→ (β → γ) ↔ α ∧ β → γ (6.9)

(α→ β)→ γ ↔ (¬α→ γ) ∧ (β → γ)

∧(α ∨ ¬β ∨ γ) (6.10)

2For simplicity, we assume finite theories and we indistinctly represent them as the conjunction
of their formulas.

3Suggested by Joohyung Lee during conference LPNMR’11.

6.1. Temporal Strong Equivalence 109

(6.7) is the induction schema: applied to (6.5) we get

�(p→©q)
↔ (p→©q) ∧�((p→©q)→©(p→©q))

By (6.8) we get:

↔ (p→©q) ∧�((p→©q)→ (©p→©© q))

We unfold the nested implications using (6.9) and (6.10) and use (6.6) to
distribute � on conjunction afterwards, obtaining:

↔ (p→©q) ∧�(¬p ∧©p→©© q)

∧�(©q ∧©p→©© q)

∧�(©p→ p ∨ ¬© q ∨©© q) (6.11)

So we concluded that (6.5) is equivalent to (6.11). Now, from (6.4) it is easy
to see that �(p → ¬q) and in particular, �(©p → ¬ © q) something that
implies the last conjunct of (6.11). On the other hand, as ¬p follows from
(6.3), we conclude that the following implications also hold:

p→©q q ∧ p→©q

so that we can also remove the first conjunct in (6.11) whereas the third one
can be replaced by �(q ∧ p → ©q). To sum up, when constraints (6.3) and
(6.4) are present, (6.11) is eventually equivalent to:

�(¬p ∧©p→©© q) ∧�(q ∧ p→©q)

which is the conjunction of (6.1) and (6.2). �

In fact, if we check these two theories using ABSTEM it just provides a posit-
ive answer and no further explanation is required. As we can see, the proof for
Proposition 6.1 relies on the fact that Γ2 and Γ3 are THT-equivalent and, as we
explained before, this is trivially a sufficient condition for strong equivalence
(see [2]).

Theorem 6.1 (sufficient condition). If two temporal formulas α and β are THT-
equivalent then they are strongly equivalent in TEL.

Proof. The proof is straightforward. If α and β are satisfied by the same THT-
interpretations then α∧ γ and β ∧ γ (for every formula γ) are also satisfied by
the same THT-interpretations. But then, selecting among them the temporal
equilibrium models yields the same effect on both. �

Until now, however, we missed the other direction, namely, that the property
of THT-equivalence is also a necessary condition for strong equivalence. In
the rest of this section, we prove this result adapting the main proof in [79].
Before introducing the main theorem we will first introduce some auxiliary
results that will be used for the main proof and for implementation purposes.
We begin defining the following axiom:

γ0
def
=

∧
p∈At

�(p ∨ ¬p)

110 Chapter 6. Temporal Strong Equivalence

The effect of adding this axiom to a theory is restricting to total models, as
stated below:

Proposition 6.2. Let 〈H,T〉 be a THT interpretation for signatureAt. If〈H,T〉|=
γ0 then H = T.

Proof. We have to prove that ∀i ∈ N, Hi = Ti. Since Hi ⊆ Ti from H ≤ T, we
just need to prove Ti ⊆ Hi. Take some p ∈ Ti. Obviously, 〈H,T〉, i 6|= ¬p. But
from 〈H,T〉 |= �(p∨¬p) we conclude 〈H,T〉, i |= p∨¬p and so 〈H,T〉, i |= p
that is p ∈ Hi. �

Corollary 6.1. For any formula α for signature At, the LTL-models of α ∧ γ0

coincide with its TS-models.

Proof. By Observation 3.1, any TS-model of α ∧ γ0 is an LTL-model too. For
the other direction, by Proposition 6.2, any THT-model of α ∧ γ0 is a total
model. Since α ∧ γ0 has no non-total models, any model 〈T,T〉 is a temporal
equilibrium model and so T is a TS-model. �

Lemma 6.1. Let α and β be two LTL-equivalent formulas and let γ = (β → γ0).
Then, the following conditions are equivalent:

(i) There exists some H < T such that 〈H,T〉 6|= α→ β;

(ii) T is TS-model of β ∧ γ but not TS-model of α ∧ γ.

Proof. For (i) ⇒ (ii), suppose (i) holds. As α and β are LTL-equivalent,
〈H,T〉 6|= α → β amounts to 〈H,T〉 |= α and 〈H,T〉 6|= β. Then, it is easy
to see that 〈H,T〉 |= α ∧ γ because 〈H,T〉 6|= β which is the antecedent of
γ. From Proposition 3.1 (persistence) 〈T,T〉 |= α ∧ γ and since α and β have
the same total models, 〈T,T〉 |= β ∧ γ that is, T |= β ∧ γ in LTL. But now,
as β ∧ (β → γ0) is LTL-equivalent to β ∧ γ0, by Corollary 6.1, the LTL models
of this formula are its TS-models. In particular T is a TS-model of β ∧ γ. But
T cannot be TS-model of α ∧ γ because we had that 〈H,T〉 was a model and
H < T.

For (ii) ⇒ (i), suppose (ii) is true. Then, by Observation 3.1, T is LTL-
model of β ∧ γ, and thus, it is LTL-model of α ∧ γ too, since α and β are
LTL-equivalent. But as T is not TS-model of α ∧ γ, this means there exists
some H < T such that 〈H,T〉 |= α ∧ γ and so 〈H,T〉 |= α. On the other
hand, 〈H,T〉 6|= β because, otherwise, it would satify β ∧ γ and, as 〈H,T〉 is
non-total, T could not be TS-model of β ∧ γ. As a result, 〈H,T〉 6|= α→ β. �

Theorem 6.2 (necessary condition). If two temporal formulas α and β are
strongly equivalent in TEL then they are THT-equivalent.

Proof. The proof follows [79] although, for implementation purposes, it is
more convenient here to prove the contraposition of the result, that is: if α
and β are not THT-equivalent then there is some context formula γ for which
α ∧ γ and β ∧ γ have different TS-models.

Assume first that α and β have different total models, i.e., different LTL-
models. Then, the LTL-models of α∧γ0 and β∧γ0 also differ (because γ0 is an

6.2. Implementation and a practical example 111

LTL tautology). But by Corollary 6.1, LTL-models of these theories are exactly
their TS-models, which therefore, also differ.

Suppose now that α and β are LTL-equivalent but not THT-equivalent.
Then, there is some THT-countermodel 〈H,T〉 of either (α → β) or (β → α),
and given LTL-equivalence of α and β, the countermodel is non-total, H < T.
Without loss of generality, assume 〈H,T〉 6|= α→ β. By Lemma 6.1, taking the
formula γ = (β → γ0), we get that T is TS-model of β ∧ γ but not TS-model
of α ∧ γ. �

Corollary 6.2. Let α and β be two LTL-equivalent formulas and let γ = (β →
γ0). Then, any TS-model of α ∧ γ is a TS-model of β ∧ γ.

Proof. Suppose T is a TS-model of α ∧ γ. By Observation 3.1, T is an LTL
model of α ∧ γ too, and so, it is an LTL model of β ∧ γ, because α and β are
LTL-equivalent. But, as discussed in the proof of Theorem 6.2, any LTL-model
of β ∧ γ is also a TS-model of that theory. �

6.2 Implementation and a practical example

In this section we present a procedure for checking strong equivalence shown
in Algorithm 2. It takes two arbitrary propositional temporal formulas α and
β and returns either true, if they are strongly equivalent, or a triple with a for-
mula γ and two automata A1, A2 otherwise. The meaning of this information
is that A1 captures TS-models of α ∧ γ that are not TS-models of β ∧ γ and,
analogously, A2 captures TS-models of β ∧ γ that are not TS-models of α ∧ γ.
The procedure uses several auxiliary routines that are explained below:

• ltl_to_Büchi(ϕ): this function uses a SPoT function to obtain a Büchi
automaton from an LTL-formula ϕ.

• one_path(A): this function returns a single path from an automaton A

• h(A): it is the result of filtering out primed atoms from automaton A
(as we explained in Section 5.3)

This algorithm works as follows. The first three if’s in Algorithm 2 check
LTL-equivalence. These steps are trivial, except that when option ‘compute_-
one’ is selected and the theories are not LTL-equivalent, only one path of the
first non-empty automaton is returned. As stated in the proof of the main
theorem, when LTL-equivalence fails, we take γ0 as context formula.

If α and β are LTL-equivalent, the algorithm proceeds to find all non-total
H < T countermodels of α → β. These non-total countermodels are cap-
tured by an automaton A for the formula ¬(α → β)∗ ∧ (Ax1) ∧ (Ax2) (firstly
used in [18] for computing non-total THT-models) where (·)∗ is the translation
defined in Section 3.1.2 and both (Ax1) and (Ax2) are defined in Section 5.3.

If the language accepted by this automaton is not empty, by Lemma 6.1, the
T components of these non-total countermodels are precisely the TS-models
of β ∧ γ that are not TS-models of α ∧ γ, for γ = (β → γ0). To obtain those T
components we compute A2 := h(A) that, as explained in Section 5.3, filters

112 Chapter 6. Temporal Strong Equivalence

out the auxiliary atoms representing truth in H. The algorithm then returns
〈γ, ∅, A2〉 since, by Corollary 6.2, there are no TS-models of α ∧ γ that are not
TS-models of β∧γ. If, on the contrary, the language of A is empty, we proceed
in the analogous way for the other direction β → α. Finally, if in both cases we
get an empty automaton, then this means that any non-total interpretation is a
model of α↔ β something that, together with the LTL-equivalence of α and β,
means that the two formulas are THT-equivalent, that is, strongly equivalent.

Algorithm 2: StrongEquivalenceTest(α, β)
Require: Two propositional temporal formulas α, β.

If option ‘compute_one’ is set, it returns just one TS-model when a
difference is found.

Ensure: If α and β are THT-equivalent, it returns true. Otherwise,
it returns a triple 〈γ,A1, A2〉 where γ is a formula and A1, A2 are two
automata such that:
A1 captures TS-models(α ∧ γ) \ TS-models(β ∧ γ)
A2 captures TS-models(β ∧ γ) \ TS-models(α ∧ γ).

A1 := ltl_to_Büchi(α ∧ ¬β)
if compute_one and A1 6= ∅ then

return 〈γ0, one_path(A1), ∅〉
end if
A2 := ltl_to_Büchi(β ∧ ¬α)
if compute_one and A2 6= ∅ then

return 〈γ0, ∅, one_path(A2)〉
end if
if A1 6= ∅ or A2 6= ∅ then

return 〈γ0, A1, A2〉
end if
A=ltl_to_Büchi(¬(α→ β)∗ ∧ (Ax1) ∧ (Ax2))
if A 6= ∅ then
A2 := h(A)
if compute_one then
A2 := one_path(A2)

end if
return 〈(β → γ0), ∅, A2〉

end if
A=ltl_to_Büchi(¬(β → α)∗ ∧ (Ax1) ∧ (Ax2))
if A 6= ∅ then
A1 := h(A)
if compute_one then
A1 := one_path(A1)

end if
return 〈(α→ γ0), A1, ∅〉

end if
return true

6.2. Implementation and a practical example 113

p ∨ q (6.12)

�(p ∧ ¬© q →©p) (6.13)

�(q ∧ ¬© p→©q) (6.14)

�(p ∨ ¬p) (6.15)
S0start

S1

S2 {p}

{p}

{q}

{p}

{q}

Figure 6.1: TS-models of theory (6.12)-(6.15).

Finally, to show how ABSTEM can be used to check different types of equi-
valence between two arbitrary theories, let us consider the temporal theory
(6.12)-(6.15) of Figure 6.1, whose models coincide with sequences of states
of the forms {q}∗{p}ω or {q}ω. Notice how p and q are never true simultan-
eously, whereas once p becomes true, it remains true forever. Suppose that we
add the rule

�(¬p→ q) (6.16)

trying to capture the idea that, when no information on p is available, q be-
comes true. This new rule is actually a new default for q that interacts with
inertia rules (6.13),(6.14) destroying somehow their effect. Let β1 be this
extended theory, (6.12)-(6.15) plus (6.16). We can use ABSTEM to check the
TS-models of β1 (stored in file beta1.abs) as follows:

abstem -t -m -f beta1.abs

and we obtain the automaton in Figure 6.2(a) which corresponds to arbitrary
sequences formed with states {p} and {q} – note the difference with respect to
Figure 6.1 where p remained true after becoming true. This set of TS-models
actually coincides with what one would expect from a formula of the form
�(p ∨ q) since, as happens in ASP, truth minimality converts the disjunction
into an exclusive or. Let us call α1 = �(p ∨ q). We check4 whether α1 and β1

have the same TS-models:

abstem -w -m -f alpha1.abs -f beta1.abs

and we obtain a positive answer. Furthermore, by a quick inspection on β1

we can foresee that it is actually LTL-equivalent to α1. First, in LTL (6.16) is
equivalent to α1, and (6.15) is just a tautology. The other three rules, (6.12)-
(6.14) can be rewritten in LTL as (p ∨ q) ∧ �((p ∨ q) → ©(p ∨ q)) and this is
equivalent to �(p ∨ q) too (it corresponds to the induction schema for p ∨ q).
We can use ABSTEM to confirm LTL-equivalence as follows:

abstem -l -m -f alpha1.abs -f beta1.abs

and we obtain again a positive answer. However, α1 and β1 are not THT-
equivalent and so, they are not strongly equivalent. The strong equivalence
checking in ABSTEM is done as follows:

4See Appendix C to see all command-line options of ABSTEM

114 Chapter 6. Temporal Strong Equivalence

abstem -s -m -f alpha1.abs -f beta1.abs

and the answer displayed this time is negative, containing this information:

Not strongly equivalent:
adding the context
((p | q) & G(p | !p)
& G((p & !Xq)->Xp) & G((q & !Xp)->Xq)
& G(!p -> q))->
(G(p | !p) & G(q | !q))

File seq_differences_0: (p & q){(q)}w
TS-model of beta1.abs but not alpha1.abs

The context formula just corresponds to γ1 = β1 → γ0 in ABSTEM syntax.
The output already contains a path of states {p, q}{q}ω that is a TS-model of
β1∧γ1 but not of α1∧γ1. The automaton in file seq_differences_0 is shown
in Figure 6.2(b) and captures all the TS-models of β1 ∧ γ1 that are not TS-
models of α1 ∧ γ1. Note that this contains all TS-models that differ since, by
Corollary 6.2, TS-models of α1 ∧ γ1 are also TS-models of β1 ∧ γ1.

S0start

{q}, {p}

(a) TS-models of
α1 and β1.

S0start

S1

S2

{q},{p}
{p, q}

{p}, {q}, {p, q}

{q},{p}

{p, q}

(b) TS-models of β1 ∧ γ1 not of α1 ∧ γ1.

Figure 6.2: Temporal stable models related to α1 and β1.

Chapter 7

Related Work

In this chapter we study the relation to other approaches that have combined
temporal modal operators and non-monotonic reasoning or logic program-
ming (LP) semantics. We begin with a pair of LP approaches that cope with
modal operators, TEMPLOG and Temporal Answer Sets (TAS), and move later
to consider other works closer to Reasoning About Actions and Planning.

7.1 Relation between TEL and TEMPLOG

In this section, we will show that TEMPLOG is subsumed by TEL, that is, the
latter can be used as a generalization of the former for syntax-independent
disjunctive programs with classical and default negation. The syntax of TEM-
PLOG is defined next.

Definition 7.1 (TEMPLOG syntax). Let P denote an atom and N a next-atom,
that is, a formula of the form ©iP for some i > 0. Let ε denote the empty
expression. Then, a TEMPLOG program consists of a set of initial, permanent
and goal clauses grammatically defined as:

Non-empty Body: B ::= P ‖ B1, B2 ‖ ©B ‖ ♦B
Body: D ::= ε ‖ B
Initial clause: IC ::= N ← D ‖ �N ← D
Permanent clause: PC ::= �(N ← D)
Goal clause: G ::=← D

�

Any TEMPLOG program can be equivalently translated into a (possibly in-
finite) definite program Π∗ containing a set of clauses in which the only tem-
poral operator occurs in the shape of next-atoms ©iP . Π∗ is obtained by
replacing every occurrence of ♦B an expression involving the next operator.
We show the informal definition given by Baudinet below.

Definition 7.2 (temporally ground instance of a body (from [11])). Let B be a
TEMPLOG body. A temporally ground instance (TGI) of B is a TG body obtained
from B by replacing every occurrence of ♦ by a finite number of©’s. �

116 Chapter 7. Related Work

For instance, let us consider the formula

♦ (p,©♦q) .

Its corresponding set of ground instances would correspond to substitutions of
the form

©i
(
p,©j+1q

)
with both, i and j ranging on N. In [11], this definition was actually used by
assuming that the© operator were further pushed inside the expressions until
it only formed temporal atoms like ©iP . For instance, the temporal ground
body

©4
(
p,©9q

)
would correspond to the expression

©4p,©13q.

It is easy to see that, doing that, we remove all nested operators. For facilitat-
ing the correspondence proof, we develop below an equivalent formalisation
of Definition 7.2 that both defines TGI in an inductive way and pushes the
operator© as explained above.

Definition 7.3 (TGI operator). Let B and i be a temporal body and an integer
such that i ≥ 0 respectively. TGI(B, i) is recursively defined as follows:

• TGI(ε, i)
def
= ∅

• TGI(P, i)
def
= ©iP , with P a propositional atom.

• TGI((B1, B2) , i)
def
= {

(
B
′

1, B
′

2

)
| B′1 ∈ TGI(B1, i) and B

′

2 ∈ TGI(B2, i)}.

• TGI(©B, i) def
= TGI(B, i+ 1).

• TGI(♦B, i)
def
=
⋃∞
k=0 TGI(B, i+ k).

�

It can be proved that this definition is equivalent to the translation ‖ ‖k, from
THT into infinitary formulas, defined in Section 3.4.

Proposition 7.1. Let M∞ = 〈H∞, T∞〉 be an infinitary HT interpretation (see
an overview of Infinitary Equilibrium Logic in Section 2.2.6) and B a TEMPLOG
body. It holds that

M∞ |= {α | α ∈ TGI(B, i)}∨ iff M∞ |= ‖B‖i

where we assume that ’,’ operator in each body in TGI(B, i,) is interpreted as ’∧’
in infinitary HT .

Proof. We proceed by structural induction. The proof for the base case comes
from the definition of the translation.

7.1. Relation between TEL and TEMPLOG 117

M∞ |= TGI(ε, i)∨⇔M∞ |= ∅∨
⇔M∞ |= ‖⊥‖i (Def. 3.6)

M∞ |= TGI(P, i)∨⇔M∞ |=©iP
⇔M∞ |= ‖P‖i (Def. 3.6)

Now we continue with the inductive step. For the case of conjunction, if
we apply Definition 7.3, we get

M∞ |= TGI(B1, B2, i)
∨⇔M∞ |= {B′1, B

′

2 | B
′

1 ∈ TGI(B1, i)
∨ and

B
′

2 ∈ TGI(B2, i)
∨}∨

which, because of the distributivity property of infinitary HT , it corresponds
to

M∞ |= TGI(B1, B2, i)
∨⇔M∞ |= TGI(B1, i)

∨ and M∞ |= TGI(B2, i)
∨

and the chain of equivalences would continue as follows:

M∞ |= TGI(B1, i)
∨ and M∞ |= TGI(B2, i)

∨⇔M∞ |= ‖B1‖i
and M∞ |= ‖B2‖i

(Ind.)

⇔M∞ |= ‖B1, B2‖i (Def. 3.6)

M∞ |= TGI(©B, i)∨⇔M∞ |= TGI(B, i+ 1)∨ (Def. 7.3)
⇔M∞ |= ‖B‖i+1 (Ind.)
⇔M∞ |= ‖©B‖i (Def. 3.6)

M∞ |= TGI(♦B, i)∨⇔M∞ |= {B′ | B′ ∈ TGI(B, i+ k)}∨ (Def. 7.3)

⇔∃ k ≥ 0 and B
′ ∈ TGI(B, i+ k)∨ s.t.

M∞ |= B
′ (Def. 2.25)

⇔M∞ |= TGI(B, i+ k)∨, with k ≥ 0 (Def. 2.25)
⇔M∞ |= ‖B‖i+k (Ind.)
⇔M∞ |= ‖♦B‖i (Def. 3.6)

�

The program Π∗ is said to be temporal ground, concept defined in terms
Definition 7.2. We adapt such definition in order to use TGI operator.

Definition 7.4 (temporal ground instance of a clause adapted from [11]). A
TEMPLOG clause C is said to be a temporally ground instance (TGI) iff:

i If C = ©iA ← B is an initial clause then and B∗ ∈ TGI(B, 0) then
C∗ =©iA← B∗ is a temporally ground instance of C.

118 Chapter 7. Related Work

ii If C = �©iA← B is an initial clause and B∗ ∈ TGI(B, 0) then for every
k ∈ N, C∗ =©i+kA← B∗ is a TGI of C.

iii If C = �
(
©iA← B

)
is a permanent clause and B∗ ∈ TGI(B, 0) then for

every k ∈ N, C∗ =©i+kA←©kB∗ is a TGI of C.

�

The following lemma states that Π∗ can be seen as an extension of the
‖ ‖0 transformation applied to TEMPLOG programs, that is, ‖Π‖0 would result
from applying the transformation to every rule in Π.

Lemma 7.1. Let Π and Π∗ be a TEMPLOG program and its corresponding TGI
respectively. Given a HT∞ interpretation M∞ = 〈H∞, T∞〉, with H∞ ⊆ T∞ ⊆
At∞, for any signature At, it holds that

M∞ |= Π∗ iff M∞ |= ‖Π‖0

Proof. We proceed by checking cases i-iii of Definition 7.4.

M∞ |= i⇔∀B∗ ∈ TGI(B, 0), M∞ |=©i A← B∗

⇔M∞ |= {©i A← B∗ | B∗ ∈ TGI(B, 0)}∧ (Def. 2.25)
⇔M∞ |=©i A← {B∗ | B∗ ∈ TGI(B, 0)}∨ (Prop. 2.6)
⇔M∞ |= ‖©i A‖0 ← ‖B‖0 (Prop. 7.1)
⇔M∞ |= ‖©i A← B‖0 (Def. 3.6)

M∞ |= ii⇔∀k ≥ 0 ∀B∗ ∈ TGI(B, 0), M∞ |=©i+k A← B∗

⇔
{
M∞ |= {{©i+k A← B∗ | B∗ ∈ TGI(B, 0)}∧

| k ≥ 0}∧ (Def. 2.25)

⇔
{
M∞ |= {©i+k A← {B∗ | B∗ ∈ TGI(B, 0)}∨

| k ≥ 0}∧ (Prop. 2.6)

⇔M∞ |= {©i+k A | k ≤ 0}∧←{B∗ | B∗ ∈ TGI(B, 0)}∨(Prop. 2.6)
⇔M∞ |= {©i+k A | k ≤ 0}∧ ← ‖B‖0 (Prop. 7.1)
⇔M∞ |= ‖�©i A‖0 ← ‖B‖0 (Def. 3.6)
⇔M∞ |= ‖�©i A← B‖0 (Def. 3.6)

7.2. Relation to Temporal Answer Sets 119

M∞ |= iii⇔∀k ≥ 0 ∀B∗ ∈ TGI(B, 0), M∞ |=©i+k A←©kB∗

⇔
{
M∞ |= {{©i+k A←©kB∗ | B∗ ∈ TGI(B, 0)}∧

| k ≥ 0}∧ (Def. 2.25)

⇔
{
M∞ |= {©i+k A← {©kB∗ | B∗ ∈ TGI(B, 0)}∨

| k ≥ 0}∧ (Prop. 2.6)

⇔M∞ |= {©i+k A← {B̂| B̂ ∈ TGI(B, k)}∨ | k ≥ 0}∧ (Def. 7.2)
⇔M∞ |= {©i+kA← ‖B‖k | k ≥ 0}∧ (Prop. 7.1)
⇔M∞ |= {‖©i+k A‖0 ← ‖B‖k | k ≥ 0}∧ (Def. 3.6)1

⇔M∞ |= {‖©i A‖k ← ‖B‖k | k ≥ 0}∧ (Def. 3.6)
⇔M∞ |= {‖©i A← B‖k | k ≥ 0}∧ (Def. 3.6)
⇔M∞ |= ‖�

(
©iA← B

)
‖0 (Def. 3.6)

�

Definition 7.4 allows seeing any next-atom “©iP ” as a new renamed clas-
sical atom, and considering an infinite signature of the shape At = {©iP | i ∈
N}. Under this point of view, Π∗ becomes a definite logic program (negation
does not occur in next-atoms), and so, it is possible to define the least model
of Π∗, as a classical program.

Theorem 7.1. If Π is a TEMPLOG program and L is least model Π∗ then, the
temporal equilibrium model T, defined as

Ti = {p | ©ip ∈ L with p an atom }

is the unique equilibrium model of Π.

Proof. Since Π∗ is a definite positive program, its least model L is its unique
stable model. Next, from [115] we derive that L is the unique infinitary stable
model and, moreover, 〈L,L〉 is the unique infinitary equilibrium model (this
result was also proved in [55]). Finally, the fact that 〈L,L〉 is the unique stable
model of ‖Π‖0 follows from Lemma 7.1 and, because of Lemma 3.7, 〈T,T〉 is
the unique stable model of Π �

7.2 Relation to Temporal Answer Sets

In [51], Giordano, Martelli and Theseider Dupré defined an extension of an-
swer sets semantics to deal with operators from dynamic linear temporal logic
with the purpose of representing action scenarios.

7.2.1 Temporal Answer Sets

TAS syntax is based on two sets of atoms, one for actions and another for
fluents denoted by Σ and LitS respectively. If a ∈ Σ and l ∈ LitS is any simple
literal, then ©l and [a]l are called temporal fluent literals (LitT). Informally

1Note that, since A is an atom, then ‖©i+k A‖0 ≡ ©i+kA

120 Chapter 7. Related Work

speaking [a]l means that l has to be true after executing the action a whereas
©l states that l will be true after the execution of any action. We further define
the set Lit def

= LitS ∪LitT ∪ {⊥}. An extended fluent literal is defined as either
t or not t with t ∈ Lit. TAS programs are defined as follows:

Definition 7.5 (domain description). A domain description D over Σ is a tuple
D = (Π, C) where C is a set of DLTL formulas called constraints, and Π is a set
of rules of the forms:

t0 ← t1, . . . , tm, not tm+1, . . . , not tn (7.1)

� (t0 ← t1, . . . , tm, not tm+1, . . . , not tn) (7.2)

with the following restrictions:

1. If t0 ∈ LitS , then all ti ∈ LitS for i = 1, . . . , n.

2. If t0 =©l, all the temporal literals in the rule are of the form©l′

3. If t0 = [a]l, all the temporal literals in the rule are of the form [a]l′

�

To give an example, let us consider following is a possible TAS encoding of
the Yale Shooting scenario where we consider that the shot of a loaded gun
can non-deterministically fail in killing the turkey:

�([shoot] ∼loaded ← loaded) (7.3)

�([shoot](alive∨ ∼alive) ← alive ∧ loaded) (7.4)

�[load]loaded (7.5)

�(©F ← F ∧ ¬© ∼F) (7.6)

�(© ∼F ← ∼F ∧ ¬© F) (7.7)

where (7.6) and (7.7) represent the inertia for all fulent F ∈ {loaded, alive}.

Temporal connectives are interpreted in terms of words (including the
empty word ε) build with symbols from Σ. Since the words considered can
have either finite or infinite length, let Σ∗ and Σω be the sets of words with fi-
nite (resp. infinite) length that can be formed with symbols from Σ. Moreover
given a word σ we call pref(σ) to the set consisting of all prefixes of the word
σ.

Definition 7.6 (partial temporal interpretation (from [51])). A (partial) tem-
poral interpretation is a pair (σ, S) with σ ∈ Σω and S a set of temporal expres-
sions of the form [τ]l, with τ ∈ pref(σ) and l ∈ LitS , not containing any pair
[τ]p and [τ] ∼p for any p ∈ P. Moreover, when [τ]p ∈ S iff [τ] ∼p 6∈ S, then
(σ, S) is a total temporal interpretation.
The satisfiability of an extended fluent literal t ∈ Lit with respect to an inter-
pretation (σ, S) and a prefix τ ∈ pref(σ) is defined as follows, depending on the
case:

• (σ, S), τ |= > and (σ, S), τ 6|= ⊥

7.2. Relation to Temporal Answer Sets 121

• (σ, S), τ |= l iff [τ]l ∈ S, for a simple literal l
• (σ, S), τ |= [a]l iff [τ ; a]l ∈ S or τ 6∈ pref(σ)

• (σ, S), τ |=©l iff [τ ; b]l ∈ S for some τ ; b ∈ pref(Σ)

for any a ∈ Σ and l ∈ LitS . The satisfaction of a rule with respect to (σ, S) is as
follows:

• (σ, S), a1; · · · , an |= (7.1) when: if (σ, S), ε |= ti for all i = 1, . . . ,m and
(σ, S), ε 6|= ti for all i = m+ 1, . . . , n then (σ, S), ε |= t0.

• (σ, S), a1, · · · , an |= (7.2) when: if for any τ ∈ pref(σ) such that (σ, S), τ |=
ti for all i = 1, . . . ,m and (σ, S), τ 6|= ti for all i = m + 1, . . . , n then
(σ, S), τ |= t0.

�

The definition of Temporal Answer Sets is given in terms of an extension
of Gelfond & Lifschitz’s program reduct [48] to the temporal case

Definition 7.7 (program Reduct from [51]). Given a partial temporal inter-
pretation (σ, S) and a program Π, the program reduct, denoted as Π(σ,S) consists
of the set of all rules ⋃

τ∈pref(σ)

{[τ] (t0 ← t1, . . . , tm)}

such that � (t0 ← t1, . . . , tm, not tm+1, . . . , not tn) ∈ Π and (σ, S), τ |= ti, for
all m ∈ (m,n]. �

Definition 7.8 (temporal answer set (from [51])). A partial temporal extension
(σ, S) is a temporal answer set of Π if (σ, S) is minimal among the S′ such that
(σ, S′) is a partial interpretation satisfying the rules of the reduct Π(σ,S). �

As an intuitive idea of whether a TAS program Π can be encoded in TEL or
not, our Yale shooting representation has a simple encoding in TEL. It suffices
with introducing new propositions for all the actions in Σ and adding them in
the positive bodies where they occur.

� (shoot ∧ loaded → © ∼loaded) (7.8)

� (shoot ∧ loaded ∧ alive → ©alive ∨© ∼alive) (7.9)

� (load → ©loaded) (7.10)

� (F ∧ ¬© ∼F → ©F) (7.11)

� (∼F ∧ ¬© F → © ∼F) (7.12)

� (load ∨ shoot) (7.13)

Rule (7.13) is added to represent that one (and, in fact, only one) action can
be executed at a time. Temporal equilibrium models of such representation,
which correspond, with the temporal answer sets, are shown in Figure 7.1.

The relation between TAS and TEL has been deeply studied by Aguado,
Pérez and Vidal in [4]. Such study was made by defining a new framework
called Dynamic Temporal Equilibrium Logic (DTEL), the combination of Equi-
librium Logic and DLTL, and proving both TEL and TAS can be embedded in
DTEL.

122 Chapter 7. Related Work

alive,
∼ loadedstart ∼ alive,

loaded

∼ alive,
∼ loaded

alive,
loaded

shoot

load

shoot

load
shoot

load

shoot

load

shoot

Figure 7.1: Temporal answer sets of program consisting of rules (7.3)-(7.7)

7.2.2 Dynamic Temporal Equilibrium Logic

In this section we recall the definition of made by Aguado, Pérez and Vidal,
Dynamic Linear-Time Temporal Equilibrium Logic (DTEL for short). As happens
with Equilibrium Logic and with TEL, DTEL is a non-monotonic formalism
whose definition consists of two parts: a monotonic basis and a models selec-
tion criterion. The monotonic basis is a temporal extension of the intermedi-
ate logic of Here-and-There [57] (HT). We call this monotonic logic DLTLHT.
As a running example, we will use the well-known Yale Shooting scenario
from [54] where, in order to kill a turkey, we must shoot a gun that must be
previously loaded.

DLTLHT formulas are built from a non-empty finite set of actions, called
alphabet and denoted by Σ, and a set of fluents, denoted by P, such that
Σ∩P = ∅. We denote as Σ∗ and Σω to respectively stand for the finite and the
non-finite words that can be formed with Σ. We also define Σ∞

def
= Σ∗ ∪ Σω.

For any σ ∈ Σω, we denote by pref(σ) the set of its finite prefixes (including
the empty word ε) and we say that two prefixes, τ1 and τ2, from pref(σ) satisfy
τ1 < τ2 iff

∃τ ′ ∈ Σ∗ s. t. τ1τ ′ = τ2.

In the same way, we say that τ1 ≤ τ2 if τ1 ≤ τ2 or τ1 = τ2.
The set of programs (regular expressions) generated by Σ is denoted by

Prg(Σ) and its syntax is given by the grammar:

π :: = a |π0 + π1 |π0;π1 |π∗ (7.14)

with a ∈ Σ and π, π0, π1 ∈ Prg(Σ). By abuse of notation, we will some-
times identify a finite prefix τ = σ1 . . . σn as the program σ1; . . . ;σn. For
example, in the case of the Yale Shooting scenario for the set of actions Σ =
{load, shoot, wait} we could write a program like π = (load; shoot)∗ repres-
enting repetitions of the sequence load; shoot.

7.2. Relation to Temporal Answer Sets 123

The mapping || · || : Prg(Σ)→ 2Σ∗ associates to each program a set of finite
words (regular set) as follows:

||a|| def
= {a}

||π0 + π1||
def
= ||π0|| ∪ ||π1||

||π0;π1||
def
= {τ0τ1 | τ0 ∈ ||π0|| and τ1 ∈ ||π1||}

||π∗|| def
=

⋃
i∈ω ||πi||

where

||π0|| def
= {ε}

||πi+1|| def
= {τ0τ1 | τ0 ∈ ||π|| and τ1 ∈ ||πi||} for every i ∈ ω.

Let P = {p1, p2, . . .} be a countable set of atomic propositions. We denote

the set of simple literals as LitS
def
= {p,∼p ; p ∈ P}. The syntax of DLTLHT

coincides with DLTL plus the addition of the strong negation operator ‘∼.’ A
well-formed formula F is defined as follows:

F :: = ⊥ | p | ∼F |F1 ∨ F2 |F1 ∧ F2 |F1 → F2 |F1 Uπ F2 |F1Rπ F2

where p is an atom and F, F1, F2 are well-formed formulas. The expression
¬F stands for F → ⊥, constant > corresponds to ¬⊥ whereas F1 ↔ F2 is an
abbreviation for (F1 → F2) ∧ (F2 → F1) as usual.

Proposition 7.2 (from [4]). A DLTLHT formula ϕ can be always rewritten into
an equivalent one in strong negation normal form (SNNF), that is, guaranteeing
that the operator ‘∼’ only affects to atoms in P. �

Given an infinite word σ ∈ Σω, we define a valuation function V as a
mapping V : pref(σ)→ 2LitS assigning a set of literals to each finite prefix of
σ. A valuation function V is consistent if, for any τ ∈ pref(σ), V (τ) does not
contain a pair of opposite literals of the form p and ∼p simultaneously. Given
two valuation functions V1, V2 (wrt σ), we write V1 ≤ V2 when V1(τ) ⊆ V2(τ)
for every τ ∈ pref(σ). As usual, if V1 ≤ V2 but V1 6= V2, we just write V1 < V2.

Definition 7.9 (temporal interpretation). A (temporal) interpretation of DLTLHT
is a tuple M = (σ, Vh, Vt) where σ ∈ Σω and Vh, Vt are two valuation functions
for σ such that Vt is consistent and Vh ≤ Vt. We say that the interpretation M is
total when Vh = Vt. �

Given a formula α, a prefix τ ∈ pref(σ) and a temporal interpretation M =
(σ, Vh, Vt), we define the satisfaction relation M, τ |= α inductively as follows:

• M, τ |= p iff p ∈ Vh(τ)

• M, τ |=∼p iff ∼p ∈ Vh(τ)

• M, τ |= α ∨ β iff M, τ |= α or M, τ |= β

• M, τ |= α ∧ β iff M, τ |= α and M, τ |= β

124 Chapter 7. Related Work

• M,τ|=α→ β iff for every w ∈{h, t}, (σ, Vw, Vt),τ 6|=α or (σ, Vw, Vt),τ |=β

• M, τ |= αUπ β iff there exists τ ′ ∈ ||π|| such that ττ ′ ∈ pref(σ) and
M, ττ ′ |= β, and for every τ ′′ such that ε ≤ τ ′′ < τ ′, we haveM, ττ ′′ |= α.

• M, τ |= αRπ β iff for every τ ′ ∈ ||π|| such that ττ ′ ∈ pref(σ), it is
the case that M, ττ ′ |= β or there exists τ ′′ such that ε ≤ τ ′′ < τ ′ and
M, ττ ′′ |= α.

It has also been proven that persistence also holds in this formalism:

Lemma 7.2 (persistency from [4]). For any formula α, any interpretation M =
(σ, Vh, Vt) and any τ ∈ pref(σ), the following two conditions hold:

1. If (σ, Vh, Vt), τ |= α, then (σ, Vt, Vt), τ |= α

2. (σ, Vh, Vt), τ |= ¬α iff (σ, Vt, Vt), τ 6|= α

�

Other usual temporal modalities can be defined as derived operators:

(i) 〈π〉α def
= > Uπα

(ii) [π]α
def
= ⊥ Rπα

(iii) ©α def
=
∨
a∈Σ 〈a〉α

(iv) αU β def
= αUΣ∗ β

(v) αRβ def
= αRΣ∗ β

(vi) �α def
= [Σ∗]α (≡ ⊥R α)

(vii) ♦α def
= 〈Σ∗〉α (≡ >U α)

Definition 7.10 (DTEL model). A total temporal interpretation M = (σ, Vt, Vt)
is said to be a temporal equilibrium model (DTEL-model for short) of a formula
α in DLTLHT if M |= α and there is no Vh < Vt such that (σ, Vh, Vt) |= α.

When a formula ϕ is written in LTL syntax, Theorem 7.2 shows that there
exist an one-to-one correspondence between both THT and DLTLHT models of
ϕ, which still holds after the minimisation.

Theorem 7.2 (from [4]). Let α be a formula in LTL syntax. Then the THT
models of α are in a one-to-one correspondence to (an equivalence class of) the
DLTLHT models of α. �

For embedding TAS in DLTLHT, we have to take into account that the formulas
of C are also formulas of DLTLHT and translate the rules of Π into formulas in
DLTLHT. For any rule r, we define the formula r̃ as:

r̃
def
= t1 ∧ . . . ∧ tm ∧ ¬tm+1 ∧ . . . ∧ ¬tn → t0 (7.15)

r̃
def
= � (t1 ∧ . . . ∧ tm ∧ ¬tm+1 ∧ . . . ∧ ¬tn → t0) (7.16)

for r of the forms (7.1) and (7.2), respectively. Note that for positive programs,
m = n and the empty conjunction of negated ti amounts to >.

7.2. Relation to Temporal Answer Sets 125

On the other hand, we also have to define a correspondence between a partial
interpretation (σ, S) and a DLTLHT total interpretation. Such a correspondence
is defined by taking VS and S as follows:

VS(τ)
def
= {l ∈ LitS | [τ] l ∈ S}

S
def
=

⋃
τ∈pref(σ)

{[τ]VS(τ)}

Theorem 7.3 (from [4]). Take D = (Π, C) a domain description and (σ, S) a
temporal interpretation. The following assertions are equivalent:

1. (σ, S) is an extension of D

2. (σ, VS , VS) is a temporal equilibrium model of Π̃ ∪ {¬¬α | α ∈ C}

�

7.2.3 A normal form for DTEL

We provide next a new result showing how can we remove DTEL modalit-
ies by allowing the use of auxiliary atoms2. Both formalisms, DTEL and TEL,
have different expressive powers, while the former allows describing problems
that are representable by a ω-regular expression, the latter covers a less ex-
pressive class that corresponds to the star-free ω-languages. For instance, the
well known example of even-state property is represented by the expression
[(Σ; Σ)∗]p it is not TEL representable.

In order to increase such expressiveness, DTEL introduces two new mod-
alities, Uπ and Rπ, that allow forcing that DTEL models satisfy π. However, if
we allow the use of auxiliary atoms we can reduce an arbitrary DLTLHT theory
to a set of implications involving only temporal operators �,©, [π∗] and 〈π∗〉.
We assume that DLTLHT input formulas are given in the normal form defined
next.

Definition 7.11 (DLTLHT normal form). We say that a DLTLHT formula ϕ, is
in normal form if every subformula of ϕ involving operators U and R has the
following form

• ϕUa ψ, with a ∈ Σ

• ϕRa ψ, with a ∈ Σ

• ϕUπ∗ ψ

• ϕRπ∗ ψ

An arbitrary DLTLHT formula ϕ can be translated into this normal form by
applying iteratively equivalences (1)-(4) from Definition 7.12 to all subformu-
las of ϕ.

2An auxiliary atom is a fresh new atom that is disregarded once the final models are obtained.
In this sense it behaves exactly as an existential quantifier (this was suggested by Stéphane Demri
in a personal communication)

126 Chapter 7. Related Work

Definition 7.12. The following equivalences are valid in DLTLHT

1 ϕUπ1;π2 ψ ≡ ϕUπ1 (ϕUπ2 ψ)

2 ϕRπ1;π2 ψ ≡ ϕRπ1 (ϕRπ2 ψ)

3 ϕUπ1+π2 ψ ≡ (ϕUπ1 ψ) ∨ (ϕUπ2 ψ)

4 ϕRπ1+π2 ψ ≡ (ϕRπ1 ψ) ∧ (ϕRπ2 ψ)

Translating star-free expressions

We first begin with the cases where regular expressions associated with op-
erators Uπ and Rπ are star-free, that is when π∗ is removed from the gram-
mar (7.14). In this case, normal form of Definition 7.11 would contain only
temporal operators of the form Ua and Ra, with a an action. In this case,
the following definition translates a DLTLHT expression, given in normal form,
into THT without introducing auxiliary atoms.

Definition 7.13. Let ϕ a DLTLHT formula expressed in normal form. Its transla-
tion into THT is recursively defined next:

• [⊥]THT
def
= ⊥

• [p]THT
def
= p, with p an atom.

• [©ϕ]THT
def
= ©[ϕ]THT

• [ϕ ∧ ψ]THT
def
= [ϕ]THT ∧ [ψ]THT

• [ϕ ∨ ψ]THT
def
= [ϕ]THT ∨ [ψ]THT

• [ϕ→ ψ]THT
def
= [ϕ]THT → [ψ]THT

• [ϕUaψ]THT
def
= [ϕ]THT ∧ a ∧©[ψ]THT , with a and action

• [ϕRaψ]THT
def
= a→ [ϕ]THT ∨©[ψ]THT , with a an atom

�

We can stablish the following one-to-one correspondence between DLTLHT
and THT interpretations

Definition 7.14. Let Σ and P a set of actions and propositional variables re-
spectively. Given a DLTLHT interpretation M = (a0 · · · ai, Vh, Vt), we define the
corresponding THT interpretation M ′ = 〈H,T 〉 as:

Hi = {ai+1} ∪ Vh(a0; · · · ; ai)

Ti = {ai+1} ∪ Vt(a0; · · · ; ai)

Conversely, M can be obtained from M ′ by defining

7.2. Relation to Temporal Answer Sets 127

ai = Hi ∩ Σ

Vh(a0 · · · ai) = Hi ∩ P
Vt(a0 · · · ai) = Ti ∩ P

�

Lemma 7.3. Let ϕ be a DLTLHT expressed in normal form such that it has no
subformulas of the type Uπ∗ and Rπ∗ . For any model M = (a0 · · · ai, Vh, Vt) of
ϕ and its corresponding THT model M ′ = 〈H,T 〉, it holds that

M, a0 · · · ai |= ϕ iff M ′, i |= [ϕ]THT .

Proof. We proceed by structural induction:

M,a0 · · · ai |= p ∈ P ⇔ p ∈ Vh(a0 · · · ai)
⇔ p ∈ Hi (Def. 7.14)
⇔ [p]THT ∈ Hi (Def. 7.13)
⇔ M ′, i |= [p]THT

M,a0 · · · ai |= ϕ ∧ ψ ⇔ M,a0 · · · ai |= ϕ and M,a0 · · · ai |= ψ
⇔ M ′, i |= [ϕ]THT and M ′, i |= [ψ]THT (ind.)
⇔ M ′, i |= [ϕ ∧ ψ]THT

M,a0 · · · ai |= ϕ ∨ ψ ⇔ M,a0 · · · ai |= ϕ or M,a0 · · · ai |= ψ
⇔ M ′, i |= [ϕ]THT or M ′, i |= [ψ]THT (ind.)
⇔ M ′, i |= [ϕ ∨ ψ]THT

For the case of the implication, let us denote asM = (a0 · · · ai, Vt, Vt) and
M′ = 〈T, T 〉 the total models corresponding to M and M ′ respectively. Note
that, sinceM also corresponds toM′, we can apply induction on subformulas
to prove this case.

M,a0 · · · ai |= ϕ→ ψ ⇔

M,a0 · · · ai 6|= ϕ or M,a0 · · · ai |= ψ
and
M, a0 · · · ai 6|= ϕ or a0 · · · ai |= ψ

⇔

M
′, i 6|= [ϕ]THT or M ′, i |= [ψ]THT

and
M′, i 6|= [ϕ]THT orM′, i |= [ψ]THT

(Ind.)

⇔ M ′, i |= [ϕ→ ψ]THT

128 Chapter 7. Related Work

M,a0 · · · ai |=©ϕ ⇔ ∃b ∈ Σ s.t. M,a0 · · · aib |= ϕ
⇔ M ′, i+ 1 |= [ϕ]THT (Ind.)
⇔ M ′, i |=©[ϕ]THT
⇔ M ′, i |= [©ϕ]THT

M,a0 · · · ai |= ϕUbψ ⇔
{
M,a0 · · · aib |= ψ
and M,a0 · · · ai |= ϕ

⇔
{
M ′, i+ 1 |= [ψ]THT
and M ′, i |= [ϕ]THT

(Ind.)

⇔

M
′, i+ 1 |= [ψ]THT

and M ′, i |= [ϕ]THT
and M ′, i |= b

(Def. 7.14)

⇔

M
′, i |=©[ψ]THT

and M ′, i |= [ϕ]THT
and M ′, i |= b

⇔ M ′, i |= [ϕUbψ]THT

M,a0 · · · ai |= ϕRbψ ⇔

if a0 · · · aib ∈ pref(σ) then
M,a0 · · · aib |= ψ
or M,a0 · · · ai |= ϕ

⇔

if a0 · · · aib ∈ pref(σ) then
M ′, i+ 1 |= [ψ]THT
or M, i |= [ϕ]THT

(Ind.)

⇔

if b ∈ Hi then
M ′, i+ 1 |= [ψ]THT
or M ′, i |= [ϕ]THT

(Def. 7.14)

⇔

if M ′, i |= b then
M ′, i+ 1 |= [ψ]THT
or M ′, i |= [ϕ]THT

(Def. 3.1)

⇔ M ′, i |= b→©[ψ]THT ∨ [ϕ]THT

⇔ M ′, i |= [ϕRbψ]THT

�

Going back to our running example, imagine that we want to select mod-
els where the shooter loads the gun once or twice in a row before shooting

7.2. Relation to Temporal Answer Sets 129

the well-aimed shot that kills the turkey. This behaviour corresponds to the
DLTLHT formula

γ = ♦〈(load+ (load; load)) ; shoot〉 ∼ alive

which could be translated into THT as follows:

♦〈(load+(load; load;)) ; shoot〉∼ alive⇔ ♦〈load+(load; load)〉〈shoot〉∼alive

⇔ ♦ (〈load; shoot〉 ∼ alive) ∨ ♦ (〈load; load; shoot〉 ∼ alive)

⇔ γ′ = ♦ (load ∧©shoot ∧©© ∼ alive)
∨♦ (load ∧©load ∧©© shoot ∧©©© ∼ alive) .

alive
∼ loaded

start

alive
loaded

alive
loaded

∼ alive
∼ loaded

∼ alive
loaded

shoot

load

shoot

load

shoot

load

load

shoot

load

shoot

load

Figure 7.2: DTEL models of theory (7.8)-(7.13) plus γ′

Removing DTEL modalities

When operators Uπ∗ or Rπ∗ are used in the normal form, the resulting for-
mulas may not be directly translated into TEL. Some example like αUa∗β is
equivalent to the THT expression (α ∧ a)Uβ but more general regular expres-
sions, like (a; b)∗ are not representable. If we allow the use of auxiliary atoms
we can reduce the set of DLTLHT modalities to the cases 〈π∗〉 and [π∗].

Definition 7.15. Let ϕUπ∗ψ and ϕRπ∗ψ be two DLTLHT formulas built on a set
of actions Σ and a set of atoms P. We call their definitions respectively, denoted

130 Chapter 7. Related Work

by df(ϕUπ∗ψ) and df(ϕRπ∗ψ), to the following axioms

df(ϕUπ
∗
ψ)

def
= �(LϕUπ∗ψ ↔ ψ ∨ (ϕUπLϕUπ∗ψ))

∧�(LϕUπ∗ψ → 〈π∗〉ψ) (7.17)

df(ϕRπ
∗
ψ)

def
= �(LϕRπ∗ψ ↔ ψ ∧ (ϕRπLϕRπ∗ψ)

∧�([π∗]ψ → LϕRπ∗ψ) (7.18)

where both LϕUπ∗ψ and LϕRπ∗ψ are new fresh variables that represent auxiliary
atoms. �

Lemmas 7.4 and 7.5, which are presented below, guarantee that replacing
a formula of the form α = ϕUπ∗ψ or α = ϕRπ∗ψ by a fresh atom Lα plus
adding corresponding definitions df(ϕ) to the context, we can reduce the cor-
responding DLTLHT modalities to the case of [π∗] and 〈π∗〉. Doing this process
iteratively we reduce all modalities.

Lemma 7.4. Let Σ be a set of actions, LV a set of atoms and ϕ and ψ two
DLTLHT formulas over LV . If α = ϕUπ∗ψ and LU = LV ∪{Lα} (with Lα a fresh
atom), given a DLTLHT interpretation M = (σ, Vh, Vt) on LU , it holds that

M, τ |= Lα iff M, τ |= α

for any τ ∈ pref(σ).

Proof. From left to right, given M, τ |= Lα then, due to expression (7.15) we
getM, τ |= 〈π∗〉ψ and, thus, there exist i ≥ 0 satisfyingM, τ |= 〈πi〉ψ. Take the
shortest i satisfying M, τ |= 〈πi〉ψ, so that we further have M, τ 6|= 〈πj〉ψ, for
any j < i. We will inductively prove that M, τ |= ϕUπkLα with k = 0, · · · i− 1,
which together with M, τ |= 〈πi〉ψ implies M, τ |= α.

For k = 0, we know M, τ |= Lψ thus M, τ |= ϕUπ0

Lα. Assume it proved
for a program πk, with 0 ≤ k < i−1 and let us prove it for k+1. By induction,
M, τ |= ϕUπkLα and so M, τ |= 〈πk〉Lα. Since M, τ |= df(α) and M, τ 6|=
〈πk〉ψ we deduce that M, τ |= ϕUπLα and therefore M, τ |= ϕUπk (ϕUπLα),
which is equivalent to M, τ |= ϕUπk+1

Lα.
From right to left, suppose M, τ |= ϕUπ∗ψ. This means that there exists

i ≥ 0 such that M, τ |= ϕUπiψ. We will inductively show that for any k =
i, · · · , 0 it holds that M, τ |= 〈πk〉Lα, which includes the case k = 0, which is
the one we really want to prove. For k = i, we know that M, τ |= 〈πi〉Lα and,
by expression (7.17), we derive M, τ |= 〈πi〉Lα.

Assume it proved for k + 1, with 0 ≤ k < j and let us prove it for k. Since
M, τ |= ϕUπiψ can be rewritten as

M, τ |= ϕUπ
k+1
(
ϕUπ

i−k−1

ψ
)
,

and M, τ |= 〈πk+1〉Lα, we can derive M, τ |= ϕUπk+1

Lα. Again, this ex-
pression is equivalent to say M, τ |= ϕUπk (ϕUπLα), which implies M, τ |=
〈πk〉 (ϕUπLα). Finally from the expression (7.17) we concludeM, τ |= 〈πk〉Lα.

�

7.3. Relation to works on planning 131

Lemma 7.5. Let Σ be a set of actions, LV a set of atoms and ϕ and ψ two
DLTLHT formulas over LV . If α = ϕRπ∗ψ, the corresponding df(α) is added
to the context and LU = LV ∪ {Lα} (with Lα a fresh atom), given a DLTLHT
interpretation M = (σ, Vh, Vt) on LU , it holds that

M, τ |= Lα iff M, τ |= α

for any τ ∈ pref(σ).

Proof. The proof is analogous to the one shown in Lemma 7.4 but switching
the roles of ∧ and ∨ and of ‘|=’ with ‘6|=’. �

7.3 Relation to works on planning

Reasoning in dynamic scenarios has also been considered in planning. Plan-
ning languages, like PDDL [94], introduces non-monotonicity by assuming
false everything which is not defined in a state. Most efficient planners [69, 8]
allow specifying domain dependent information in terms of LTL formulas, fact
that improves their efficiency but using strategies that are not integrated into
the planning language. As a future line of research we aim to develop a plan-
ner based on TEL semantics in order to join plan specification, and domain
dependent knowledge together.

7.4 Relation to approaches of model checking in
ASP

Checking temporal properties on asynchronous systems has been studied in
[56]. The method proposed consists in encoding an asynchronous problem
into a P/T-nets, a special type of Petri nets, whose inherent concurrency can
be exploited in model checking the system. Such nets can be encoded into
ASP programs by means of a translation, defined in [56], that captures their
possible executions up to n steps. Moreover, such translation can be extended
to encode arbitrary LTL formulas into an ASP program in order to check that
the net satisfies an LTL formula. The ASP encoding has the form of a splittable
temporal logic program and, therefore, it can be used as input for STeLP in an
straightforward way. Before presenting our translation, we define the concept
of P/T-net.

Definition 7.16 (from [56]). A triple 〈P, T, F 〉 is a net if P ∩ T = ∅ and
F ⊆ (P × T) ∪ (T × P). The elements of P are called places and the elements
of T transitions. Places and transitions, usually called nodes, are represented in
graphical notation by circles and squares respectively. The flow relation, F , is
represented by arcs. The preset of a node is usually denoted by •x and corres-
ponds to the set {y ∈ P ∪T | F (y, x) = 1}. Conversely, its postset x• corresponds
to {y ∈ P ∪ T | F (x, y) = 1}. �

We here propose a translation for P/T-nets, which is nothing but a direct
translation of the ASP rules proposed in [56] into STeLP syntax.

132 Chapter 7. Related Work

t1 t2 t3 t4 t5

p4

p2p1

p3 p5

Figure 7.3: Example of a P/T-net from [56]

• For each place p ∈ P that is marked we add the fact

p.

• For each translation t ∈ T we include the TEL formula

�

 ∧
(pi,t)∈F

pi

→ t ∨ nt

 ∧ ¬ (t ∧ nt)

 ,

with pi an atom in P . This formula means that a transition might be
non-deterministically enabled only if all places p such that (p, t) ∈ F ,
are enabled. This non deterministic behaviour is represented by the dis-
junction t ∨ nt, which can lead to models where both atoms t and nt
were true at the same time. However, such models are forbidden when
adding �¬ (t ∧ nt). This formula corresponds to the following pair of
STeLP rules:

t v nt ::- p1, ..., pn.
::- t, nt.

• For each place p ∈ P add the implication

�

 ∨
(ti,p)∈F

ti

→©p
 ,

This formula means that a place will be enabled in the next state if there
exists at least one transition is shot in the current one. It can be proved
that the previous rule is strongly equivalent to the following conjunction
of implications:

7.4. Relation to approaches of model checking in ASP 133

 ∧
(ti,p)∈F

� (ti →©p)

whose translation into STeLP syntax is straightforward. The equivalent
representation corresponds to the following program:

o p ::- t1.
o p ::- t2.

....

....
o p ::- tn.

• For each place p ∈ P we add the formula

�

p∧ ∧
(ti,p)∈F

¬ti →©p

that emulates the a rule of inertia3. This implication can be expressed in
STeLP by the rule

o p ::- p, t1 tn.

• For each place p ∈ P such that p• contains more than two transitions,
we must add the formula

�

 ∧
ti,tj∈p•

¬ (ti ∧ tj)

 ,

which avoids that a marked place can feed two different transitions. This
formula is strongly equivalent to the expression

♦

 ∨
ti,tj∈p•

(ti ∧ tj)

→ ⊥
expressed as an implication. Since STeLP allows expressing arbitrary
LTL formulas in the body of a constraint (see Appendix B), this rule can
be directly expressed in our tool as follows:

:- pos ((t1 , t2) v (t2, t3) v (t1 v t3)).

As an example, let us consider the P/T-net of Figure 7.3. Its STeLP encod-
ing is shown below.

3In this example, the rule of inertia for a place p would have the form � (p ∧ ¬© ∼ p→©p).
However, the truth value of©p is determined by the truth value of the transitions in the current
moment. Therefore, this rule would behave as inertia does.

134 Chapter 7. Related Work

%% places enabled
p1. p2.
%% transitions activations
t1 v nt1 ::- p3.
t2 v nt2 ::- p1, p2.
t3 v nt3 ::- p2.
t4 v nt4 ::- p4.
t5 v nt5 ::- p2.
::- t1, nt1.
::- t2, nt2.
::- t3, nt3.
::- t4, nt4.
::- t5, nt5.
%% direct effects
o p1 ::- t1.
o p2 ::- t4.
o p3 ::- t2.
o p4 ::- t2.
o p4 ::- t3.
o p5 ::- t5.
%% inertial laws
o p1 ::- p1, not t2.
o p2 ::- p2, not t2, not t3, not t5.
o p3 ::- p3, not t1.
o p4 ::- p4, not t4.
o p5 ::- p5.
%% two input transitions of a place
%% cannot be enabled at the same time
:- pos ((t2, t3) v (t2, t5) v (t3, t5).

TEL models correspond to the language accepted by the Büchi automaton of
the Figure 7.4, which represents the whole behaviour of the system.

7.4. Relation to approaches of model checking in ASP 135

{p1, p2}
init

{p3, p4} {p2, p3}

{p1, p4}

{p3, p5}

{p1, p5}

{t2}

{t5}

{t3}

{t1, t4}

{t4}

{t1} {t1, t5}

{t5}

{t1, t3}

{t3}

{t1}

{t4}

true

true true

true

true

true

Figure 7.4: Büchi automaton which corresponds to the behaviour of the P/T-
net of Figure 7.3

The main advantage of the use of STeLP instead of traditional ASP solvers
model checking relies on the fact that it is not necessary to consider bounding
model checking. Checking a temporal property ϕ on STeLP can be performed
by adding the formula ¬¬ϕ, to the program and check that the accepting
language of the resulting automaton is empty. As an example, let us check
whether the P/T-net of Figure 7.3 has deadlocks or not, that is, if the temporal
equilibrium models of the net satisfy the LTL formula

¬¬♦� ((p1 ∨ p2 ∨ p3 ∨ p4 ∨ p5) ∧ (¬t1 ∧ ¬t2 ∧ ¬t3 ∧ ¬t4 ∧ ¬t5))

which corresponds to the following constraint in STeLP:

:- always not (always ((p1 v p2 v p3 v p4 v p5),
(not t1, not t2, not t3, not t4, not t5))).

As a result of adding this constraint to our representation we get the auto-
maton of Figure 7.5, which points out that every execution of the net that
reaches the state {p1, p5} enabled would correspond to a state in deadlock.

136 Chapter 7. Related Work

{p1, p2}
init

{p3, p4} {p2, p3}

{p1, p4}

{p3, p5}

{p1, p5}

{t2}

{t5}

{t3}

{t1, t4}

{t4}

{t1} {t1, t5}

{t5}

{t1, t3}

{t3}

{t1}

{t4}

true

true true

true

true

true

Figure 7.5: All possible executions of the P/T net of Figure 7.3 that lead the
net to a deadlock.

7.5 Relation to ER-LTL

ER-LTL [10] is a non-monotonic temporal logic with, as happens with TEL,
is also based on LTL, but it is oriented to specify agent’s goals in a non-
deterministic way. ER-LTL formulas are built from the set of LTL connectives
plus a new non-monotonic implication, denoted by .

Definition 7.17 (ER-LTL program (from [10])). Let G, R and P be three dis-
joint sets of atoms. Let q (the goal atom) be the only atom in G. Let 〈r〉 (a label)
and 〈p〉 two atoms belonging to R and P respectively. An ER-LTL rule is of the
form 〈h : [r] (f1 f2) where h ∈ G ∪ R, r ∈ R and f1 and f2 are two ER-LTL
formulas. h is referred as the head, and [r](f1 f2) as the body of the rule.
Finally an ER-LTL program is a set of the aforementioned rules.

�

The main difference with respect to LTL consists in how to interpret the
construct [r](f1 f2). This construct is read as if f1 is true then f2 needs to
be satisfied, with the exceptions specified via r, which is defined by means of
other rules. For instance we can consider the following representation of the
flying bird example:

7.6. Relation to LAP 137

Example 7.1 (from [10]).

〈g : [r1](bird fly)〉 (7.19)

〈r1 : [r2](penguin ¬fly)〉 (7.20)

〈r1 : [r3](wounded >)〉 (7.21)

〈r2 : [r4](flying_penguin fly)〉 (7.22)

�

which, intuitively means that birds usually fly but penguins are birds that do
not fly an we do not know anything about wounded birds.

The main difference between TEL and ER-LTL comes from the different
nature of their semantics. Contrary to TEL semantics, defined in terms of
Kripke structures, semantics of ER-LTL programs is defined by means of a
translation into a LTL formula, which complicates the task of finding a con-
nection between both formalisms, which is still an open topic. Apparently,
TEL seems to be a more general approach to non-monotonic temporal reason-
ing since no syntactic restriction is imposed.

7.6 Relation to LAP
In this section we consider LAP , a pure modal approach to nonmonotonic
reasoning described in [24]. LAP is based on a monotonic multimodal lo-
gic called LAP plus a dependence relation, , between actions and fluents,
which is used to solve the frame problem. Formally, LAP uses two operat-
ors � (whose corresponding dual operator is denoted by ♦) and [α] where α
corresponds to an action. Logics for each operator (� and [α]) are S4 and K
respectively. On the other hand, states when the execution of an action
may make a fluent flip from false to true. For instance, going back to the Yale
shooting scenario presented in Section 7.2, there is a dependency relation bet-
ween the action shoot and fluents alive and ∼ alive because after executing
shoot, some of them may become true. Models of LAP are those of LAP
satisfying the dependency relation .

Despite the fact that both formalisms share decidability and decision pro-
cedure, the main difference relies on their underlying monotonic frameworks,
while THT considers a linear representation of time, LAP is branching time,
allowing us to talk about possible futures, something which is not possible in
our approach. On the other hand, both formalisms also differ in how to solve
the frame problem, while TEL avoids it by using rules of inertia, LAP con-
sider all dependency relations, so all frame actions can be omitted from the
LAP representations.

Chapter 8

Conclusions

In this dissertation we have studied different aspects of Temporal Equilibrium
Logic (TEL), an innovative combination of a temporal modal logic and a non-
monotonic approach. As an overall, this thesis collects a corpus of results that
constitutes a significant breakthrough in the knowledge about TEL. The main
contributions can be summarised as follows:

(i) We have proved that TEL constitutes an adequate and natural extension
of Equilibrium Logic by showing that the syntactic translation proposed
by Kamp to encode LTL as a fragment of First Order Logic is also sound
for encoding TEL into Quantified Equilibrium Logic (QEL) [101].

(ii) We have also provided a translation of TEL into Infinitary Equilibrium
Logic [55], so that it is possible to apply the idea of reduct from that
formalism to arbitrary TEL theories.

(iii) We have axiomatised a relevant part of the logic of Temporal Here-and-
There (THT), the monotonic basis of TEL. In particular, we have provided
a set of axioms for operators “always,” “eventually” and “next” that prop-
erly fixes their semantic behaviour (excepting the linearity of “next”
which is left for future work).

(iv) We have shown that THT is a suitable monotonic basis for TEL by proving
that the equivalence in this logic is a necessary and sufficient condition
for strong equivalence of two TEL theories.

(v) We have built a tool, STELP, that accepts as input some theory from an
expressive syntactic subclass of TEL, called splittable temporal logic pro-
grams, and computes its temporal equilibrium models in the form of a
Büchi automaton. These temporal programs have the informal property
that a past formula never depends on references to its future, and prac-
tically cover all scenarios represented in the ASP literature.

(vi) We have devised a sound grounding method for removing variables in
splittable temporal logic programs. Furthermore, to prove the correct-
ness of this grounding method, we have defined the corresponding first
order versions of THT and TEL.

140 Chapter 8. Conclusions

(vii) We have built a second tool, ABSTEM, that allows computing the temporal
equilibrium models of any arbitrary theory in the syntax of (proposional)
LTL, removing in this way any syntactic restriction. We have also used
this tool for checking different types of equivalence (LTL equivalence,
TEL equivalence and strong equivalence) between a pair of theories and
showing information (countermodels) when the theories are not equi-
valent.

(viii) Finally, we have compared TEL to other non-monotonic approaches for
representing temporal scenarios. Using the translation into Infinitary
Equilibrium Logic, we have been able to prove that the semantics of
TEMPLOG [11], a temporal logic programming approach without de-
fault negation, actually coincides with the result obtained by TEL for
that syntactic class. We have also extended the comparison to Temporal
Answer Sets [51] made in [4] by showing a partial translation of the
former into TEL via the introduction of auxiliary atoms.

The main difficulty of this research program has been related to the vari-
ety of fundamental results and methods that have been required from the two
fields, temporal modal logic and NMR. For instance, some theoretical contri-
butions, like (iv), have been pursued since the first steps of this thesis but
only solved very recently and after a deeper study on previous related work
from different areas. Similarly, (iii) constitutes recent, unpublished research
developed during my stay at IRIT, University of Toulouse with the unvaluable
collaboration and guidance of Philippe Balbiani. The implementation of differ-
ent tools has also required an important effort on combination of ASP solvers
and software for LTL and automata construction.

There are many aspects in which this work can be extended or completed
in the future. We outline next some of the most salient ones:

• A first obvious topic is completing the work on axiomatisation of THT
to prove that it fully characterises linear narratives: until now, we have
been able to prove that the necessity operator covers the transitive clos-
ure of “next,” and that there always exists an accessible world, but not
its uniqueness. This axiomatisation can also be extended to cope with
the “until” and “release” operators.

• Another interesting theoretical question is whether one of these operat-
ors is representable in terms of the other or not. It is known that the
LTL definitions of “until” in terms of “release” or vice versa are not ap-
plicable in the case of THT (mainly because double negation cannot be
removed in the general case). However, disjunction in Here-and-There
(HT) is expressible in terms of implication and conjunction and, simil-
arly, in Quantified HT the existential quantifier is expressible in terms of
the universal one (again, with implication and conjunction). It remains
to know whether “until” follows an analogous relation with respect to
“release.”

• Although we have proved that TEL can be translated into Quantified
Equilibrium Logic following Kamp’s translation of LTL into Monadic First

141

Order Logic, MFO(<), we ignore whether the other direction of Kamp’s
theorem also holds in this case or not. Namely, we ignore whether any
theory in Monadic Quantified Equilibrium Logic for a linear order rela-
tion < can be represented in TEL.

• Following similar steps as those done in TEL, other hybrid approaches
can be explored. For instance, [4] has considered the combination of Dy-
namic LTL with Equilibrium Logic. Similarly, other temporal approaches
can be treated in an analogous way, such as CTL, CTL∗, Dynamic Lo-
gic or µ-calculus. Another possibility is considering other NMR or Logic
Programming semantics such as Well-Founded Semantics [118] or Com-
pletion [27].

• Stable models of a propositional theory can be captured by a classical
formula by the use of loop formulas. Unfortunately, this is not always
possible when dealing with Quantified Equilibrium Logic. In [70], the
first-order stable models of several syntactic subclases of QEL are proved
to be captured by a first order sentece. In our case, regarding TEL as
a fragment of QEL, we wonder whether the set of temporal equilibrium
models of a formula ϕ is first-order (and consequently LTL) represent-
able1.

• As for implementation, a possibility that has been initially explored but
eventually left for future work is, instead of applying automata-based
methods, using the tool TSPASS [41] (based on temporal resolution) as
a back-end. This alternative could be compared to the current imple-
mentations and an efficiency assessment could be made depending on
different types of input theories.

• Finally, an interesting line of research is exploiting the obtained results
for their application to action languages, providing translations of cur-
rent formalisms related to ASP such as ALM [62] or MAD [80]. Simil-
arly, another area where the current background on TEL can be applied
is AI Planning, especially for comparing with planners that use temporal
constraints for heuristic control rules.

1A first attempt to give an answer to this question was published in [21] but an error in the
proof makes the answer is still unknown

Bibliography

[1] F. Aguado, P. Cabalar, M. Diéguez, G. Pérez, and C. Vidal. Paving the
way for temporal grounding. In Proc. of the 28th International Confer-
ence on Logic Programming (ICLP’12), pages 290–300, Budapest, Hun-
gary, 2012. Cited on page 81.

[2] F. Aguado, P. Cabalar, G. Pérez, and C. Vidal. Strongly Equivalent Tem-
poral Logic Programs. In Proc. of the 11th European Conference on Lo-
gics in Artificial Intelligence (JELIA’08), pages 8–20, Dresden, Germany,
2008. Cited on pages 3, 45, 107, 109, and 177.

[3] F. Aguado, P. Cabalar, G. Pérez, and C. Vidal. Loop Formulas for Split-
able Temporal Logic Programs. In Proc. of the 11th International Confer-
ence on Logic Programming and Nonmonotonic Reasoning (LPNMR’11),
pages 80–92, Vancouver, Canada, 2011. Cited on pages 86 and 163.

[4] F. Aguado, G. Pérez, and C. Vidal. Integrating Temporal Extensions of
Answer Set Programming. In Proc. of the 12th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR’13), pages
23–35, Corunna, Spain, 2013. Cited on pages 121, 123, 124, 125, 140,
141, and 179.

[5] M. Alviano, F. Calimeri, G. Charwat, M. Dao-Tran, C. Dodaro, G. Ianni,
T. Krennwallner, M. Kronegger, J. Oetsch, A. Pfandler, J. Pührer, C. Redl,
F. Ricca, P. Schneider, M. Schwengerer, L. Katharina Spendier, J. Peter
Wallner, and G. Xiao. The fourth answer set programming competition:
Preliminary report. In Proc. of the 12th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’13), pages 42–53,
Corunna, Spain, 2013. Cited on page 6.

[6] A. Artale and E. Franconi. A survey of temporal extensions of descrip-
tion logics. Annals of Mathematics and Artificial Intelligence, 30:171–
210, 2000. Cited on page 4.

[7] F. Bacchus and F. Kabanza. Using temporal logics to express search
control knowledge for planning. Artificial Intelligence, 116:123–191,
2000. Cited on page 4.

[8] J. A. Baier and S. A. McIlraith. Planning with temporally extended goals
using heuristic search. In Proc. of the 16th International Conference on

144 Bibliography

Automated Planning and Scheduling (ICAPS’06), pages 342–345, Cum-
bria, UK, 2006. Cited on pages 4 and 131.

[9] P. Balbiani and D. Vakarelov. PDL with intersection of programs: a com-
plete axiomatization. Journal of Applied Non-Classical Logics, 13:231–
276, 2003. Cited on page 4.

[10] C. Baral and J. Zhao. Non-monotonic temporal logics that facilitate
elaboration tolerant revision of goals. In Proc. of the 23th AAAI Con-
ference on Artificial Intelligence (AAAI’08), pages 406–411, Chicago,
Illinois, USA, 2008. Cited on pages 41, 136, and 137.

[11] M. Baudinet. A simple proof of the completeness of temporal logic
programming. In L. Fariñas del Cerro and M. Penttonen, editors, In-
tensional Logics for Programming, pages 51–83. Clarendon Press, 1992.
Cited on pages 115, 116, 117, 140, and 178.

[12] N. Bidoit and C. Froidevaux. Minimalism subsumes default logic
and circumscription in stratified logic programming. In Proc. of the
IEEE Symposium on Logic in Computer Science (LICS’87), pages 89–97,
Ithaca, New York, USA, 1987. Cited on pages 6 and 11.

[13] L. Bozzelli and D. Pearce. On the complexity of temporal equilibrium
logic satisfiability. Unpublished draft. Cited on page 103.

[14] G. Brewka, T. Eiter, and M. Truszczyński. Answer Set Programming at
a Glance. Communications of the ACM, 54(12):92–103, 2011. Cited on
pages 7, 11, and 12.

[15] A. Bria, W. Faber, and N. Leone. Normal Form Nested Programs. In
Proc. of the 11th European Conference on Logics in Artificial Intelligence
(JELIA’08), pages 76–88, Dresden, Germany, 2008. Cited on page 22.

[16] J. R. Büchi. On a Decision Method in Restricted Second Order Arith-
metic. In International Congress on Logic, Methodology, and Philosophy
of Science, pages 1–11, 1962. Cited on pages 38, 40, and 81.

[17] P. Cabalar. A Normal Form for Linear Temporal Equilibrium Logic. In
Proc. of the 12th European Conference on Logics in Artificial Intelligence
(JELIA’10), pages 64–76, Helsinki, Findland, 2010. Cited on pages 3,
43, 44, and 177.

[18] P. Cabalar and S. Demri. Automata-Based Computation of Temporal
Equilibrium Models. In Proc. of the 21st International Symposium on
Logic-Based Program Synthesis and Transformation (LOPSTR’11), pages
57–72, Odense, Denmark, 2011. Cited on pages 44, 45, 47, 48, 81,
100, 103, 107, 111, 171, and 172.

[19] P. Cabalar and M. Diéguez. STeLP - A Tool for Temporal Answer Set
Programming. In Proc. of the 11th International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR’11), pages 370–375,
Vancouver, Canada, 2011. Cited on page 97.

Bibliography 145

[20] P. Cabalar and M. Diéguez. Strong equivalence of non-monotonic tem-
poral theories. In Proc. of the 14th International Conference on Principles
of Knowledge Representation and Reasoning (KR’14), Vienna, Austria,
2014. Cited on pages 81, 107, and 171.

[21] P. Cabalar and M. Diéguez. Temporal Stable Models are LTL-
representable. In Proc. of 7th Workshop on Answer Set Programming
and Other Computing Paradigms (ASPOCP’14), Vienna, Austria, 2014.
Cited on page 141.

[22] P. Cabalar and P. Ferraris. Propositional theories are strongly equivalent
to logic programs. Theory and Practice of Logic Programming, 7(6):745–
759, 2007. Cited on pages 29 and 30.

[23] P. Cabalar and G. Pérez. Temporal Equilibrium Logic: A First Approach.
In Proc. of the 11th International Conference on Computer Aided Systems
Theory (EUROCAST’07), page 241–248, Las Palmas de Gran Canaria,
Spain, 2007. Cited on pages 2, 3, 46, 176, and 177.

[24] M. A. Castilho, O. Gasquet, and A. Herzig. Formalizing action and
change in modal logic I: the frame problem. Journal of Logic and Com-
putation, 9(5):701–735, 1999. Cited on pages 6 and 137.

[25] A. V. Chagrov and M. Zakharyaschev. Modal Logic, volume 35 of Oxford
Logic Guides. Oxford University Press, 1997. Cited on pages 54, 56, 57,
and 63.

[26] Y. Chen, F. Lin, and L. Li. SELP - a system for studying strong equival-
ence between logic programs. In Proc. of the 8th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR’05), pages
442–446, Diamante, Italy, 2005. Cited on page 31.

[27] K. L. Clark. Negation as Failure. In Logic and Databases, pages 293–322.
Plenum Press, 1978. Cited on pages 15, 141, and 180.

[28] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification
of finite-state concurrent systems using temporal logic specifications.
ACM Transactions on Programming Languages and Systems, 8(2):244–
263, 1986. Cited on page 4.

[29] J. Couvreur. On-the-fly verification of temporal logic. In Proc. of the
World Congress on Formal Methods in the Development of Computing
Systems (FM’99), pages 253–271, Toulouse, France, 1999. Cited on
page 103.

[30] D. Van Dalen. Intuitionistic logic. In Handbook of Philosophical Logic,
volume 166, pages 225–339. Springer Netherlands, 1986. Cited on
page 32.

[31] A. Duret-Lutz. LTL Translation Improvements in Spot 1.0. International
Journal on Critical Computer-Based Systems, 5(1/2):31–54, 2014. Cited
on page 100.

146 Bibliography

[32] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. The DLVK Plan-
ning System: Progress Report. In Proc. of the 8th European Conference
on Logics in Artificial Intelligence (JELIA’02), pages 541–544, Cosenza,
Italy, 2002. Cited on page 7.

[33] E. A. Emerson and J. Y. Halpern. "sometimes" and "not never" revisited:
on branching versus linear time temporal logic. Journal of the ACM,
33(1):151–178, 1986. Cited on page 4.

[34] E. Erdem and V. Lifschitz. Tight logic programs. Theory and Practice of
Logic Programming, 3(4-5):499–518, 2003. Cited on page 16.

[35] F. Fages. Consistency of clark’s completion and existence of stable mod-
els. Journal of Methods of Logic in Computer Science, 1(1):51–60, 1994.
Cited on pages 16 and 47.

[36] P. Ferraris. Answer Sets for Propositional Theories. In Proc. of 8th Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR’05), pages 119–131, Diamante, Italy, 2005. Cited on pages 17
and 46.

[37] P. Ferraris, J. Lee, and V. Lifschitz. A Generalization of the Lin-Zhao
Theorem. Annals of Mathematics and Artificial Intelligence, 47(1-2):79–
101, 2006. Cited on pages 17, 18, 19, 84, and 85.

[38] P. Ferraris, J. Lee, and V. Lifschitz. A New Perspective on Stable Models.
In Proc. of 20th International Joint Conference on Artificial Intelligence
(IJCAI’07), pages 372–379, Hyderabad, India, 2007. Cited on pages 7,
23, 24, 25, and 33.

[39] M. Fischer and R. Ladner. Propositional dynamic logic of regular pro-
grams. Journal of Computer and System Sciences, 18:194–211, 1979.
Cited on page 4.

[40] M. Fisher. Temporal semantics for concurrent metatem. Journal of
Symbolic Computation, 22(5/6):627–648, 1996. Cited on page 4.

[41] M. Fisher, C. Dixon, and M. Peim. Clausal temporal resolution. ACM
Transactions on Computational Logic, 2(1):12–56, 2001. Cited on
pages 141 and 180.

[42] D. Gabbay, I. Hodkinson, and M. A. Reynolds. Temporal Logic: Mathem-
atical Foundations and Computational Aspects Volume 1. Number 28 in
Oxford Logic guides. Clarendon Press, 1994. Cited on pages 3 and 38.

[43] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the Temporal Analysis
of Fairness. In Proc. of the 7th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL’80), pages 163–173, Las
Vegas, Nevada, USA, 1980. Cited on pages 3 and 38.

[44] M. Gebser, T. Grote, and T. Schaub. Coala: A Compiler from Action
Languages to ASP. In Proc. of the 12th European Conference Logics in Ar-
tificial Intelligence (JELIA’10), pages 360–364, Helsinki, Finland, 2010.
Cited on page 7.

Bibliography 147

[45] M. Gebser, B. Kaufmann, and T. Schaub. Conflict-driven answer set
solving: From theory to practice. Artificial Intelligence, 187-188:52–89,
2012. Cited on page 6.

[46] M. Gebser, T. Schaub, and S. Thiele. Gringo: A new grounder for
answer set programming. In Proc. of the 9th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR’07), pages
266–271, Tempe, Arizona, USA, 2007. Cited on pages 19 and 22.

[47] M. Gelfond and D. Inclezan. Yet Another Modular Action Language. In
Proc. of the LPNMR-09 Workshop on Software Engineering for Answer Set
Programming, (SEA’09), pages 64–78, Potsdam, Germany, 2009. Cited
on page 7.

[48] M. Gelfond and V. Lifschitz. The Stable Model Semantics For Logic
Programming. In Proc. of the 5th International Conference on Logic
Programming (ICLP’88), page 1070–1080, Seattle, Washington, USA,
1988. Cited on pages 2, 6, 11, 12, 13, 25, 121, and 176.

[49] M. Gelfond and V. Lifschitz. Action Languages. Electronic Transactions
Artificial Intelligence, 2:193–210, 1998. Cited on page 7.

[50] G. De Giacomo, Y. Lespérance, and F. Patrizi. Bounded situation cal-
culus action theories and decidable verification. In Proc. of the 13th

International Conference on Principles of Knowledge Representation and
Reasoning (KR’12), pages 467–477, Rome, Italy, 2012. Cited on page 6.

[51] L. Giordano, A. Martelli, and D. Theseider Dupré. Reasoning about
actions with Temporal Answer Sets. Theory and Practice of Logic Pro-
gramming, 13:201–225, 3 2013. Cited on pages 6, 8, 9, 41, 119, 120,
121, 140, and 179.

[52] K. Gödel. Zum intuitionistischen Aussagenkalkül. Anzeiger der
Akademie der Wissenschaften Wien, mathematisch, naturwissenschaft-
liche Klasse, 69:65–66, 1932. Cited on page 28.

[53] R. Goldblatt. Logics of Time and Computation. Number 7 in CSLI Lecture
Notes. Center for the Study of Language and Information, Stanford,
California, 2 edition, 1992. Cited on pages 4, 53, 54, 62, 69, 71, and 80.

[54] S. Hanks and D. McDermott. Nonmonotonic logic and temporal projec-
tion. Artificial Intelligence, 33(3):379–412, 1987. Cited on page 122.

[55] A. Harrison, V. Lifschitz, D. Pearce, and A. Valverde. Infinitary Equilib-
rium Logic. In Proc. of 7th Workshop on Answer Set Programming and
Other Computing Paradigms (ASPOCP’14), Vienna, Austria, 2014. Cited
on pages 8, 33, 34, 50, 119, 139, and 178.

[56] K. Heljanko and I. Niemelä. Bounded LTL model checking with stable
models. Theory and Practice of Logic Programming, 3(4-5):519–550,
2003. Cited on pages 131 and 132.

148 Bibliography

[57] A. Heyting. Die formalen Regeln der intuitionistischen Logik. Sitzungs-
berichte der Preussischen Akademie der Wissenschaften. Physikalisch-
mathematische Klasse. Deütsche Akademie der Wissenschaften zu Ber-
lin, Mathematisch-Naturwissenschaftliche Klasse, 1930. Cited on
pages 2, 27, 122, and 177.

[58] I Hodkinson. Expressive completeness of until and since over dedekind
complete linear time. Modal logic and process algebra, 53:171–185,
1995. Cited on page 3.

[59] G. J. Holzmann. The SPIN Model Checker - primer and reference manual.
Addison-Wesley, 2004. Cited on page 4.

[60] T. Hosoi. The Axiomatization of the Intermediate Propositional Systems
S2 of Gödel. Journal of the Faculty of Science of the University of Tokyo,
13(2):183–187, 1966. Cited on pages 53 and 54.

[61] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reas-
oning About Systems. Cambridge University Press, 2004. Cited on
page 166.

[62] D. Inclezan and M. Gelfond. Representing biological processes in mod-
ular action language ALM. In Logical Formalizations of Commonsense
Reasoning, AAAI Spring Symposium, Stanford, California, USA, 2011.
Cited on pages 141 and 180.

[63] H. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, Univer-
sity of California, Los Angeles, California, USA, 1968. Cited on pages 1,
2, 3, 37, 38, 175, and 176.

[64] C. R. Karp. Languages with expressions of infinite length. Studies in
logic and the foundations of mathematics. North-Holland Publication
Company, 1964. Cited on page 33.

[65] H. A. Kautz and B. Selman. Planning as satisfiability. In Proc. of
the European Conf. on Artificial Intelligence (ECAI’92), pages 359–363,
1992. Cited on page 8.

[66] R. Kowalski and M. Sergot. A logic-based calculus of events. New Gen-
eration Computing, 4:67–95, 1986. Cited on page 5.

[67] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer
Science, 27(3):333–354, 1983. Cited on page 4.

[68] S. A. Kripke. Semantical considerations on modal logic. Acta Philosoph-
ica Fennica, 16:83–94, 1963. Cited on page 35.

[69] J. Kvarnström and P. Doherty. Talplanner: A temporal logic based for-
ward chaining planner. Annals of Mathematics and Artificial Intelligence,
30(1-4):119–169, 2000. Cited on pages 4 and 131.

Bibliography 149

[70] J. Lee and Y. Meng. On loop formulas with variables. In 1111 In-
ternational Conference on Principles of Knowledge Representation and
Reasoning (KR’08), pages 444–453, Sydney, Australia, 2008. Cited on
page 141.

[71] J. Lee and R. Palla. System f2lp - computing answer sets of first-order
formulas. In Proc. of the 10th International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR’09), pages 515–521,
Potsdam, Germany, 2009. Cited on page 7.

[72] J. Lee and R. Palla. Reformulating the situation calculus and the event
calculus in the general theory of stable models and in answer set pro-
gramming. Journal of Artificial Intelligence Research (JAIR), 43:571–
620, 2012. Cited on page 7.

[73] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scar-
cello. The DLV system for knowledge representation and reasoning.
ACM Transactions on Computational Logic, 7:499–562, 2006. Cited on
pages 6, 19, and 22.

[74] L. Libkin. Elements of Finite Model Theory. Texts in Theoretical Com-
puter Science. An Eatcs Series. SpringerVerlag, 2004. Cited on page 26.

[75] V. Lifschitz. Circumscription. In Handbook of Logic in AI and Logic Pro-
gramming, volume 3, pages 297–352. Oxford University Press, 1994.
Cited on page 24.

[76] V. Lifschitz. Twelve definitions of a stable model. In Proc. of the 24th
Intl. Conf. on Logic Programming (ICLP’08), pages 37–51, Udine, Italy,
2008. Cited on page 7.

[77] V. Lifschitz. Thirteen Definitions of a Stable Model. In Fields of Logic
and Computation: Essays Dedicated to Yuri Gurevich on the Occasion of
his 70th Birthday, pages 488–503, 2010. Cited on page 23.

[78] V. Lifschitz, D. Pearce, and A. Valverde. Strongly Equivalent Logic Pro-
grams. ACM Transactions on Computational Logic, 2(4):526–541, 2001.
Cited on pages 7 and 31.

[79] V. Lifschitz, D. Pearce, and A. Valverde. A Characterization of Strong
Equivalence for Logic Programs with Variables. In Proc. of the 9th Inter-
national Conference on Logic Programming and Nonmonotonic Reason-
ing (LPNMR’07), pages 188–200, Tempe, Arizona, USA, 2007. Cited on
pages 31, 33, 107, 109, and 110.

[80] V. Lifschitz and W. Ren. A modular action description language. In
Proc. of the 21st National Conference on Artificial Intelligence (AAAI’06),
pages 853–859, Boston, Massachusetts, USA, 2006. Cited on pages 141
and 180.

[81] V. Lifschitz, L. R. Tang, and H. Turner. Nested expressions in logic
programs. Annals of Mathematics and Artificial Intelligence, 25:369–
389, 1999. Cited on page 17.

150 Bibliography

[82] V. Lifschitz and H. Turner. Splitting a Logic Program. In Proc. of the 11th

International Conference on Logic Programming (ICLP’94), pages 23–37,
Santa Marherita Ligure, Italy, 1994. Cited on pages 14, 15, and 84.

[83] F. Lin. Reducing Strong Equivalence of Logic Programs to Entailment in
Classical Propositional Logic. In Proc. of the 8th Intl. Conf. on Principles
and Knowledge Representation and Reasoning (KR’02), pages 170–176,
Toulouse, France, 2002. Cited on page 31.

[84] F. Lin and Y. Zhao. ASSAT: Computing Answer Sets of a Logic Program
by SAT Solvers. In Artificial Intelligence, pages 112–117, 2002. Cited
on pages 17 and 18.

[85] J. Lukasiewicz. Die logik und das grundlagenproblem. Les Entreties
de Zürich sur les Fondaments et la Méthode des Sciences Mathématiques,
12(6-9):82–100, 1938. Cited on page 53.

[86] C. Lutz, F. Wolter, and M. Zakharyaschev. Temporal description logics:
A survey. In Proc. of the 15th International Symposium on Temporal Rep-
resentation and Reasoning (TIME ’08), pages 3–14, Montreal, Canada,
2008. IEEE Computer Society. Cited on page 4.

[87] V. Marek and M. Truszczyński. Nonmonotonic logic: context-dependent
reasoning. Artificial intelligence. Springer, 1993. Cited on pages 2
and 176.

[88] V. Marek and M. Truszczyński. Stable models and an alternative logic
programming paradigm, pages 169–181. Springer-Verlag, 1999. Cited
on page 6.

[89] J. McCarthy. Programs with commonsense. In Proc. of the Tedding-
ton Conference on the Mechanization of Thought Processes, pages 75–91,
London, UK, 1959. Cited on page 5.

[90] J. McCarthy. Circumscription: A Form of Non-Monotonic Reasoning.
Artificial Intelligence, 13:27–39, 1980. Cited on pages 5 and 24.

[91] J. McCarthy. Modality, si! modal logic, no! Studia Logica, 59(1):29–32,
1997. Cited on page 6.

[92] J. McCarthy. Elaboration tolerance. In Proc. of the 4th Symposium on
Logical Formalizations of Commonsense Reasoning (Common Sense 98),
pages 198–217, London, UK, 1998. Updated version at
http://www-formal.stanford.edu/jmc/elaboration.ps. Cited on
page 5.

[93] J. McCarthy and P. J. Hayes. Some philosophical problems from the
standpoint of artificial intelligence. Machine Intelligence Journal, 4:463–
502, 1969. Cited on page 5.

[94] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso,
D. Weld, and D. Wilkins. PDDL - The Planning Domain Definition Lan-
guage. Technical Report TR-98-003, Yale Center for Computational Vis-
ion and Control, 1998. Cited on page 131.

http://www-formal.stanford.edu/jmc/elaboration.ps

Bibliography 151

[95] R. McNaughton and S. A. Papert. Counter-Free Automata (M.I.T. Re-
search Monograph No. 65). The MIT Press, 1971. Cited on page 40.

[96] I. Niemelä. Logic Programs with Stable Model Semantics as a Con-
straint Programming Paradigm. Annals of Mathematics and Artificial
Intelligence, 25(3-4):241–273, 1999. Cited on page 6.

[97] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry. An
A-Prolog decision support system for the space shuttle. In AAAI Spring
Symposium, 2001. Cited on page 7.

[98] D. Pearce. A New Logical Characterisation of Stable Models and An-
swer Sets. In Proc. of Non-Monotonic Extensions of Logic Programming
(NMELP’96), pages 57–70, Bad Honnef, Germany, 1996. Cited on
pages 2, 27, and 176.

[99] D. Pearce. Equilibrium Logic. Annals of Mathematics and Artificial Intel-
ligence, 47(1-2):3–41, 2006. Cited on pages 7, 27, 28, 29, and 88.

[100] D. Pearce, H. Tompits, and S. Woltran. Encodings for Equilibrium Logic
and Logic Programs with Nested Expressions. In Proc. of the 10th Por-
tuguese Conference on Artificial Intelligence (EPIA’01), pages 306–320,
Porto, Portugal, 2001. Cited on pages 24 and 30.

[101] D. Pearce and A. Valverde. Quantified Equilibrium Logic and Founda-
tions for Answer Set Programs. In Proc. of the 24th International Con-
ference on Logic Programming (ICLP’08), pages 546–560, Udine, Italy,
2008. Cited on pages 7, 8, 31, 32, 48, 139, and 178.

[102] A. Pnueli. The Temporal Logic of Programs. In Proc. of the 18th Annual
Symposium on Foundations of Computer Science, pages 46–57, Provid-
ence, Rhode Island, USA, 1977. Cited on page 4.

[103] A. Prior. Past, Present and Future. Oxford books. Oxford University
Press, 1967. Cited on pages 2, 3, and 176.

[104] A. Rabinovich. A Proof of Kamp’s Theorem. Logical Methods in Com-
puter Science, 10(1), 2014. Cited on pages 3 and 38.

[105] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–
132, 1980. Cited on page 5.

[106] R. Reiter. Non-monotonic logic I. D. V. McDermott and J. Doyle, 13:41–
72, 1980. Cited on page 5.

[107] S. Safra. Complexity of Automata on Infinite Objects. PhD thesis, Weiz-
mann Institute of Science, Rehovot, Israel, 1989. Cited on pages 102
and 103.

[108] E. Sandewall. Features and Fluents. Oxford Logic Guides. Clarendon
Press, 1995. Cited on page 5.

152 Bibliography

[109] D. Scott and A. Tarski. The Sentential Calculus With Infinitely Long
Expressions. Colloquium Mathematicae, 6(1):165–170, 1958. Cited on
page 33.

[110] A. K. Simpson. The Proof Theory and Semantics of Intuitionistic Modal
Logic. PhD thesis, University of Edinburgh, UK, 1994. Cited on page 62.

[111] A. P. Sistla and E. M. Clarke. The complexity of propositional linear
temporal logics. Journal of the ACM, 32(3):733–749, 1985. Cited on
page 4.

[112] A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation prob-
lem for büchi automata with applications to temporal logic. In Proc.
of the 12th International Colloquium on Automata, Languages and Pro-
gramming, volume 194, pages 465–474, Nafplion, Greece, 1985. Cited
on page 102.

[113] J. F. Sowa. Knowledge Representation: Logical, Philosophical, and Com-
putational Foundations. Brooks Cole Publishing Company, 2000. Cited
on page 5.

[114] R. Streett. Propositional dynamic logic of looping and converse is ele-
mentary decidable. Information and Control, 54:121–141, 1982. Cited
on page 4.

[115] M. Truszczyński. Connecting First-Order ASP and the Logic FO(ID)
through Reducts. In Correct Reasoning - Essays on Logic-Based AI in Hon-
our of Vladimir Lifschitz, volume 7265 of Lecture Notes in Computer Sci-
ence, pages 543–559. Springer, 2012. Cited on pages 33, 52, and 119.

[116] A. Valverde. tabeql: A Tableau Based Suite for Equilibrium Logic. In
Proc. of the 9th European Conference on Logics in Artificial Intelligence
(JELIA’04), pages 734–737, Lisbon, Portugal, 2004. Cited on page 31.

[117] M. H. van Emden and R. A. Kowalski. The Semantics of Predicate Lo-
gic as a Programming Language. Journal of the ACM, 23(4):733–742,
1976. Cited on pages 12 and 13.

[118] A. van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics
for general logic programs. Journal of the ACM, 38(3):620–650, 1991.
Cited on pages 141 and 180.

[119] M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal lo-
gics of programs. Journal of Computer and System Sciences, 2(32):183–
219, 1986. Cited on page 38.

[120] M. Y. Vardi and P. Wolper. Reasoning about infinite computations. In-
formation and Computation, 115:1–37, 1994. Cited on pages 4, 100,
and 102.

[121] P. Wolper. The tableau method for temporal logic: An overview. Logique
Et Analyse, 28(110-111):119–136, 1985. Cited on pages 4 and 53.

Appendix A

Proofs of auxiliary lemmas of
Chapter 4

A.1 System properties

Proof of Proposition 4.1 (iii). Since ΓH ⊆ ΓT , α → β also belongs to ΓT .
Finally, from Proposition 4.1 (ii) we get α ∈ ∆H or β ∈ ΓH and α ∈ ∆T or
β ∈ ΓT too. �

Proof of Proposition 4.1 (iv). Since Axiom (1) from Table 4.1, β → (α→ β),
and 4.1 (ii) we conclude that β ∈ ∆H .

On the other hand, from Axiom 6 from Table 4.1 we conclude that α →
α∨β, which together with β ∈ ∆H , derives either α ∈ ΓH or ∆H . while in the
former case we reach the conclusion, in the latter we can use Definition 4.4 to
derive both α ∈ ΓT and β ∈ ∆T , which is the second part of the conclusion.
�

Proof of Proposition 4.1 (v). From left to right, from Axiom (1) from Table 4.1
we derive that β → (α→ β) ∈ ΓT . By saturation we derive that β ∈ ∆T .
Moreover, since α→ β ∈ ∆T then α→ β ∈ ∆H and, from Proposition 4.1 (iv)
and ΓH ⊆ ΓT , we derive that α ∈ ΓT .

From right to left, assume α ∈ ΓT , β ∈ ∆T and α → β 6∈ ∆T . In this
case α → β ∈ ΓT and, by means of Modus Ponens we derive β ∈ ΓT and this
contradicts the consistency of the tableau (ΓT ,∆T).

�

Proof of Proposition 4.1 (vi).

From left to right, since ¬¬α ∈ ΓH and ΓH ⊆ ΓT we get ¬¬α ∈ ΓT and,
since the tableau is saturated, ¬α ∈ ∆T . Finally, from Proposition 4.1 (v) we
conclude α ∈ ΓT .

From right to left, assume that ¬¬α 6∈ ΓH therefore, it belongs to ∆H .
From Proposition 4.1 (iv) and the property of ΓH ⊆ ΓT we conclude that
¬α ∈ ΓT , which contradicts the consistency of the tableau (ΓT ,∆T). �

154 Appendix A. Proofs of auxiliary lemmas of Chapter 4

A.2 Consistency of tableaux

Lemma A.1. Let t = (Γt,∆t) be a consistent tableau and ϕ a formula, if
¬¬�ϕ ∈ ∆t then the tableau u = (�Γt,♦∆ ∪ {¬¬ϕt}) is consistent.

Proof. Assume that u is not consistent, then there exists φ1, · · · , φm ∈ �Γt and
χ1, · · · , χn ∈ ♦∆t such that

φ1 ∧ · · · ∧ φm → χ1 ∨ · · · ∨ χn ∨ ¬¬ϕ

is satisfied, so if we apply the Rule (13) from Table 4.1, we derive

�φ1 ∧ · · · ∧�φm → ♦χ1 ∨ · · · ∨ ♦χn ∨ ¬¬�ϕ

whose antecedent and consequent belong to Γt and ∆t respectively. Hence, it
would contradict the consistency of t. �

Lemma A.2. Let t = (Γt,∆t) be a consistent tableau and ϕ a formula. If ♦ϕ ∈
Γt then the tableau u = (�Γt ∪ {ϕ},♦∆t) is consistent.

Proof. Assume that u is not consistent, so there exists φ1, · · · , φm ∈ �Γt and
χ1, · · · , χn ∈ ♦∆t such that

φ1 ∧ · · · ∧ φm ∧ ϕ→ χ1 ∨ · · · ∨ χn

is satisfied. However, after applying the Rule (14) from Table 4.1 we obtain
the rule

�φ1 ∧ · · · ∧�φm ∧ ♦ϕ→ ♦χ1 ∨ · · · ∨ ♦χn

whose antecedent and consequent belong to Γt and ∆t. This implies that t is
not consistent, which contradicts our initial assumption. �

Lemma A.3. Let t = (Γt,∆t) be a consistent tableau and ϕ a formula. If
¬¬♦ϕ ∈ Γt then the tableau u = (�Γt ∪ {¬¬ϕ},♦∆t) is consistent.

Proof. Assume that u is not consistent, then there exists φ1, · · · , φm ∈ �Γt and
χ1, · · · , χn ∈ ♦∆t such that

φ1 ∧ · · · ∧ φm ∧ ϕ ∧ ¬¬ϕ→ χ1 ∨ · · · ∨ χn

is satisfied. However, after applying the Rule (15) from Table 4.1 we obtain
the rule

�φ1 ∧ · · · ∧�φm ∧ ¬¬♦ϕ→ ♦χ1 ∨ · · · ∨ ♦χn

whose antecedent and consequent belong to Γt and ∆t, contradicting the con-
sistency of t. �

Lemma A.4. Let t = (Γt,∆t) be a consistent tableau and ϕ a formula. If �ϕ ∈
∆t then the tableau u = (�Γt,♦∆t ∪ {ϕ}) is consistent

A.3. Soundness 155

Proof. Assume that u is not consistent. Therefore there exists φ1, · · · , φm ∈
�Γt and χ1, · · · , χn ∈ ♦∆t such that

φ1 ∧ · · · ∧ φm → χ1 ∨ · · · ∨ χn ∨ ϕ,

is satisfied. However, after applying the Rule (12) from Table 4.1 we obtain

�φ1 ∧ · · · ∧�φm → ♦χ1 ∨ · · · ∨ ♦χn ∨�ϕ.

However, this implies that t is not consistent and, therefore, a contradiction.
�

Corollary A.1. Let t = (Γt,∆t) be a consistent tableau and ϕ a formula. If
©̂ϕ ∈ Γt then the tableau u = (©Γt ∪ {ϕ}, ©̂∆t) is consistent.

Proof. The same proof as for Lemma A.4. �

Corollary A.2. Let t = (Γt,∆t) be a consistent tableau and ϕ a formula. If
©ϕ ∈ ∆t then the tableau u = (©Γt, ©̂∆t ∪ {ϕ}) is consistent

Proof. The same proof as for Lemma A.2. �

A.3 Soundness

In this section we check that the axiomatic system shown in Table 4.1 is sound.
The proof of soundness would consist in checking that all axioms are valid and
inference rules preserve validity, always with respect to their corresponding
class of frames.

Lemma A.5. The following inference rule:

φ1 ∧ · · · ∧ φn → χ1 ∨ · · · ∨ χn
φ1 ∨ (φ1 → χ1) ∨ · · · ∨ φn ∨ (φn → χn)

, (A.1)

preserves validity in Here and There.

Proof. Assume, by contradiction, that |= φ1 ∧ · · · ∧ φn → χ1 ∨ · · · ∨ χn but
6|= (φ1 → χ1) ∨ · · · ∨ φn ∨ (φn → χn). Thus there exists an HT model 〈H,T 〉
such that:

• 〈H,T 〉 6|= φi, 1 ≤ i ≤ n

• 〈T, T 〉 |= φi, 1 ≤ i ≤ n

• 〈T, T 〉 6|= χi, 1 ≤ i ≤ n

From all the facts above and 〈H,T 〉 |= φ1∧· · ·∧φn → χ1∨· · ·∨χn we conclude
〈T, T 〉 |= χi for all i such that 1 ≤ i ≤ n, reaching a contradiction �

Lemma A.6. Rules (12)-(19) from Table 4.1 preserve validity for all class of
frames.

156 Appendix A. Proofs of auxiliary lemmas of Chapter 4

Proof.

• Rule (12): let us assume that

|= φ1 ∧ · · · ∧ φm → χ1 ∨ · · · ∨ χn ∨ ϕ
but not

6|= �φ1 ∧ · · · ∧�φm → ♦χ1 ∨ · · · ∨ ♦χn ∨�ϕ.

Since
6|= �φ1 ∧ · · · ∧�φm → ♦χ1 ∨ · · · ∨ ♦χn ∨�ϕ

then, there exists a modelM = 〈W,R�, H, T 〉 and a world x ∈ W such
that

M, x 6|= �φ1 ∧ · · · ∧�φm → ♦χ1 ∨ · · · ∨ ♦χn ∨�ϕ.

From

M, x 6|= �φ1 ∧ · · · ∧�φm → ♦χ1 ∨ · · · ∨ ♦χn ∨�ϕ

we can derive the following conclusions:

(a) ∀i 1 ≤ i ≤ m, M, x |= �φi
(b) ∀j 1 ≤ i ≤ n, M, x 6|= ♦χj
(c) M, x 6|= �ϕ

Moreover, (c) implies that there exists a world y ∈ W such that xR�y
and M, y 6|= ϕ. However, from the fact xR�y, (a) and (b), it follows
that:

(d) ∀i 1 ≤ i ≤ m, M, y |= φi,

(e) ∀j 1 ≤ i ≤ n, M, y 6|= χj

(f) M, y |= φ1 ∧ · · · ∧ φm → χ1 ∨ · · · ∨ χn ∨ ϕ

Finally, it is easy to see that (d), (e) and (f) imply the contradiction
M, y |= ϕ.

• Rule (13): let us assume that

|= φ1 ∧ · · · ∧ φm → χ1 ∨ · · · ∨ χn ∨ ¬¬ϕ

but
6|= �φ1 ∧ · · · ∧�φm → ♦χ1 ∨ · · · ∨ ♦χn ∨ ¬¬�ϕ,

which allows us to derive there exists a modelM = 〈W,R�, H, T 〉 and
a Kripke world x ∈W such that

M, x 6|= �φ1 ∧ · · · ∧�φm → ♦χ1 ∨ · · · ∨ ♦χn ∨ ¬¬�ϕ.

Hence, we conclude the following facts:

A.3. Soundness 157

(a) ∀i 1 ≤ i ≤ m, M, x |= �φi,
(b) ∀j 1 ≤ j ≤ n, M, x 6|= ♦χj
(c) M, x 6|= ¬¬�ϕ, which is equivalent toM, x 6|= �¬¬ϕ

From (c) we conclude that there exists y ∈ W such that xR�y and
M, y 6|= ¬¬ϕ. On the other hand, it also holds that:

(d) ∀i 1 ≤ i ≤ m, M, y |= φi

(e) ∀j 1 ≤ j ≤ n, M, y 6|= χj

(f) M, y |= φ1 ∧ · · · ∧ φm∧ → χ1 ∨ · · · ∨ χn ∨ ¬¬ϕ

However, (d), (e) and (f) imply thatM, y |= ¬¬ϕ, which is a contradic-
tion.

• Rule (14): as for the previous cases, let us assume that

|= φ1 ∧ · · · ∧ φm ∧ ϕ→ χ1 ∨ · · · ∨ χn
but

6|= �φ1 ∧ · · · ∧�φm♦ϕ→ ♦χ1 ∨ · · · ∨ ♦χn,

so there exists a model M = 〈W,R�, H, T 〉 and a Kripke world x ∈ W
such that

M, x 6|= �φ1 ∧ · · · ∧�φm♦ϕ→ ♦χ1 ∨ · · · ∨ ♦χn

and, as a consequence, it follows that:

(a) ∀i 1 ≤ i ≤ m, M, x |= �φi,
(b) M, x |= ♦ϕ.

(c) ∀j 1 ≤ j ≤ n, M, x 6|= ♦χj

From (b) we conclude that, there exists a world y ∈ W such that xR�y
andM, y |= ϕ. On the other hand, since xR�y we derive the following
conclusions:

(d) ∀i 1 ≤ i ≤ m, M, y |= φi,

(e) ∀j 1 ≤ j ≤ n, M, y 6|= χj

(f) M, y |= φ1 ∧ · · · ∧ φm ∧ ϕ→ χ1 ∨ · · · ∨ χn

Finally, from (d), (e) and (f) we conclude the contradictionM, y 6|= ϕ.

• Rule (15): again, let us consider that

|= φ1 ∧ · · · ∧ φm ∧ ¬¬ϕ→ χ1 ∨ · · · ∨ χn (A.2)

but
6|= �φ1 ∧ · · · ∧�φm ∧ ¬¬♦ϕ→ ♦χ1 ∨ · · · ∨ ♦χn.

158 Appendix A. Proofs of auxiliary lemmas of Chapter 4

Therefore, there exists a modelM = 〈W,R�, H, T 〉 a world x ∈W such
that

M, x 6|= �φ1 ∧ · · · ∧�φm ∧ ¬¬♦ϕ→ ♦χ1 ∨ · · · ∨ ♦χn.

Therefore, it follows that:

(a) ∀i 1 ≤ i ≤ m, M, x |= �φi,
(b) M, x |= ¬¬♦ϕ, which is semantically equivalent toM, x |= ♦¬¬ϕ,

(c) ∀j 1 ≤ j ≤ n, M, x 6|= ♦χj .

From (c), we conclude that there exists a world y ∈ W such that xR�y
and M, y |= ¬¬ϕ. On the other hand, xR�y, (A.2), (a) and (c) imply
that the following facts:

(d) ∀i 1 ≤ i ≤ m, M, y |= φi,

(e) ∀j 1 ≤ j ≤ n, M, y 6|= χj ,

(f) M, y |= φ1 ∧ · · · ∧ φm ∧ ¬¬ϕ→ χ1 ∨ · · · ∨ χn

Finally the contradictionM, y 6|= ¬¬ϕ follows from (d), (e) and (f).

Admissibility of rules (16)-(19) from Table 4.1 can be proven by following the
same reasoning as for rules (12)-(15). �

Lemma A.7. The axioms (20)-(23) from Table 4.1 are valid for all class of
frames.

Proof. Let M = 〈W,R�, R©, H, T 〉 be a modal HT model. We proceed by
contradiction in all cases. In the case of Axiom (20) the proof goes as follows:
while M̌, x |= �ϕ follows fromM, x 6|= �ϕ→ ⊥,M, x |= ♦ (ϕ→ ⊥) together
with the property of persistence imply M̌, x |= ♦ (ϕ→ ⊥). Since the latter
derivation holds, it follows that

∃y ∈W s.t. xR�y and M̌, y 6|= ϕ.

Finally, from xR�y and M̌, x |= �ϕ we obtain the contradiction M̌, y |= ϕ.
In case of Axiom (21) were not valid, we could easily derive both M̌, x 6|= ♦ϕ
and

∃y ∈W s. t. xR�y and M̌, x |= ϕ

Hence, from M̌, x 6|= ♦ϕ and xR�y, we would find the contradiction M̌, y 6|=
ϕ.

Note that validity of axioms (22)-(23) from Table 4.1 are proved in a sim-
ilar way but using the accessibility relation R©. �

Lemma A.8. Axioms (24)-(27) from Table 4.1 are valid with respect to the
modelsM = 〈W,R�, H, T 〉 where R� is reflexive and transitive.

Proof. We proceed by assuming that these axioms are not valid, there exists
a model M = 〈W,R�, H, T 〉, and a Kripke point x ∈ W where axioms Ax-
ioms (24)-(27) are not satisfied. We get a contradiction in all cases:

A.3. Soundness 159

M, x 6|= (24) ⇒ M, x |= ϕ andM, x 6|= ♦ϕ
⇒ M, x |= ϕ andM, x 6|= ϕ (R� is reflexive)

M, x 6|= (25) ⇒ M, x |= �ϕ andM, x 6|= ϕ
⇒ M, x |= ϕ andM, x 6|= ϕ (R� is reflexive)

M, x 6|= (26) ⇒ M, x |= �ϕ andM, x 6|= ��ϕ

⇒
{
M, x |= �ϕ and ∃ y, z ∈W s.t.
xR�y, yR�z andM, z 6|= ϕ

⇒ M, z |= ϕ andM, z 6|= ϕ (R is transitive)

M, x 6|= (27) ⇒ M, x |= ♦♦ϕ andM, x 6|= ♦ϕ

⇒
{
M, x 6|= ♦ϕ and ∃ y, z ∈W s.t.
xR�y, yR�z andM, z |= ϕ

⇒ M, z 6|= ϕ andM, z |= ϕ (R� is transitive)

�

Lemma A.9.
The axioms (28)-(29) are valid with respect to the class of models
M = 〈W,R�, R©, H, T 〉 satisfying the property

If x
(
R©

)∗
y then xR�y. (A.3)

Proof. We proceed by contradiction.

M, x 6|= (28) ⇒ M, x 6|=©ϕ
⇒ ∃y ∈W s. t. xR©y andM, y 6|= ϕ
⇒ xR�y andM, y 6|= ϕ (A.3)
⇒ M, y |= ϕ andM, y 6|= ϕ (M, x |=�ϕ and xR�y)

M, x 6|= (28) ⇒ M, x |= ©̂ϕ
⇒ ∃y ∈W s. t. xR©y andM, y |= ϕ
⇒ xR�y andM, y |= ϕ (A.3)
⇒ M, y |= ϕ andM, y 6|= ϕ (M, x 6|=♦ϕ and xR�y)

Hence, we reach a contradiction in all cases. �

Lemma A.10. Rules of inference (30)-(31) from Table 4.1 preserve validity with
respect to the class of modelsM = 〈W,R�, R©, H, T 〉 that satisfy the property

If xR�y then x
(
R©

)∗
y (A.4)

Proof.

• Rule (30): assume that |= ϕ → �ϕ but 6|= ϕ → ©ϕ. From the latter
assumption we conclude thatM, x |= ϕ butM, x 6|= �ϕ for some x ∈W .
Thus, we derive

∃y ∈W. s.t. xR�y andM, x 6|= ϕ.

160 Appendix A. Proofs of auxiliary lemmas of Chapter 4

Now, applying (A.4) to xR�y, we get

∃n ∈ N and y ∈W. s.t. x
(
R©

)n
y andM, y 6|= ϕ.

Now, in order to get a contradiction, we claim thatM, y |= ϕ. We prove
this by induction on n

– Base case (n=0): If n = 0 then x = y and, since M, x |= ϕ then
M, y |= ϕ.

– Inductive step: Assume that x
(
R©

)n
y and

∀z ∈W. if x
(
R©

)n−1
z thenM, z |= ϕ.

Since x
(
R©

)n
y can be rewritten as x

(
R©

)n−1
t and tR©y (with

t ∈ W), then by induction hypothesis we know that M, t |= ϕ.
Finally, fromM, t |= ϕ and |= ϕ → ©ϕ we conclude thatM, y |=
©ϕ, which together with the fact tR©y implies thatM, y |= ϕ.

ThereforeM, y |= ϕ contradicts the previous factM, y 6|= ϕ.

• Rule (31): we proceed by following a similar reasoning task. Let us
assume that |= ©̂ϕ→ ϕ but 6|= ♦ϕ→ ϕ. Hence, from 6|= ♦ϕ→ ϕ we can
derive

∃x ∈W s. t. M, x |= ♦ϕ butM, x 6|= ϕ

and, sinceM, x |= ♦ϕ, then

∃y ∈W s. t. xR�y andM, y |= ϕ.

Now, by (A.4), we obtain the following expression

∃n ∈ N, y ∈W s. t. x
(
R©

)n
y andM, y |= ϕ.

ITo get a contradiction, we claim thatM, y 6|= ϕ and we will use induc-
tion on n to prove such claim:

– Base case (n=0): if n = 0 then y = x and, since M, x 6|= ϕ, we
concludeM, y 6|= ϕ.

– Inductive step: Assume that x
(
R©

)n
y and

∀z ∈W. if x
(
R©

)n−1
z thenM, z 6|= ϕ.

Since x
(
R©

)n
y can be rewritten as x

(
R©

)n−1
t and tR©y (with

t ∈ W), then by induction hypothesis we know that M, t 6|= ϕ.
Finally, fromM, t 6|= ϕ and |= ©̂ϕ → ϕ we conclude thatM, y 6|=
©̂ϕ, which together with the fact tR©y implies thatM, y 6|= ϕ.

Since the claim is proved we can assure that M, y 6|= ϕ, reaching a
contradiction.

A.4. Properties of the canonical model 161

�

Lemma A.11. Axiom (32) is valid with respect to the class of models M =
〈W,R©, H, T 〉 such that R© is linear, that is, for every Kripke world x in W
there exists one and only one successor denoted by succ(x).

Proof. Assume that Axiom (32) is not satisfied at x ∈W , thus we have

∃x ∈W s.t. M, x 6|=©ϕ↔ ©̂ϕ.

Therefore we must check four different cases:

1. M, x |=©ϕ butM, 6|= ©̂ϕ: we derive the contradictionM, succ(x) |= ϕ
andM, succ(x) 6|= ϕ. From the former and the latter respectively.

2. M, x 6|=©ϕ butM, |= ©̂ϕ: we obtain the contradictionM, succ(x) 6|= ϕ
andM, succ(x) |= ϕ from the former and the latter respectively.

3. M̌, x |= ©ϕ but M̌, 6|= ©̂ϕ: as happens in the previous cases we con-
clude M̌, succ(x) |= ϕ and M̌, succ(x) 6|= ϕ from both initial assump-
tions.

4. M̌, x 6|=©ϕ but M̌, |= ©̂ϕ: we conclude M̌, succ(x) 6|= ϕ and M̌, succ(x) |=
ϕ from the initial assumptions.

Hence, since we have reached a contradiction in all cases, we proved that
Axiom (32) is valid with respect to the class of linear frames. �

A.4 Properties of the canonical model

Proposition A.1. Given two systems x, y belonging to the canonical modelMc.
If xR©c y then x̌R©c y̌.

Proof. Since xR©c y we get, by Lemma 4.7 that both ©ΓxT ⊆ ΓyT and ©̂∆x
T ⊆

∆y
T , but it is equivalent to say that ©Γx̌H ⊆ Γy̌H and ©̂∆x̌

H ⊆ ∆y̌
H . Hence, by

definition, x̌R©c y̌.
�

Proposition A.2. Given two systems x, y belonging to the canonical modelMc.
If xR�c y then x̌R�c y̌.

Proof. The proof can be done by following the same reasoning as in Proposi-
tion A.1. �

Appendix B

The STeLP system

STeLP1 is an on-line application designed for computing Temporal Equilibrium
Models of splittable temporal logic programs [3] but adding new features like
the use of variables and the possibility of declaring arbitrary LTL formulas in
the body of a constraints.

B.1 Syntax

STeLP allows defining the following three different types of rules:

• initial_0: these are rules of the form

¬p1 ∧ · · · ¬pm ∧ pm+1 ∧ · · · ∧ pn → a1 ∨ · · · ∨ ap

such that

– the use of negation is not allowed in the consequent.

– the use of operator© is not allowed neither in the antecedent nor
in the consequent.

Initial_0 rules are represented in STeLP as in ASP:

a1 v ... v ap :- neg p1, ..., neg pm, not pm+1, ... not pn

• initial_1: these are rules of the form

¬p1 ∧ · · · ¬pm ∧ ¬© pm+1 ∧ · · · ∧ ¬© pn

∧pn+1 ∧ · · · ∧ pt ∧©pt+1 ∧ · · · ∧©ps → ©a1 ∨ · · · ∨©ap

such that

– the use of negation is not allowed in the consequent.

– © operator modifies every atom in the consequent.

1Available at http://kr.irlab.org/stelp_online/

http://kr.irlab.org/stelp_online/

164 Appendix B. The STeLP system

STeLP representation would corresponds to the following rule:

o a1 v ... v o ap :- neg p1, ..., neg pm, o not pm+1, ...,
o not pn, pn+1, ..., pt, opt+1... o ps.

• dynamic: this rules are either initial_1 or initial_0 but they are under
the scope of operator �, that is, they are of the form

� (¬p1 ∧ · · · ¬pm ∧ pm+1 ∧ · · · ∧ pn → a1 ∨ · · · ∨ ap)

where, the use of © is allowed but if an atom in the antecedent is af-
fected by it then this operator has to modify every atom in the con-
sequent. As in the rest of the cases, the use of negation is not allowed in
the consequent.

Representation of dynamic rules is made by replacing the classical “if”
from logic programming by the symbol “::-”. For instance the rule above
would be equivalent to the next one, written in STeLP format:

a1 v ... v ap :- neg p1, ..., neg pm, not pm+1, ...,
not pn, pn+1, ..., pt, pt+1... ps.

B.2 Implementation

In a first step, STeLP, whose modules are shown in Figure B.1, behaves as
follows: it firstly parses the input program, detecting static and domain pre-
dicates, checking safety of all rules, and separating the static rules. It also
appends static predicates to rule bodies for all variables with global domain.
The set of static rules is fed to DLV to generate some model (among possible)
that will provide the extension for all static predicates. The number of static
models that STeLP will consider is given as a command line argument. Each
static model will generate a different ground program and a different auto-
maton. Once a static model is fixed, STeLP grounds the non-static rules input
program. Each ground instance is evaluated and, if the body of the ground
rule becomes false, the rule is deleted. Otherwise all static predicates of the
rule are deleted from its body (see Algorithm 3).

The next step computes the loop formulas for the ground STLP we have
obtained by constructing a dependency graph and obtaining its strongly con-
nected components. The STLP plus its loop formulas are then used as input for
the LTL solver SPOT, which returns a deterministic Büchi automaton. Finally,
STeLP parses and, if actions and fluents are defined, simplifies the automaton
as described before. The tool Graphviz2 is used for generating a graphical
representation.

2http://www.graphviz.org/

http://www.graphviz.org/

B.3. Use of variables, actions and fluents 165

Algorithm 3: Temporal_Grounding(Π)
Require: A first-order splittable logic program Π
Ensure: list of possible ground rules Πg

Πg := ∅
complete_with_domain_predicates(Π)
Π1 := select_static_rules(Π)
Π2 := Π \Π1

M := solve(Π1)
for all m ∈M do
Gr := ∅
for all r ∈ Π2 do
L:=compute_valid_substitutions(Π2, m)
for all θ ∈ L do
rg:= apply_substitution(r,Θ)
rg:= remove_static_predicates(rg)
Gr := Gr ∪ {rg}

end for
end for
Πg := Πg ∪Gr

end for
return Πg

B.3 Use of variables, actions and fluents

STeLP allows using variables in the representations but, to guarantee the
program to be domain independent, they must appear in a positive static pre-
dicate in the body of the rule. User must specify which predicates are static
by using the reserved word static following by a list of items of the form
name/arity, where name and arity correspond to the name and arity of the
static predicate respectively. Another way of declaring static predicates is by
means of the reserved word domain, which is followed by a list of predicates
(with its variables). Every predicate in the list is implicitly declared as static
and, moreover, whenever a variable occurring in the program also occurs in
a domain predicate then such domain predicate is automatically added to the
body. We recommend to check section B.4.

Apart from the use of variables, this tool provides two reserved words,
fluent and action. In order to get a more clear representation, every atom,
declared as fluent, is moved to the state and every atom declared as an ac-
tion is left in the transitions. Again, in section B.4 we provide an example of
specification of fluents and actions.

B.4 Using STeLP for Model Checking

STeLP can be used for model checking since arbitrary LTL formulas can be
encoded in the body of a rule.

166 Appendix B. The STeLP system

main program

Parsing

Non-static grounding

Loop formulas

Simplifying automaton

External Applications

Static Grounding (DLV)

LTL to Büchi (SPoT)

Displaying Automaton
(Graphviz)

Figure B.1: Structure of STeLP system.

Example B.1 (from [61]). Two concurrent processes share a resource (such as
a file on a disk or a database entry), it may be necessary to ensure that they do
not have access to it at the same time. Several processes simultaneously editing
the same file would not be desirable.

To avoid this problem we stablish several critical sections of each process’ code
and design a protocol that satisfies the following conditions :

• Only one process can be in its critical section at a time.

• Critical section should include all the access to the shared resource (though
it should be as small as possible so that no unnecessary exclusion takes
place)

However, this protocol is not verified yes. It should satisfy some the following
desired properties

• Safety: only one process is in its critical section at a time.

B.4. Using STeLP for Model Checking 167

• Liveness: whenever any process requests to enter its critical section, it will
eventually be permitted to do so.

�

We use STeLP to represent to represent this problem, whose encoding is
shown next.

domain proc(X), proc(Y).
domain nextip(I,J).
domain inst(A), inst(B).
fluent ip/2.
action sch/1.
proc(1). proc(2).
nextip(n,t). nextip(t,c). nextip(c,n).
inst(n). inst(t). inst(c).
% Effect axioms
o ip(X,J) ::- sch(X), ip(X,I).
% State constraint\n"
::- ip(X,c), ip(Y,c), X’!=’Y.
% Unique value
::- ip(X,A), ip(X,B), A’!=’B.
% Inertia
o ip(X,A) ::- ip(X,A), not o other(X,A).
other(X,A) ::- ip(X,B), A’!=’B.
% Action generation
aux(X) ::- not sch(X).
sch(X) ::- not aux(X).
::- sch(X), sch(Y), X’!=’Y.
somesch ::- sch(X).
::- not somesch.
ip(X,n).

In this representation, predicates proc and sch represent the processes and
the action schedule respectively. Predicate stands for “interrupted process”
whose situation inside the critical section is represented by the constants ’n’
(not in the critical section), ’t’ (waiting to enter in the critical section) and
’c’ (inside the critical section). The fixed sequences of states that a process
follows inside the interruption, that is, from being in the non critical section to
being inside the critical section is defined by the extensional predicate nextip.
We must add constraints in order to forbid possible configurations like those
where both process are at the critical section at the same time. Temporal
equilibrium models are shown in Figure B.2.

168 Appendix B. The STeLP system

ip(1, n)
ip(2, n)

start

ip(1, n)
ip(2, t)

ip(1, t)
ip(2, n)

ip(1, t)
ip(2, t)

ip(1, c)
ip(2, n)

ip(1, n)
ip(2, c)

ip(1, c)
ip(2, t)

ip(1, t)
ip(2, c)

sch(2)

sch(1)

sch(2)

sch(1)

sch(1)

sch(2)

sch(1) sch(2)

sch(2) sch(1)

sch(2)sch(1)

sch(2)sch(1)

Figure B.2: Büchi automaton that represents the protocol specified in Ex-
ample B.1

As an example of how to check temporal properties by using constraints,
let us check whether the system represented is safe. It would mean checking
that program satisfies the formula

ϕ = �¬(ip(1, c) ∧ ip(2, c)).

Assume that we add ¬ϕ to our representation. It would mean that every THT
〈H,T〉 should satisfy ¬ϕ or, what is the same, ϕ is not satisfied in LTL. In
this way, the automaton obtained, shown in Figure B.3 does not accept any
temporal equilibrium models, and this fact leads to determine that the system
is safe.

B.4. Using STeLP for Model Checking 169

start

false

Figure B.3: Büchi automaton resulting from adding the formula ¬ϕ.

The property of liveness, which corresponds to the formula

� (¬p(1, t) ∧ ¬�¬ip(1, c)) ∧� (¬p(2, t) ∧ ¬�¬ip(2, c)) ,

can be checked in the same way.

Appendix C

The ABSTEM system

The tool ABSTEM1 is a tool designed to compute the set of temporal equilib-
rium models as well as checking several temporal properties on arbitrary the-
ories [18, 20]. ABSTEM has dependencies with both SPoT2, a library to operate
with ω-automata, and Graphviz, an open source graph visualization sofware.
Once these dependencies are met, ABSTEM can be easily compiled using the
make command:

cd path-to-abstem.
make && make install

C.1 Input Syntax

Arbitrary theories must be written following SPoTsyntax, which is shown in
Table C.1. for instance, the formula

¬ ((p ∧ q)Ur) (C.1)

would correspond to the formula

! ((p & q) U r)

written in ABSTEM syntax. Input formulas can written directly as an input
parameter (by means of -c option) or in a file whose path must be provided
by means of the command-line option -f.

1available at http://kr.irlab.org/?q=abstem.
2A modified version of SPoTwhich avoids some simplifications like, for instance, ¬¬ϕ ⇔ ϕ,

that are valid in LTL but not in THT.

http://kr.irlab.org/?q=abstem

172 Appendix C. The ABSTEM system

Formula Syntax
⊥ false or 0
> true or 1
¬ϕ ! ϕ or ∼ ϕ

ϕ ∧ ϕ′ ϕ & ϕ′

ϕ ∨ ϕ′ ϕ | ϕ′
ϕ→ ϕ′ ϕ -> ϕ′

ϕ↔ ϕ′ ϕ <-> ϕ′

�ϕ []ϕ or G ϕ
♦ϕ <>ϕ or F ϕ
©ϕ X ϕ
ϕ U ϕ′ ϕ U ϕ′

ϕ R ϕ′ ϕ R ϕ′

Table C.1: ABSTEM input syntax.

C.2 Computing Temporal Equilibrium Models

Option -t enables the option of computing temporal equilibrium models. The
algorithm implemented [18] computes several intermediate automata that can
be displayed by using the following command-line options:

i) –-SForm: generates a file named total.png which contains the Büchi
automaton that accepts the LTL models of an input formula.

ii) –-SNonTot: produces a file named non_total.png that shows the Büchi
automaton that accepts the non-total THT models of the input formula.

iii) –-SFiltered: create a file named filtered.png that contains the Büchi
automaton resulting from filtering ii)

iv) –-SComp: displays the complementary automaton of iii) in a file named
complementary.png

Finally, temporal equilibrium models are shown in a file designated as tem.png.
Due to the state explosion when complementing an automaton, the final auto-
maton may contain so many states which difficult its understanding. How-
ever, by using option -m every automaton is simplified before being written
into a file. As an example, let us consider the formula (C.1), by executing the
command-line option

abstem -t -m -c ’! ((p & q) U r)’

we obtain the automaton of the Figure C.1

C.3. Strong Equivalence 173

0start 1∅

∅

(a) TEL models

0start 1

∅, {r},
{q}, {q, r},
{p, }, {p, r},
{p, q}, {p, q, r}

∅, {q}, {p}

{p, q}

(b) LTL models

Figure C.1: THT and LTL models of ¬ ((p ∧ q)Ur)

C.3 Strong Equivalence

ABSTEM allows checking three different kinds of equivalence between two
temporal formulas. Those kinds can be enabled by means of the following
command-line options:

• -l: enables to check LTL equivalence.

• -w: enables to check Weak equivalence.

• -s: enables to check Strong equivalence.

For instance, we can check that formulas ♦p and ¬�¬p are LTL equivalent but
are not strongly equivalent. In case of strong equivalence, ABSTEM fixes the
context γ = ♦p → � (p ∨ ¬p) that produces a different behaviour, which is
displayed in the automaton of Figure C.2

0start 1∅

∅

Figure C.2: TEM models of ♦p ∧ γ but not of ¬�¬p ∧ γ.

Apéndice D

Resumen

Hans Kamp comenzó su famosa tesis doctoral [63] en lógica temporal con la
siguiente frase:

“Grecia es un reino, es cierto hoy (10 de mayo de 1968); pero era
falso antes y ¿quién sabe si será verdad mañana?”

Mediante esta frase, Kamp pretendía enfatizar que la certeza de una frase
podría depender del momento en el que se dice. El estaba probablemente
sospechando que el rey Constantino II de Grecia, en aquel momento reinando
desde el exilio en 1968, podría ser cesado, como realmente ocurrió en junio de
1973, siendo el fin de la monarquía griega. Si nos preguntasen sobre el sistema
político griego en cualquier instante de tiempo entre 1968 y 1973, hubiéramos
respondido monarquía, porque nosotros no tenemos mayores evidencias de lo
contrario. Esto es un ejemplo de conclusión por defecto, que puede cambiar
a la vista de nuevas evidencias. Consideremos ahora, por ejemplo, el caso del
rey Baudouin de Bélgica, quien oficialmente reinó desde el 17 de julio de 1951
al 31 de julio de 1993. Sin más información, podemos asumir que él estuvo en
el cargo en cualquier fecha dentro de dicho periodo. Sin embargo, es conocido
que el 4 de abril de 1990 él abdicó durante un día, de acuerdo con el gobierno
belga, para no tener que firmar la ley del aborto. Después de añadir este hecho,
nosotros deberíamos poder retractarnos de nuestra conclusión previa y, a su
vez, derivar que el rey no reinó durante dicho día.

El razonamiento del sentido común en el caso temporal está lleno de situa-
ciones que requieren asumir conclusiones por defecto, puesto que raramente
contamos con toda la información disponible. Lamentablemente, la mayoría
de lógicas modales temporales no permiten modelar este tipo de razonamien-
to por defecto debido a que, típicamente, se definen por medio de relaciones
de inferencia monótonas (como pasa también en lógica clásica). Formalmen-
te, esto significa que si una formula ϕ se deriva de una teoría Γ, entonces ϕ
seguirá siendo derivable de una teoría de la forma Γ ∪ ∆. En otras palabras,
una conclusión ϕ que es derivable de un conjunto de fórmulas Γ no puede ser
retractada al añadir una nueva evidencia ∆.

La lógica computacional ha sido aplicada al razonamiento temporal bajo
dos perspectivas diferentes: teoría de la computación (TC) y representación

176 Apéndice D. Resumen

del conocimiento (RC). Debido a que los objetivos de estas dos áreas son bas-
tante diferentes, los resultados obtenidos en ambos casos han tomado caminos
distintos. En TC, el razonamiento temporal está más orientado al estudio de
propiedades de algoritmos y sus problemas asociados tales como compleji-
dad, computabilidad, verificación formal, conexión con otros formalismos co-
mo teoría de autómatas, álgebra o lenguajes formales. En todos estos casos, el
uso de diferentes tipos de lógicas modales ha demostrado ser extremadamente
útil, ya que proporcionan construcciones específicas para hablar sobre tiempo,
a la vez que restringen la expresividad de la lógica de predicados a una subcla-
se decidible. Por el contrario, en RC, la investigación ha sido tradicionalmente
enfocada hacia la resolución de problemas de razonamiento donde las reglas
por defecto y el razonamiento no monótono (RNM) han jugado un papel cru-
cial. En particular, la resolución de este tipo de problemas ha sido el principal
tema de investigación de la subárea de RC denominada razonamiento sobre
acciones y cambio (RAC), donde los más famosos lenguajes formales no son
más que dialectos de la lógica de primer orden, debido a que se pretende una
rica capacidad expresiva.

Mientras que la no monotonicidad apenas ha sido considerada dentro del
discurso en TC, su combinación con lógicas modales en RC no es extraño. Por
ejemplo, existe una familia de lógicas modales no monótonas (ver por ejem-
plo [87]) que se obtienen mediante la imposición de condiciones de punto
fijo en la relación de inferencia de las lógicas modales estándar. No obstante,
este tipo de lógicas ha tenido un uso de carácter epistémico, representando
conceptos como conocimiento, creencia u obligación, manejando únicamente
los operadores modales de necesidad y posibilidad. Otras combinaciones de
no monotonicidad y lógicas modales especificamente diseñadas para razona-
miento temporal es mucho más infrecuente en la literatura, las únicas excep-
ciones son típicamente los lenguajes de acciones modales con semánticas no
monótonas definidas bajo diversas restricciones sintácticas.

Hasta donde sabemos, el único caso de una lógica temporal no monótona
que cubra la sintaxis de alguna de las aproximaciones modales tradicionales
sin requerir el uso de más construcciones es Temporal Equilibrium Logic (TEL),
lógica definida por Cabalar y Pérez en [23]. TEL comparte la sintaxis de Linear-
time Temporal Logic (LTL) (formalismo propuesto por Arthur Prior [103] y pos-
teriormente extendido por Kamp [63]), que es una de las lógicas más simples,
utilizadas y mejor conocidas en TC. La principal diferencia con TEL está en la
interpretación semántica de la implicación y de la negación, que está más pró-
xima a la lógica intuicionista. Estas dos propiedades están heredadas del hecho
de que TEL es una extensión temporal de Equilibrium Logic [98], un formalis-
mo no monótono que ofrece una generalización de la semántica de modelos
estables [48] de programación lógica para el caso de fórmulas proposiciona-
les arbitrarias. Dicha semántica es una característica importante por diversas
razones. Primero, los modelos estables constituyen la base del exitoso para-
digma de razonamiento no monótono denominado Answer Set Programming
(ASP), avalado por el desarrollo de herramientas de resolución muy eficientes
y, además, aplicadas en dominios muy heterogéneos. Segundo, mientras que
en la definición original de modelos estables, la semántica de Equilibrium Lo-
gic no depende de transformaciones sintácticas sino que consiste, únicamente,

D.1. Metodología 177

en un criterio de minimización de modelos para una lógica intermedia (la ló-
gica Here-and-There [57]). Esta definición puramente lógica proporciona una
forma más fácil y homogénea de extender el formalismo, utilizando las técni-
cas estándar de otras lógicas híbridas. Así, por ejemplo, la extensión temporal
en TEL puede verse como la forma “obvia” de introducir operadores de LTL en
Equilibrium Logic.

El primer par de trabajos sobre TEL exploraron su uso en la traducción
de lenguajes de acciones [23] o su aplicación potencial para el chequeo de
la propiedad de (strong) equivalence entre representaciones alternativas de al-
gún dominio de acciones [2]. Sin embargo, aparte de la propia definición de
TEL muy pocos resultados, relativos a sus propiedades fundamentales, eran
conocidos [17] y nada en absoluto sobre qué métodos de cálculo se podrían
utilizar en casos de aplicación. Esta situación contrastaba con el vasto conoci-
mento disponible sobre LTL, tanto relativo a sus propiedades formales como a
sus métodos de cómputo e implementaciones prácticas.

D.1 Metodología

La metodología utilizada en esta tesis se corresponde con la estándar en el
campo de la investigación en ciencias de la computación, una secuencia cícli-
ca incluyendo: revisión del estado del arte, definición del problema, estableci-
miento de hipótesis, derivación de una prueba formal o refutación, desarrollo
y chequeo de prototipos (en caso de temas de implementación) y finalmente
evaluación y publicación de los resultados. Muchos resultados obtenidos se
acompañan por prototipos software (especialmente en los casos de STeLP y
ABSTEM), para los que hemos empleado un ciclo de vida en espiral, pasando
por diferentes ciclos de análisis, diseño, implementación y evaluación. Como
resultado, esta tesis ha generado las siguientes publicaciones:

• P. Cabalar and M. Diéguez. STeLP - A Tool for Temporal Answer Set Pro-
gramming, in Proc. of the 11th International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR’11), pages 370–375,
Vancouver, Canada, 2011.

• P. Cabalar and M. Diéguez. Strong equivalence of non-monotonic tem-
poral theories, in Proceedings of the 14th International Conference on
Principles of Knowledge Representation and Reasoning (KR’14), Vienna,
Austria, 2014.

• F. Aguado, P. Cabalar, M. Diéguez, G. Pérez, C. Vidal, Temporal equili-
brium logic: a survey. Journal of Applied Non-Classical Logics 23(1-2):
2-24 (2013).

• F. Aguado, P. Cabalar, M. Diéguez, G. Pérez and C. Vidal, Paving the Way
for Temporal Grounding, in Proc. of the 28th International Conference on
Logic Programming (ICLP’12), Budapest, Hungary, 2012.

178 Apéndice D. Resumen

D.2 Resultados obtenidos

En esta tesis hemos estudiado diferentes aspectos de Temporal Equilibrium
Logic, una novedosa combinación de lógica modal temporal y un formalismo
no monótono. A grandes rasgos, esta tesis recoge un conjunto de resultados
que constituye un gran logro en lo relativo al conocimiento sobre TEL. Las
principales contribuciones de esta tesis son las siguientes:

i Hemos probado el teorema de strong equivalence para el caso de TEL, lo
que justifica el uso de THT como base monótona.

ii Hemos demostrado que la traducción sintáctica propuesta por Kamp pa-
ra codificar LTL en lógica de primer order es correcta para codificar TEL
en Quantified Equilibrium Logic [101].

iii Hemos propuesto una codificación de TEL en el formalismo Infinitary
Equilibrium Logic [55] y, por lo tanto es posible aplicar la idea de reducto
definido para este formalismo al caso de teorías TEL arbitrarias.

iv Hemos realizado la axiomatización de una parte relevante de la base
monótona de Temporal Here and There, la base monótona de TEL. En
particular hemos proporcionado un conjunto de axiomas para los opera-
dores “necesario”, “posible” y “siguiente” que propiamente fija su com-
portamiento semántico (exceptuando la linealidad del “siguiente” que es
dejada como trabajo futuro).

v Se ha desarrollado una herramienta llamada STeLP que acepta como
entrada teorías temporales que pertenecen a una subclase sintáctica de
TEL, denominada splittable, y computa sus modelos temporales de equi-
librio en la forma de un autómata de Büchi. Esta subclase de TEL se
caracteriza por la propiedad de que una referencia al pasado nunca pue-
de depender de una referencia al futuro, lo que es suficiente para cubrir
la mayoría de los escenarios que se pueden representar en Answer Set
Programming.

vi Hemos definido la versión primer orden de TEL así como un algoritmo
de grounding que permite la eliminación de variables en el caso de pro-
gramas lógicos splittable.

vii Hemos desarrollado otra herramienta, llamada ABSTEM, que se centra
en el cálculo de modelos temporales de equilibrio de cualquier teoría
arbitraria y, además, permite comprobar diversos tipos de equivalencia
entre teorías temporales. Además, en caso de que las teorías no sean
equivalentes esta herramienta produce una justificación en términos de
contramodelos.

viii Finalmente, hemos comparado TEL con otras aproximaciones no mo-
nótonas para la representación de escenarios temporales. Utilizando la
traducción en Infinitary Equilibrium Logic hemos sido capaces de probar
que la semántica de TEMPLOG [11], una aproximación de programa-
ción lógica temporal, sin negación por defecto, coincide con el resultado

D.3. Conclusiones y trabajo futuro 179

de TEL para dicha subclase sintáctica. Nosotros hemos extendido esta
comparación al formalismo Temporal Answer Sets [51] demostrando una
traducción del primer formalismo en TEL mediante la introducción de
átomos auxiliares.

D.3 Conclusiones y trabajo futuro

La principal dificultad de este programa de investigación está relacionada con
la variedad de resultados y métodos provenientes de campos tan diversos co-
mo la lógica modal y RNM. Por ejemplo, algunos resultados teóricos, como i
han sido han sido planteados al inicio de esta tesis pero la respuesta ha sido
encontrada recientemente y después de un profundo estudio de trabajos rela-
cionados en ambas áreas. De forma similar, iv constituye un trabajo reciente,
aún no publicado, desarrollado durante mi estancia en el IRIT (Universidad
de Toulouse), con la colaboración invalorable de Philippe Balbiani. Además, la
implementación de las diferentes herramientas fruto de esta tesis ha requerido
también un importante esfuerzo de combinación de herramientas desarrolla-
das para ASP, software para LTL y manejo de autómatas.

Aunque se ha realizado mucho trabajo, existen aún muchos temas abiertos
que se pueden estudiar en el futuro. A continuación describimos brevemente
los más destacables.

• Un primera tarea futura consiste en completar el trabajo sobre la axio-
matización de THT para probar que ésta caracteriza completamente na-
rrativas lineales. Hasta ahora hemos conseguido probar que el operador
“necesario” cubre el cierre transitivo del operador “siguiente”, esto es,
que siempre existe un mundo accesible, pero puede no ser único. Esta
axiomatización puede ser extendida, considerando los operadores “un-
til” y “release”.

• Otra futura línea de investigación interesante es ver si alguno de estos
operadores modales es representable en términos de otros operadores o
no. Es sabido que, en LTL, el operador “until” puede definirse en función
del operador “release” y viceversa. Lamentablemente en el caso de THT
(debido a que la doble negación no puede eliminarse en el caso general)
esta característica no es tan obvia. Queda por lo tanto determinar en este
caso si los operadores “until” y “release” guardan una relación similar.

• Aunque hemos demostrado que una de las direcciones del teorema de
Kamp también se cumple entre THT y Quantified Equilibrium Logic (QHT),
la versión primer orden que Equilibrium Logic, realmente ignoramos si
la otra dirección se cumple o no. Esta dirección consiste en determinar
si cualquier fórmula en QHT con una relación lineal entre las variables,
denotada por “<”, se puede representar en TEL o no.

• Siguiendo pasos similares a los realizados en TEL, se podrían explo-
rar otras aproximaciones híbridas para el razonamiento temporal. Por
ejemplo, [4] ha considerado una combinación de Dynamic LTL (DLTL) y
Equilibrium Logic. De forma similar, otras combinaciones de Equilibrium

180 Apéndice D. Resumen

Logic y lógicas modales temporales como CTL o CTL∗ se pueden con-
siderar. Otra posibilidad sería considerar diferentes aproximaciones de
RNM o programación lógica tales como Well-Founded Semantics [118]
o Completion [27].

• En el campo de la implementación, una posibilidad que ha sido explo-
rada en un inicio pero considerada posteriormente como trabajo futuro
es la utilización de herramientas no basadas en autómatas. Una posible
herramienta a considerar sería TSPASS [41] (basada en resolución tem-
poral) y que suponemos podría mejorar la eficiencia de las herramientas
actuales a la hora de calcular modelos temporales de equilibrio.

• Finalmente, una linea de investigación interesante consistiría en explo-
tar los resultados obtenidos para su aplicación en el campo de los len-
guajes de acciones, proporcionando traducciones de los formalismos de
acciones que están fuertemente ligados a formalismos ASP como, por
ejemplo, ALM [62] o MAD [80]. De forma similar otro posible cam-
po de aplicación de este formalismo podría ser la aplicación de TEL al
campo de AI planning, especialmente para comparar el comportamiento
de TEL con respecto a las aproximaciones actuales a planning, las cuales
utilizan restricciones temporales como reglas heurísticas que mejoran su
eficiencia.

	Chapter 1: Introduction
	Approaches for temporal reasoning
	Modal Temporal Logics
	Reasoning about Actions and Change
	Answer Set Programming

	Goals and structure of this thesis

	Chapter 2: Background
	Answer Set Programming
	ASP logic programs
	Stable model semantics
	Splitting a logic program
	Completion
	Disjunctive logic programs
	Loop formulas for disjunctive logic programs
	ASP programs with variables
	General stable models
	Computational complexity

	Equilibrium logic
	Syntax and semantics
	Normal forms for Here and There
	Translating equilibrium logic into propositional logic
	Strong equivalence
	Quantified equilibrium logic
	Infinitary equilibrium logic

	Linear temporal logic
	LTL as a fragment of first-order logic
	Büchi automata and LTL
	-languages

	Chapter 3: Temporal Equilibrium Logic
	Temporal Here-and-There
	A Three-valued characterisation of THT
	Encoding THT in LTL

	Temporal Equilibrium Models
	Examples

	Relation between THT and First-order HT
	TEL and Infinitary Formulas

	Chapter 4: Towards an axiomatisation of THT
	HT axiomatisation
	Background on tableaux
	Completeness of here and there

	A partial axiomatisation of temporal here and there
	Canonical model: definition and properties
	Canonical model: an example
	Back to THT, properties of Rc and Rc
	Ancestral lemma and filtration
	Properties of filtration

	Conclusions

	Chapter 5: Computing Temporal Equilibrium Models
	Splittable Temporal Logic Programs
	Splitting a temporal logic program
	Loop formulas for splittable temporal logic programs

	Temporal Quantified Equilibrium Logic
	Safe Variables and Domain Independence
	Derivable ground facts
	STeLP

	Arbitrary temporal theories
	Automata-based Computation of Temporal Equilibrium Models
	ABSTEM

	Chapter 6: Temporal Strong Equivalence
	Temporal Strong Equivalence
	Implementation and a practical example

	Chapter 7: Related Work
	Relation between TEL and TEMPLOG
	Relation to Temporal Answer Sets
	Temporal Answer Sets
	Dynamic Temporal Equilibrium Logic
	A normal form for DTEL

	Relation to works on planning
	Relation to approaches of model checking in ASP
	Relation to ER-LTL
	Relation to LAP

	Chapter 8: Conclusions
	Bibliography
	Appendix
	Appendix A: Proofs of auxiliary lemmas of Chapter 4
	System properties
	Consistency of tableaux
	Soundness
	Properties of the canonical model

	Appendix B: The STeLP system
	Syntax
	Implementation
	Use of variables, actions and fluents
	Using STeLP for Model Checking

	Appendix C: The ABSTEM system
	Input Syntax
	Computing Temporal Equilibrium Models
	Strong Equivalence

	Apéndice D: Resumen
	Metodología
	Resultados obtenidos
	Conclusiones y trabajo futuro

